

Designing
with Speech

Processing Chips

Ricardo Jimenez
BESTNET Telecommunications

Calexico, California

A C A D E M I C P R E S S , INC.

Harcourt Brace Jovanovich, Publishers

San Diego New York Boston London

Sydney Tokyo Toronto

This book is printed on acid-free paper. ©

Copyright © 1991 by ACADEMIC PRESS, INC.
All Rights Reserved.
No part of this publication may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopy, recording, or
any information storage and retrieval system, without permission in writing
from the publisher.

ACADEMIC PRESS, INC.
San Diego, California 92101

United Kingdom Edition published by
Academic Press Limited
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Jimenez, Ricardo.
Designing with speech processing chips / Ricardo Jimenez.

p. cm.
ISBN 0-12-385348-6
1. Integrated circuits—Design and construction—Data processing.

2. Speech processing systems. 3. Computer-aided design. I. Title.
II. Title: Speech processing chips.
TK7874.J56 1991
621.39'9-dc20 90-49691

CIP

PRINTED IN THE UNITED STATES OF AMERICA

91 92 93 9 8 7 6 5 4 3 2 1

This book is dedicated
to my wife Patricio

Preface

The speech processing chip is a relatively new and complex device that ap­
peared in the late 1970s. This book provides the theory and the basic design
tools needed to utilize speech processing chips more effectively in electronic
circuit design. It presents design examples for a wide range of real-world ap­
plications and information on interconnection of these components into func­
tional equipment for instrumentation, data processing, inventory display, and
control systems. Special emphasis is placed on those circuits with the most
potential for future development, LSI and VLSI devices. Popular commer­
cially available products are used throughout as illustrative examples, and the
important characteristics of the devices are summarized for each functional
category.

The book goes far beyond the presentation of block diagrams, micro­
controller architecture, and software programming. It shows a step-by-step
development of hardware and software, how to combine them most effec­
tively, and how to interface speech processors with input devices, such as sen­
sors or data sources, and output devices, such as relay actuators, thyristors, or
display devices.

In this book, practicing design and system engineers, technicians, engi­
neering students, and other interested readers will find a comprehensive over­
view of the entire topic of speech processing chips. The book also describes
popular, commercially available circuits for each functional category pre­
sented and discusses specific applications in sufficient depth to interest the ex­
perienced designer. Engineering students will be able to follow the book if
they have been exposed to courses on circuit design theory, logical circuits,
and integrated circuits.

As with my other publications, I wanted this to be a book that was organized

x i

xii Preface

and used from a practical viewpoint. Throughout the book emphasis is placed
on using the popular CMOS and HCMOS ICs of each functional category as
illustrative examples.

Speech processing chips for electronic and other applications are available
at low cost. The progress made in the manufacture and supply of these chips
expands enormously the opportunities to design and build highly effective
equipment and systems. This book shows how to make use of these develop­
ments. The reader is shown step-by-step how to build both simple and sophis­
ticated projects with all the necessary details. Many proven examples are
included throughout the book for industrial, laboratory, health care, and
home use.

The information needed to follow the many design examples in this book is
given in a simple, direct manner with supporting flowcharts and tables. Once
this know-how is acquired, you will be able to build systems with artificial
voice with less effort and less time than ever before.

The book is divided into seven chapters. Chapter 1 introduces the different
speech processing techniques, describes how the basic speech processor inte­
grated circuit works, and presents IC pin comparisons of the different pack­
ages. It also includes the basic datasheet for the device.

Chapter 2 explains how a speech processor can be used in applications for
which it was not originally intended—how this basically digital device can be
used as a variety of different logic devices. Chapter 3 provides help under­
standing analog-to-digital converter families and their respective advantages
and limitations. After reading these three chapters, you should come away
with a fundamental understanding of what a speech processor is and how to
use it.

To write information into the specific controller and then announce it, in­
terface devices or systems are required. Chapter 4 shows how such interface
devices can be built with minimal effort and at a cost that is often a small
fraction of the price of commercial products.

Chapter 5 presents a wide selection of test and measurement circuits that
also can be interfaced with a specific application by the user or designer.
These circuits are widely used in data acquisition systems. Chapter 6 presents
different kinds of burglar alarms varying from simple designs to fault-tolerant
systems where failures are critical and not acceptable.

Chapter 7 covers voice recognition techniques as well as devices now avail­
able. Some applications for control systems are also considered.

Acknowledgments

I owe thanks to several people who helped me complete this book.
I would like to thank all the publishers who gave permission to include

material that originally appeared elsewhere. Footnotes to selected articles cite
these original sources.

I am grateful to those instructors from other institutions who reviewed
the manuscript for Academic Press, Inc., and who made many constructive
suggestions.

Thanks also to my research students of the courses "Logical Circuits I I ,"
"Sequential Systems," and "Instrumentation" who suffered through the
building and testing process of many of the circuits presented here and in par­
ticular to Ruben Rios, Francisco Meza, Jose J. Lara, Ramiro Jacinto, Ruben
Avalos, Francisco J. Mendoza, Alvaro E. Salgado, Julio Garcia, Rigoberto
Hernandez, and Fabian Muro.

Thanks in particular goes to the Dean of the Technological Institute of
Mexicali, Ramon A. Heredia.

I am also grateful to Marcos Silva, Roberto Dewar, and Dr. Fidel Diaz for
proofreading the manuscript to make it more understandable. Of course, the
patience and love of my wife Patricia was required throughout.

Ricardo Jimenez, Ε. E.

xi i i

C H A P T E R 1

Speech Processing Chips

1.1 Introduction to Voice Synthesis
Digital ICs

Circuits with artificial voice offer a new dimension of sophistication to almost
any electrical or electronic modern system. Traditionally, magnetic tape re­
cording has been used in applications requiring speech announcements, for
example, telephone announcement systems; a system of this type is costly be­
cause it requires a large number of tapes for different messages. It will not let
you create mixed messages for different situations. Consider the case of a
public service telephone that tells you the time. This device will need 60 dif­
ferent tapes for each hour, not to mention the number of tapes required for a
complete 24-hour day. In contrast, a telephone system that uses artificial voice
stored in digital memories can create different messages by pulling up the dif­
ferent words required to create a specific message. This system requires only a
few chips that will do the work of a large number of tapes.

Let us now consider a talking voltmeter in the range of 0 to 5 V with a
resolution of 0.1 V. Here, we will need 50 different messages corresponding
to the 50 possible voltage readings. It would be costly and time-consuming to
develop a tape mechanism for this project.

In the past, speech systems were treated as data acquisition circuits, in
which a voice waveform was treated like any other fluctuating voltage input:
The circuit recorded the waveform by periodically taking a sample of the sig­
nal's voltage through an analog-to-digital (A/D) converter and storing it as a
binary value. (The number of samples needed per second depends upon the
frequency of the input signal.) These digital speech signals were stored as
pulse code modulation (PCM) in semiconductor memories. Once the samples

1

2 1 . Speech Processing Chips

were stored in RAM or ROM, the circuit could recreate the original waveform
by sequentially sending the stored values to a D/A converter at the same rate
as the original sampling. One second of digital voice required from 4 to 32
Kbytes of memory. If the amount of data stored was reduced (compressed)
using a known principle, the restoration of the original sound was called
"synthesis."

The synthesis technique provides a dramatic reduction in the amount of
memory required for one second of speech. Memory requirements vary from
400 to 2,000 bits per second, depending on the desired speech attributes and
overall quality. A bad reproduction will sound unnatural or unintelligible. A
speech signal is highly redundant and predictable, and by coding only the
slowly varying coefficients of speech or by dramatic compression of digitized
speech, significant bandwidth reductions in the digitized signal can be ob­
tained. The synthesizer technique becomes practical when it is developed with
VLSI semiconductor technology.

Today, applications for voice synthesis are endless. The following are some
of them: telecommunications; consumer appliances; automotive; counters;
consumer products; instrumentation; teaching aids; clocks; language transla­
tion; annunciators; voice interactive computer terminals; nautical and aero­
nautical instrumentation annunciators; voice back units for banking, weather,
and time announcements; elevators; trains; subway systems; toys and games;
warning systems for fire and police emergency.

In the area of instrumentation, a speech synthesizer is a very important
tool. When a failure is presented in the system being monitored, the speech
synthesizer will immediately start reading the procedures contained in the
manual in order to indicate to the operator how to correct the specific failure.
Great benefits are obtained if a speech synthesizer is installed in power sta­
tions, nuclear plants, or places where the user must monitor a myriad of con­
trols. Here the speech synthesizer augments the operator's ability to respond
rapidly and correctly when a process has extended its normal limits.

In industry, a speech synthesizer can be used to augment productivity by
giving spoken messages on how to assemble specific products, thereby freeing
a user for other tasks. Here, failure to follow precise directions could lead to
the destruction of equipment or injury to personnel.

The use of vocal warnings on automobiles has been spreading since the
early 1980s to remind the driver of the electrical or mechanical situation of the
vehicle. The same features are also applied to airplanes where the synthetic
speech guides the pilot with directions such as "slow down," "cl imb," or
other appropriate instructions.

The pace of the speech processing field is so rapid that some systems now
under development are excluded from this book. The emphasis of this book is
on designing with the systems now available.

1.2 Synthesis Techniques 3

1.2 Synthesis Techniques

The basic phonological element of speech is the phoneme, which is the name
given to a group of similar sounds in language. A phoneme is acoustically
different depending upon its position within a word. Each of these positional
variants is an allophone of the same phoneme. Phoneme reproduction is a
basic element in any speech synthesizer. The method of "allophone speech
synthesis" is used to create words or phrases where the user has to think in
terms of sounds, not letters. With this technique you can synthesize an un­
limited vocabulary by using allophones and silences in the appropriate se­
quence. Phonemes, together with speaker inflection and volume, are the fun­
damental building blocks of speech.

The American English language consists of approximately 38 to 40 pho­
nemes: 14 to 16 vowel sounds and 24 consonant sounds. For example, the ini­
tial Κ sound used in words like "comb" sounds slightly different from the Ks
in words like "can't ." These small variations are due to the vowel which fol­
lows them, in this case, " o " and "a . " Each phoneme is generated with either
a voiced sound, as in "eye" or an unvoiced sound like the " sh" in "shy."
There are also allophones classified as résonants, voiced fricatives, voiceless
fricatives, voiced stops, voiceless stops, affricates, and nasals.

Voice synthesis methods are divided into three major types: waveform en­
coding, parametric synthesis, and synthesis by rule. Each method is explained
below.

W a v e f o r m Coding Methods

This type of voice synthesis includes differential pulse code modulation
(DPCM), adaptive delta modulation (ADM), and adaptive differential PCM
(ADPCM). The original sound wave amplitude is sampled at fixed intervals,
digitized, and the volume of data is then reduced on the basis of the synthesis
principles.

Parametric Synthesis Methods

Characteristic information included in voice waveforms is extracted as pa­
rameters for synthesizing purposes. The partial autocorrelation (PARCOR)
method is a typical example. In this method, models of the human vocaliza­
tion mechanism are used. Voiced and voiceless consonant sounds are discrim­
inated, and voiced sound pitch and amplitude data are extracted together with
filter characteristics of the vocal tract. Voice synthesis is then obtained by
passing these data to hardware consisting of digital filter circuits.

Synthesis by Rule Method

In this synthesis method, groups of phonemes expressed by small quantities of
data are skillfully linked together to reproduce any desired words or phrases,

4 1 . Speech Processing Chips

which makes it easy to develop your own set of words or phrases for your
specific application. However, this method lacks the flexibility to create into­
nation, accents, and length of certain sounds in order to get a natural-sounding
voice. This method will be more efficient when vowels and diphthongs with
different accents are contained in the allophone set.

There are two general approaches used to derive synthetic speech: (1) time
domain synthesis and (2) frequency domain synthesis. The first method works
with a synthetic speech waveform representation of the original speech. About
half of the synthetic waveform is silence and is made up of symmetric seg­
ments which range over a very restricted set of amplitude values. In this form,
the synthetic waveform can be stored using only 1% of the bits that are neces­
sary to reproduce the original speech waveform.

Frequency domain synthesis has two main branches: formant synthesis and
linear predictive coding (LPC). Formant synthesis generates speech by re­
producing the spectral shape of the waveform using the formant center fre­
quencies, bandwidths, and the pitch periods as inputs. A frequency region
where the amplitude of a vowel sound is concentrated (i.e., frequency peaks
in the voice spectrum) is known as formant. Figure 1.1 shows an electronic
speech model of the human speech production mechanism. This model is used
in the Signetics speech synthesizer FPC8200.

LPC is based on a mathematical model of the human vocal tract. Pitch,
amplitude, and speech variables are obtained from speech recordings. The
speech data are analyzed and encoded to reproduce input data suitable for the
digital model.

The basic model used in linear predictive analysis is illustrated in Figure
1.2. The two major components are a flat-spectrum excitation source and a
spectral shaping filter H(z).

The excitation source provides a signal u(n) containing a flat spectral enve­
lope that is used to drive the filter H(z), resulting in the synthetic speech out­
put signal S(n). Because the excitation signal has a flat spectrum, the spectral
envelope of the output signal S(n) will have the same shape as the spectrum of
the filter H(z).

In speech synthesis, the parameters of H(z) must be set on a time-varying

An

! b—For niant j
i F i l t e r I

Upsamp lea | j

Pulse j

F i g u r e 1.1 Electronic speech model of the human speech reproduction mechanism.

1.3 SP0256B/SP0264 Processors 5

I

! F l a t - S p e c t r u m
E x c i t a t i o n S p e c t r a I S y n t h e t i c

! E x c i t a t i o n Shop ι ηg ! E x c i t a t i o n Shop ι ηg

! Source S igna i ϋίη} F i I t e r H (z) Speech

F i g u r e 1.2 Speech synthesis model.

basis such that its short-term spectrum is the same as that of the desired short-
term speech spectrum envelope.

1 ·3 SP0256B/SP0264 Narrator Speech
Synthesis Processors

The SP0256B/SP0264 speech processors use the method of synthesis by
rule. They also support LPC synthesis, formant synthesis, and allophone syn­
thesis. Phoneme synthesis works by combining basic sound elements (pho­
nemes) to form complete words and sentences. This method is suitable when
the type of vocabulary required is not fixed.

Microchip (2355 W. Chandler Blvd., Chandler, AZ 85224-6199), the only
manufacturer of SPO256B/SP0264 speech processors, uses the approach just
described, combining phoneme synthesis with a digital filter. The speech pro­
cessors from Microchip employ formant coding, which is a frequency domain
synthesis that is similar to LPC. These devices model speech as the output of a
series of cascaded resonators.

The speech process is initiated by addressing the ROM address that con­
tains the phoneme desired. A maximum of 256 phonemes can be stored in the
16 Kbits of internal ROM. This device contains a microcontroller and a vocal-
tract model. The vocal-tract model is a digital filter. These processors are
classified as narrators because they use a preprogrammed custom vocabulary,
or phrase set, which is recorded in a serial ROM SPR128 or SPR128B. One of
these memories is directly interfaced with the speech processor (SP). If a par­
allel ROM is desired for recording the phrase set, a parallel-to-serial interface
is required. This is made by using the SPR000, as we will see in Section 1.6.

The SP0256B contains an on-chip controller with 16 Kbit internal ROM,
while the SP0264 has a 64 Kbit memory. Both devices support a controller
for external ROM SPR128A, which is a 128 Kbit ROM. These processors in­
corporate four basic functions:

• A software programmable digital filter that can be made to model a vocal
tract.

• A 16K ROM which stores both data and instructions.
• A microcontroller which controls the data flow from the ROM to the dig­

ital filter.
• A pulse width modulator that creates a digital output which is routed to

an external low-pass filter in order to get an analog signal.

6 1 . Speech Processing Chips

R E S E T
ROM D I S A B L E j RDM

I S B Y RF

I D I G I T A L .

•TES '

ir
L..RQ

1 9 r - S E
1 1

I 2

1 4

F i g u r e 1.3 Pin configuration of the SP0256B/SP0264 speech processors.

When amplified, this analog output signal will drive a loud speaker. The
digital output is equivalent to a flat frequency response varying from 0 to 5
kHz, a dynamic range of 42 dB, and a signal-to-noise ratio of approximately

A nice feature of these synthesizers is the natural speech, and the external
ROM directly expandable to a total of 480 K. A version of the SP0256B with
internal preprogrammed ROM is the SP0256-AL2.

Figure 1.3 shows the pin configuration of the SP0256B, which is identical
to the SP0264.

Operation1

The addressing of the SP0256B is controlled by the address pins (A1-A8) ,
address load (ALD), and strobe enable (SE). Strobe enable controls the two
modes available for loading an address into the chip.

Mode 0 (SE = 0): The SP latches an address when any one (or more) ad­
dress pin makes a low-to-high transition. All address lines must be returned to
zero prior to entering a new address. In this mode of operation, address zero
(0000 0000) is not a valid address input. This mode of operation is used in
applications consisting of no more than eight words or messages such that
single address line transitions can be made. These words or messages must be
stored using the binary address format 1, 2, 4, 8, 16, . . . , 128.

Mode 1 (SE — I): The SP0256B will latch an address specified on the ad­
dress bus (A1-A8) when the /ALD pin is pulsed low. Any address varying
from 0 to 255 can be loaded using this mode. Specific setup and hold times are
required using this mode.

In order to interface the SP with microprocessors (μΡ) or microcontrollers
(/xC), two interface pins are available. They are load request (/LRQ) and

35 dB.

1 This section and the following section, Test Modes, are adapted from Publication #DS5018 A-2,
p. 3. © 1988 Microchip Technology, Inc.

1.3 SP0256B/SP0264 Processors 7

standby (SBY). /LRQ indicates when the input buffer is full. SBY tells the
specific processor that the chip has stopped talking and no new address has
been loaded. When /LRQ is low, a new address may be loaded onto the ad­
dress bus. Pulsing /ALD low will cause the new address to be loaded and
/LRQ to go high. When the address bus is available to accept a new address,
/LRQ goes low again.

The SP0256B can load a new address while it is speaking the last word or
message.

Standby (/SBY) goes low when an address is loaded and stays low while
the chip is talking. SBY can be used to determine the time between address
load requests, which will be variable depending on the length of the word or
message currently being spoken.

Several pins are designated for use with an external ROM. They are ROM
Disable, CI , C2, C3, Serial Out (SER OUT), Serial In (SER IN), and Test.
ROM Disable is tied to a logic zero to enable the external ROM; when left
floating, it disables the external ROM. CI to C3 are the output control lines
which are synchronous to the ROM clock. ROM CLOCK (pin 26) is a 1.56
MHz clock output used to drive an external serial speech ROM. The operating
frequency of the SP0256B is set by an external 3.12 MHz crystal connected
to OSC1 and OSC2 (pins 27 and 28), respectively. You can also use 3.27 to
3.14 MHz crystals; in this case the voice pitch will be slightly altered.

When C1C2C3 = 000, no operation is executed. When C1C2C3 = 001, the
address shift register load (ASRL) serially shifts out data from the SER OUT
pin as shown in Figure 1.6. The ASRLD loads 16 bits of the ASR with two 8-
bit load sequences followed shortly by a program counter load (PCLD).

When C1C2C3 = 010, the contents of the address shift register are loaded
into the program counter (PC) when 16 ASR loads have occurred.

When C1C2C3 = 011, the data shift register loads the 8-bit data shift regis­
ter with the contents of the ROM pointed to by the current address in the pro­
gram counter. The data shift register will shift out the LSB of the 8 bits and
increment the program counter. With C1C2C3 = 100, data is shifted out of
the data shift register starting with the second LSB (the first LSB is shifted
out with the occurrence of C1C2C3 = 011). Seven shifts occur after every
DSRLD.

When C1C2C3 = 101, the stack is loaded with the current value of the PC.
With C1C2C3 = 110, the PC is loaded with the contents of the stack to per­
form the RETURN operation. Finally, C1C2C3 = 111 will occur when /SBY
RESET and /RESET are pulsed low.

Test Modes

By using the TEST logically anded with the address inputs Al , A2, A3, or
A5, the SP0256B can be interfaced to an SPRO000 (serial-to-parallel ROM)
in order to use an EPROM as the speech data device.

The test modes are controlled by the TEST pin (22). This is achieved by

8 1 . Speech Processing Chips

making the TEST pin high within the appropriate address input. The follow­
ing is a list of test modes:

TO = Τ * (Al = A2 = A3 = A5 = 0)
ΤΙ = Τ * Al
Τ2 = Τ * Α2
Τ3 = Τ * A3
Τ5 = Τ * Α5

TO makes the SP0256B ignore its internal ROM. In this case, instructions
are supplied serially through pin 21 (SER IN) by using an SPR000. TO may be
entered by wiring TEST to a permanent high and pulsing /RESET. TO will be
entered and all other test modes permanently locked out. Note that the voltage
levels on any address input are irrelevant when this mode is entered.

Tl is used to read out the internal ROM of the SP0256B on pin 12
(SER OUT).

T2 causes the internal serial data bit stream to appear on pin 24 in place of
the normal DIGITAL OUT.

T3 is used with T2. It causes the internal coefficient data ROM to be read
out if the inputs to pin 21 are appropriate.

T5 causes the internal CE (chip enable) signal to come out on pin 9 (/LRQ)

Electrical Characteristics

Vdd (pin 7) is the power supply for all portions of the SP except the micro­
processor interface logic. VD1 (pin 23) is the power supply for the micro­
processor interface logic and controller. When not tied to Vdd, Vdl must
remain high. When the SP0256B is not talking, it is better to put it in the low-
power mode by disconnecting Vdd (pin 7) via a switching relay or transistor.

The SP0256B consumes a total current of 80 to 95 mA in the normal mode
of operation, and a supply current of 25 to 29 mA in the standby mode. Both
modes are required to hold high the /RESET and /SBY inputs.

The /ALD input must be pulsed low for a period of 200 to 960 nanosec­
onds; consequently, 500 ns (or 0.5 μ$) will be the standard pulse period we'll
be using in most of the projects presented here. The address pins (A1-A8)
need a minimum period of 160 ns, while /LRQ and SBY use a maximum of
300 ns. These times must be added to the delays caused by the external pe­
ripherals that will be controlling the SP0256B in order to avoid pulsing the
/ALD input when the SP0256B has not yet received the specific speech ad­
dress. Glitches in the address bus also must be considered.

The timing diagram in Figure 1.4 presents the four most important func­
tions that must be controlled. They are A1-A8, /ALD, /LRQ, and SBY.

The SP0256B can be tested in a stand-alone configuration prior to starting
further developments with microprocessors or data acquisition systems. The

1.3 SP0256B/SP0264 Processors 9

tpdZ

F i g u r e 1.4 SP0256B timing diagram for the functions /ALD,/IRQ, and / S B Y when
an address input (A1-A8) is present.

low-pass filter is formed by two 100K resistors and two 0.0022 μ¥ capacitors;
the output will drive a loudspeaker or headphones when connected to an audio
amplifier. Depending on the applications of the user, the power of such an
operational amplifier can be variable.

In Figure 1.5, XTL is a 3.12 MHz crystal. The resistor connected from pin
2 to + 5 V in series with the 0.1 μ¥ capacitor forms an RC timing network that
produces a negative transient pulse when power is turned on. Diode 1N914 is
necessary only if power is turned off and then on in less than 50 ms. In order
to test this circuit, the user must set a specific address by setting the eight
switches on or off. Address " 9 , " for example, is given with 00001001. Thus
switches 1 and 4 must be closed in order to give a logic one to the address
inputs Al and A4. The normally open switch connected to /ALD (pin 20)

0 , 1 u F '

F i g u r e 1.5 Stand-alone configuration for the SP0256B.

10 1 . Speech Processing Chips

must be momentarily closed. This will cause a negative transient pulse on
/ALD input. The SP0256B will speak the first word or message that is re­
corded in its internal ROM. You can evaluate the complete vocabulary by set­
ting the 256 possible binary combinations at the address inputs. Take into ac­
count that the power supply must be capable of giving off a minimum current
of 100 mA.

For microcomputer interface, the circuit in Figure 1.6 shows a typical mi­
crocontroller (Intel 8748). In this case, the setup and hold times must be com­
plied with by the microcontroller because the speech processor is a relatively
low-speed device. Data acquisition systems will be very useful with this
configuration in applications where speed is not an important factor. For
high-speed circuits it will be necessary to use fast microsequencers, such as
Amd29CPL151/152/154. These devices work with one clock cycle per in­
struction, and the maximum permissible frequency is 30 MHz.

For typical μΡ/μΟ interface applications and where extensive vocabularies
(normally more than 32 words or phrases) are necessary, an external ROM
SPR128A is required. In this case, linear predictive coding is supported by the
SP0256B with the advantage of having a very natural male/female voice. Be­
cause the ROM consumes about 20 mA, and considering the 90 mA con­
sumed by the SP0256B, a 5 V power supply with more than 250 mA is re­
quired for the circuit shown in Figure 1.6.

The μP/μC programs for controlling the address bus, /ALD, SBY, and
/LRQ lines must be capable of monitoring the standby (/SBY) and load re­
quest (/LRQ) inputs in order to send the desired recorded binary data from the

!

F i g u r e 1.6 SP0256B interfaced with a microprocessor/microcomputer.

1.5 Serial R O M SPR128A 1 1

μΟμΡ. Any 8-bit microprocessor or microcontroller will be suitable for the
tasks mentioned. Details about the serial speech ROM SPR128A are described
in Section 1.5.

1.4 SP0256-AL2 Allophone Speech
Synthesis Processor

The SP0256-AL2, manufactured exclusively by Microchip, is a single chip
speech processor that is preprogrammed with a ROM pattern containing 64
allophones. An unlimited vocabulary in the English language can be achieved
by concatenating user-selected allophones. It is also possible to construct a
limited vocabulary in the Spanish language. The only constraints to obtaining
an unlimited vocabulary are the Spanish 4 4 r" and 4 4 n" sounds which do not
exist in the American English language. This problem can be partially solved
by using synonyms of the selected word.

Fifty-nine discrete speech sounds and five pauses are stored at different ad­
dresses in the SP0256 internal ROM. Addressing these 64 locations requires
six address bits; Al to A6. Address inputs A7 and A8 will remain grounded
for this specific chip.

Allophones

The phoneme is the basic unit of distinctive sound. A phoneme can represent
different sounds, depending upon its position within a word. Each of these
positional variants is an allophone of the same phoneme. This method is
called 4 4allophone speech synthesis." Certain allophones can vary in duration;
for example, in the word 4 4four" the 44f" sound is long compared with the 4 4 f"
sound of the word 4 4fit."

Phonemes of English

Each language has a set of phonemes which is slightly different from that of
other languages. Table 1.1 shows the allophone set contained in the SP0256-
AL2 internal ROM.

1.5 Serial Speech ROM SPR128A

The SPR128A, manufactured exclusively by Microchip, interfaces directly to
the SP0256A speech processor to provide vocabulary expansion. A maxi­
mum of four SPR128s can be interfaced to the SP0256B without buffering.
The SPR128A is a mask programmable ROM providing 16 Kbytes of mem­
ory. The operating voltage is 4.5 to 7 V. Inputs and outputs are TTL compat­
ible and the serial output has tri-state capability. This low power device con­
sumes only 20 mA and can be powered down when the system is inactive.

The SPR128A is addressed by an internal program counter (PC). The serial
in/parallel out (SIPO) shift register, denoted as ASR, is used to assemble an

T A B L E 1.1
Allophone Address Table for the SP0256-AL2

Decimal Hexadecimal Sample Duration
address address Allophone word (milliseconds)

0 00 PA1 PAUSE 10
1 01 PA2 PAUSE 30
2 02 PA3 PAUSE 50
3 03 PA4 PAUSE 100
4 04 PA5 PAUSE 200
5 05 /OY/ Boy 420
6 06 /AY/ Sky 260
7 07 * /EH/ End 70
8 08 /KK3/ Comb 120
9 09 /PP/ Pow 210

10 OA /JH/ Dodge 140
11 OB /NN1 / Thin 140
12 OC * /IH/ Sit 70
13 OD /TT2 / To 140
14 OE * /RR1/ Rural 170
15 OF /AX/ Succeed 70
16 10 /MM/ Milk 180
17 11 /TT1 / Part 100
18 12 /DH1 / They 290
19 13 /IY/ See 250
20 14 /EY/ Beige 280
21 15 /DDI/ Could 70
22 16 /UW1/ To 100
23 17 * /AO/ Aught 100
24 18 * /AA/ Hot 100
25 19 /YY2/ Year 180
26 1A * /AE/ Hat 120
27 IB /HH1 / He 130
28 1C /BB1/ Business 80
29 ID /TH/ Thin 180
30 IE * /UH/ Book 100
31 IF /UW2/ Food 150
32 20 /AW/ Out 370
33 21 /DD2/ Do 160
34 22 /GG3/ Whig 140
35 23 / w / Vest 190
36 24 / GG1 / Got 80
37 25 /SH/ Ship 160
38 26 /ZH/ Azure 190
39 27 /RR2/ Brain 120
40 28 /FF/ Food 150
41 29 /KK2/ Sky 190
42 2A /KK1 / Can't 160
43 2B /zz/ Zoo 210
44 2C /NG/ Anchor 220

1.5 Serial R O M SPR128A 1 3

(Reprinted with permission from Publication #DS5005A-1. © 1984 Microchip Technology, Inc.)

address to be loaded in parallel into the program counter. The serial input (SE­
RIN) is used to synchronously load the ASR register. The contents of the pro­
gram counter are loaded into a 16-bit return register and can be restored later.
This feature allows the device to return when a JUMP to a different address is
performed. The program counter points to a specific address in the ROM
which gives out parallel data into a shift register (DSR). The DSR shifts out
the ROM data to the serial output pin.

The ROM ENABLE input is an active low select that tri-states the serial
out when brought high. It is used to avoid bus conflict on the serial out pin
during SPR128A power up. Chip select input CS1 is used to tri-state the serial
output when low. An internal pull-up resistor permits you to leave the pin un­
connected if not being used. /CS2 is an active low select that tri-states the
serial output pin when high. It also contains a pull-down resistor that allows
the pin to float when unconnected. The ROM clock input receives a frequency
of 1.56 MHz from the SP0256B speech processor. The function of the
SPR128A to be executed is determined by control pins C l , C2, and C3. A
block diagram of SPR128A is shown in Figure 1.7.

The control states of inputs Cl , C2, and C3 are now explained. The 16 bit
address specified by the program counter uses the two upper bits (A 14, A15) to
select the action to be performed.

Up to four SPR128s can be interfaced directly to SP0256B without buffer­
ing. Figure 1.8 shows how to interface and control two SPR128s using either a
μ Ρ or a ^ C . Figure 1.8 also illustrates the interface of two SPR128As to the
SP0256 speech processor.

45 2D /LL/ Lake 110
46 2E /WW/ Wool 180
47 2F /XR/ Repair 360
48 30 /WH/ Whig 200
49 31 /YY1 / Yes 130
50 32 /CH/ Church 190
51 33 /ER1 / Starter 160
52 34 /ER2/ Beer 300
53 35 /OW/ Close 240
54 36 /DH2 / They 240
55 37 /SS/ Vest 90
56 39 /NN2/ No 190
57 39 /HH2/ Hoe 180
58 3A /OR/ Store 330
59 3B M R / Alarm 290
60 3C /YR/ Clear 350
61 3D /YY2/ Guest 40
62 3E /EL/ Saddle 190
63 3F /BB2/ Business 50

1 4 1 . Speech Processing Chips

SERIAL
IN τί

C I -4i
3 CONTROL DECODE

ROM CLOCK

F i g u r e 1.7 Block diagram of the speech R O M SPR128. (Reprinted with permission from
Publication #DS5006A-1 p. 3. © 1988 Microchip Technology, Inc.)

When two or more SPR128As are used, the μ Ο μ Ρ must have two selector
pins available to select the desired speech ROM. This configuration is appli­
cable when extensive vocabularies are required in any kind of control system.
The μΟ/μΡ will send a low pulse to start the SP0256B and then will read the
test vector T l . When /LRQ goes high, the μΟ/μΡ will load a new address at
the output port PI. Now the μΟ/μΡ will start monitoring the STANDBY out­
put of the speech processor which is connected to the test vector TO. When the
SBY pin goes high, the μ Ο μ Ρ starts the speech processor again to continue
the speech sequence of words or phrases. The μ Ο μ Ρ can be used, of course,
in any kind of application. Specific routine controls using a microcontroller
will be seen in detail in Chapter 2.

WR

uP/uC TO

ROM
SELECTORS

A1-A.8

ALD

SBY

I RQ

SP0256B

SER IN
SEROUT

T
M l

: i C2 C3

SPR128A

CI C2 C3

SPR12SA

Ή ! 1 r~
' I 1

J ι

F i g u r e 1.8 Interface of two SPR128As to SP0256 speech processor.

1.6 SPROOO Speech Interface Chip 1 5

1.6 SPROOO Parallel-to-Serial Speech
Interface Chip

The SPROOO, manufactured by Microchip, contains all necessary logic for
data communication between standard ROM, PROM, or EPROM to the
SP0256B speech processor. The communication protocols are controlled by
the speech processor. The SPROOO is suitable for SP0256B testing and speech
ROM emulation. Typical testing consists of evaluating a custom vocabulary
by using, for example, 27C16/32/64/ EPROMs. Figure 1.9 shows the SPROOO
block diagram.

For applications requiring you to bank blocks of memory under external
control, such as a μΟ/μΡ, the function pins CS1 and /CS2 must be used. CS1
is an active high-chip select, and will tri-state the serial output when low.
/CS2 is an active low-chip select that will tri-state the output when high. To
simplify chip selecting, address outputs /All to /A 15 are used to select exter­
nal memories. AO to A15 are the address outputs to external memory. C l , C2,
and C3 are the decoded control pins to determine device function, which is
controlled by the SP0256B.

The ROM CLOCK input receives a 1.56 MHz frequency from the
SP0256B. The serial input loads the 16-bit address into the device while the
serial out shifts out the data byte. Eight-bit data outputs from external stan­
dard memories are received in SPROOO's D 0 - D 7 data inputs.

Figure 1.10 shows the popular 27C64 EPROM interfaced with the
SP0256B via the SPROOO.

SERIAL I N r

CONTROL L
LOGIC I

CLOCK

F i g u r e 1.9 Block diagram of SPROOO. Reprinted with permission from Publication #DS5007A-1 ,
p. 1. © 1984 Microchip Technology, Inc.

16 1 . Speech Processing Chips

24

- k h -

F i g u r e 1.10 SPROOO interfacing a parallel 27C64 E P R O M with the SP0256B speech
processor.

The SPROOO operates from 4.5 to 7 V, consuming a current of 40 mA. An
access time of 560 ns is typical to obtain each data byte from the EPROM.

1.7 SDS624 Speech Synthesis
Development Board

The SDS264 is a development system consisting of a PC board and several
diskettes. The system requires an IBM PC, XT, or AT with a hard disk, a
math coprocessor, and extended memory. This system is a code generator for
the SP0264/SP0256B speech processors and the SP1000LPC synthesis and
recognition processor.

The system has the following features:

• Digitizes analog input speech using a 12-bit onboard A/D converter.
• Analyzes and computes speech synthesis parameters using analysis soft­

ware included with the system.
• Edits speech synthesis parameters by means of a software editing

capability.
• Reviews synthesized data output from the SP0216, SP0264, or SP1000

speech synthesis chips located on the development board.

1.8 Digitalker Kit DTI 050 17

• Compresses and formats the synthesized data into the desired bit rate
(1200 to 5000 bps) for downloading to a PROM programmer. This fea­
ture allows you to create special words or phrases for your specific mem­
ories (EPROMs or EEPROMs).

The system also features a natural-sounding voice, variable sampling rates,
and a 500 Hz output bandwidth.

The SDS264 is available from Telinovation, Inc., 447 Salmar Ave., Camp­
bell, CA 95008.

1.8 Digitalker Kit DTI 050

The Digitalker system consists of three n-MOS integrated circuits. The main
IC is referred to as the speech processor chip, or SPC. The Digitalker ROMs
store only those speech elements that the ear needs to hear. (The human vocal
tract generates sounds that do not convey any intelligible information.) The
techniques of digitization and compression are used by National Semiconduc­
tor in this system. This is a time-domain synthesis technique that reduces the
amount of information needed to store electronic speech by removing the ex­
cess or redundant data from the speech signal.

The four main schemes that perform the task are:

1. Removing all redundant pitch periods and portions of certain other pitch
periods.

2. Adaptive delta modulation coding, involving storing the arithmetic
differences of successive wave amplitudes. This minimizes memory
requirements.

3. Phase-angle adjustments, which remove the direction component of the
speech waveform.

4. Half-period zeroing, replacing the low-level amplitude portion of a
pitch period with silence. This technique reduces by 50% the amount of
ROM required to store the speech data.

The result of using multiple compression techniques is a system capable of
storing and reconstructing a word or phrase with high quality. The Digitalker
is programmed with control information that instructs it how many times to
repeat a specific waveform. Recordings of actual speech are sampled for digi­
tization at a rate at least twice that of the highest frequency in the waveform
pattern. Inside the SPC (see Figure 1.11) there are a programmable frequency
generator and a variable gain D/A converter to add inflection that makes a
realistic-sounding speech. The ROM set is programmed with a vocabulary
consisting of 136 words, one complete phrase, two tones, and five different
silence durations. Each word or phrase is assigned an 8-bit address. Address
129 (81H) is the " s s " sound; it is used after a word to make it plural. The
system is more like a digital recorder that digitizes actual voices, stores, and
then plays back, while the other methods model the vocal tract. The system is

18 1 . Speech Processing Chips

SW1-8

ROM DATA

- > ADR 0 - 1 3

m

USL;

OSC

RUMEN

SPEECH

F i g u r e 1.11 Block diagram of the SPC54104. (Reprinted with permission from Linear Data
Book, 1982, 13-14. © 1980 National Semiconductor Corporation)

easy to use because it requires only a start pulse and an 8-bit address to trigger
any message. One Digitalker device can produce up to 256 different messages
in conjunction with the four types of speech ROMs available. Figure 1.11
shows the block diagram for the SPC54104.

The Digitalker kit from National Semiconductor is encoded with 137 sepa­
rate words, two tones, and five different silence durations (see Table 1.2).
Each word, tone, or silence has its own address, making it possible to output
single words or words concatenated into phrases or sentences.

The vocabulary is suitable to many applications in control and measure­
ments systems. The voice output of the DT1050 has the natural inflection and
emphasis of original speech. The DT1050 is formed by a speech processor
chip and two speech ROMs. An external low pass filter must be added in con­
junction with an audio amplifier to produce a high quality speech. Male, fe­
male, and children's voices can be synthesized with this kit.

Functional Description

The input and output pins are now described to illustrate how it is interfaced.
(See Figure 1.11.)

1.8 Digitalker Kit DT1050 19

T A B L E 1.2
Master Word List for the Digitalker PROMs

Decimal Decimal
Address Word Address Word

0 THIS IS DIGITALKER 58 AGAIN
1 ONE 59 AMPERE
2 TWO 60 AND
3 THREE 61 AT
4 FOUR 62 CANCEL

63 CASE
64 CENT

18 EIGHTEEN 65 400 Hz TONE
19 NINETEEN 66 80 Hz TONE
20 TWENTY 67 20 ms SILENCE
21 THIRTY 68 40 ms 1 1

22 FORTY 69 80 ms
23 FIFTY 70 160 ms
24 SIXTY 71 320 ms ''
25 SEVENTY 72 CENT I
26 EIGHTY 73 CHECK
27 NINETY 74 COMMA
28 HUNDRED 75 CONTROL
29 THOUSAND 76 DANGER
30 MILLION 77 DEGREE
31 ZERO 78 DOLLAR
32 A 79 DOWN
33 Β 80 EQUAL
34 C 81 ERROR
35 D 82 FEET
36 Ε 83 FLOW
37 F 84 FUEL
38 G 85 GALLON
39 H 86 GO
40 I 87 GRAM
41 J 88 GREAT
42 Κ 89 GREATER
43 L 90 HAVE
44 M 91 HIGH
45 Ν 92 HIGHER
46 0 93 HOUR
47 Ρ 94 IN
48 Q 95 INCHES
49 R 96 IS
50 S 97 IT
51 Τ 98 KILO
52 υ 99 LEFT
53 V 100 LESS
54 W 101 LESSER
55 χ 102 LIMIT
56 Υ 103 LOW
57 ζ 104 LOWER

Continued Continued

2 0 1 . Speech Processing Chips

105 MARK 124 PULSES
106 METER 125 RATE
107 MILE 126 RE
108 MILLI 127 READY
109 MINUS 128 RIGHT
110 MINUTE 129 SS (Prefix, See Note)
111 NEAR 130 SECOND
112 NUMBER 131 SET
113 OF 132 SPACE
114 OFF 133 SPEED
115 ON 134 STAR
116 OUT 135 START
117 OVER 136 STOP
118 PARENTHESIS 137 THAN
119 PERCENT 138 THE
120 PLEASE 139 TIME
121 PLUS 140 TRY
122 POINT 141 UP
123 POUND 142 VOLT

Continued 143 WEIGHT

Note: "SS" makes any singular word plural.

(Reprinted with permission from Linear Data Book, 1982, 13-17. © 1980 National Semiconductor
Corporation)

Chip Select (ICS): The speech processor chip (SPC) is selected when ICS is
low. ICS must be low during a command to the SPC, for example, when a
/WR pulse is issued.

Data Bus (SW1-8): 8-bit address which defines any one of 256 speech entry
points (see the master word list in Table 1.2). When not all the words listed are
used, unused inputs must be connected to Vss.

Command Select (CMS): This input spécifies the two possible commands
to the SPC. When CMS is zero, it works as a reset interrupt and starts the
speech sequence. When CMS is high, it works as a reset interrupt only.

Write Strobe (/WR): When pulsed low, the address specified in the data bus
is latched into a register. On the rising edge of the / WR, it starts execution of
the command as specified by CMS. If /WR is pulsed low to start a new speech
sequence when the SPC is still executing the last one, the new speech se­
quence will be started immediately. This permits you to cut words or phrases
at any desired point to concatenate a different message or word. (See Fig­
ure 1.11.)

ROM Data (RData 1-8): This is an 8-bit parallel bus for use with an exter­
nal parallel speech ROM.

Interrupt (INTR): A logic 1 output indicates that the SPC is inactive. When
the SPC is executing a speech sequence, INTR goes low. Therefore, /WR can
be pulsed low only when INTR is high.

ROM Address (ADR 0-ADR 13): 14-bit parallel output bus that issues the
address of the speech data to the speech ROM.

1.8 Digitalker Kit DTI 050 2 1

ROM Enable (IROMEN): For low-power applications, this line indicates
that Vdd can be powered down using an external transistor.

Speech Output (Speech Out): Analog output containing the speech data
which when filtered and amplified will drive a loudspeaker.

Clock Input/Output (OSC IN, OSC OUT): Input and output connections for
a 4.00 MHz crystal.

The standard vocabulary set offered in the two speech ROMs SSR1 and
SSR2 is shown in Table 1.2.

In order to evaluate the 137 words plus two tones, the circuit in Fig­
ure 1.12 is used. An 8-bit counter counting from 0 to 144 gives the address in

Λ - 1

! I

Μ,.

F i g u r e 1.12 Circuit to evaluate Digitalker's vocabulary.

2 2 1 . Speech Processing Chips

increments of one. A logic oscillator increments the counter and causes the
write input (/WR) to be pulsed low via the half-monostable formed by Ν 3 (1/3
4093). This low transient pulse causes the MM54104 to start speaking, at first
using a female voice: "This is Digitalker." All subsequent messages are
spoken using a male voice.

1.9 Toshiba CMOS Speech Synthesis
LSI Devices

The speech synthesis devices from Toshiba appeared in February 1987. These
devices are classified in two branches: ADM (adaptive delta modulation) and
PARCOR (partial autocorrelation).

The ADM devices features are for low-cost speech systems, direct record,
and to reproduce speech and sounds. Most of these devices are suitable for
both low- and high-volume user's applications.

Tables 1.3 and 1.4 show a list of ADM devices. A typical application is
shown in the schematic presented in Figure 1.13.

1.10 TSP5220C Voice Synthesis Chip from
Texas Instruments Inc.

At the present time, Texas Instruments Inc. is offering four voice synthesis
processors: the TSP50C40A, TSP50C50, TSP5110A, and TSP5220C. In this
section, we will describe these devices briefly.

T A B L E 1.3
A D M Devices

Part Number Function
Bit Rate/
Speech Time Supply Volt

T6668 Recording/Reproduction
DRAM Type

8K-32Kbps 4. 5-5 7V

T6831 Recording/Reproduction
SRAM Type

5.5K-16Kbps 4. 5-5 7V

TC8830F Recording/Reproduction
SRAM Type

8K-32Kbps 4. 5-5 5V

T6667 Reproduction Only,
Built-in ROM

5.5K-16Kbps 3. 5-5 7V

T6658A Speaker-Dependent
Word Recognition

10-40 words 4. 5-5 5V

(Reprinted with permission from Microcomputer Product Summary, February 1987, 11. © Toshiba Amer­
ica, Inc.)

1.10 TSP5220C Voice Synthesis Chip 2 3

T A B L E 1.4
Two Speech Synthesizers and Two Speech ROMs Belong to the PARCOR

(partial autocorrelation devices)

Part Bit Rate/
Number Function Speech Time Supply Volt

T6803 Speech Synthesis
Built-in 64K MROM

T6721 Speech Synthesis

T6772 64K Masked ROM

T6884 128K Masked ROM

2.5-9.8Kbps

2.4-9.6Kbps

9-35 Sec

17-70 Sec

3.9-5.7V

3. 5-5.7V

3. 5-5.7V

3. 5-5.7V

(Reprinted with permission from Microcomputer Product Summary, February 1987, 11.
America, Inc.)

1987 Toshiba

Speech encoding on all TI voice processors is achieved with LPC coding.
The inputs of these processors contain the codes for 12 synthesis parameters
(pitch, energy, and 10 filter coefficients). These codes are decoded by the
voice processor to give out time-varying signals of the LPC model of the
original voice.

The digital filter of this voice processor receives periodic and random sig­
nals. Periodic inputs are used to reproduce vowels or voiced fricatives (z,

M O h

A M P > Q S P

F i g u r e 1.13 A typical T666S device application interfaced with an external CPU.
(Reprinted with permission from Microcomputer Product Summary, February 1987, 11. © 1987 Toshiba Amer­
ica, Inc.)

2 4 1 , Speech Processing Chips

b, d). On the other hand, random inputs derive unvoiced sounds, such as s,
f, t, and sh. Two separated sources generate the voiced and unvoiced excita­
tions. The output of the digital-to-analog converter is filtered before driving a
loudspeaker.

Texas Instruments produces the TSP5220C, a speech synthesis device
based on an LPC-10 (linear predictive coding with a 10th-order filter). Its ar­
chitecture allows different storage media for the model of the vocal tract. An
external microcontroller can also be interfaced to the TSP5220C to select the
digital data.

To operate the TSP5220C in a voice synthesizer system, the following de­
vices are required:

1. Storage device (ROM, RAM or TSP6100) for TSP5220C input data.
2. μΡ/μΟ to direct the TSP5220C modes of operation. Simple digital logic

can also be used to work as a host controller.
3. A low-pass filter to remove high-frequency switching noise from the

output signal of the TSP5220C.
4. An audio amplifier and a speaker.

The TSP5220C features a low data rate (1000 to 17000 bps), a 4 or 5 kHz
voice input bandwidth, an 8-bit digital-to-analog converter, and a pitch-
excited LPC-10 synthesis algorithm. Voice data input can be selected through
an 8-bit data bus or a serial interface for use with a TSP6100 masked ROM.

Theory of Operation

An external host controller (μΡ/μΟ) can be used to issue commands and filter
parameters to produce synthetic speech. Figure 1.14 shows a block diagram of
the TSP5220C voice synthesizer.

The input and output structure is described as follows:
D0-D7: Memory data bus interface for use with the external host control­

ler. This is achieved by controlling the inputs /READ (/R), /WRITE (/W),
and monitoring the outputs interrupt (/INT) and ready (/READY).

ADD1, ADD2, ADD4, and ADD8/SER IN: These are the address outputs to
the external voice synthesis memory. The pin function ADD 8/SER IN can
also be used as a serial data input. Note that ADD1 is the least significant bit
while ADD8 is the MSB when both ADD1 to ADD8 are used as addressing
inputs to a vocabulary ROM (TSP6100) series. Clock and control signals M0,
M1 are provided for memory control.

Memory Data Bus

The 8-bit data bus used for interface with an external controller can receive
data into the command or FIFO registers by pulsing the write input (/W) low.
By pulsing the read command low, data are read from the data or status regis­
ters to the external host controller.

1.10 TSP5220C Voice Synthesis Chip 2 5

1 SERIAL OUT

F i g u r e 1.14 TSP5220C block diagram. (Reprinted with permission from Texas Instruments Inc.
© 1986)

The four registers used to interface to the external memory data are the
command register, FIFO register, data register, and status registers (flags).

The command register is formed by an 8-bit latch which is controlled from
an external controller. The FIFO register is a 16-byte register that receives, via
the memory data bus, speech data from the bus controller. Also, speech data
are serially given to the speech synthesizer. The data register is an 8-bit SI/PO
latch that receives serial speech data from a TSP6100 ROM. These data are
routed to a parallel byte-wide bus for access with the memory data bus for
output to the external controller. The 3-bit status register contains data on the
status of the TSP5220C. The status word is put onto the memory data bus so
that it can be accessed by an external host controller. The status register can
be read by taking the Read (/R) input low. When this happens, the TSP5220C
sends status data to the memory data bus. When the data are stable, the
/READY signal goes low. A 12 ^ts time delay is required before applying an­
other write or read command. The 8-bit memory data bus has internal pull up
resistors.

Figure 1.15 illustrates the TSP5220C system using the TSP6100 ROM for
speech data interfaced with an Intel microcontroller 8748.

With this ROM (TSP6100), the TSP 5220C can "talk" about 200 words in
more than 100 seconds. The TMS5220C can access a maximum of sixteen
128K memories. A complete voice synthesis system can be assembled from
three ICs, a speaker, and a microcontroller (see Figure 1.15).

2 6 1 . Speech Processing Chips

ANALOG
- OUTPUT

F i g u r e 1.15 TSP5220C speech synthesizer system controlled by a ^ C .

1.11 CMOS ADPCM Speech Synthesizers
and Recorders from Oki
Semiconductor

Oki Semiconductor produces different types of speech synthesizers and re­
corders of the series 52XX and 62XX. In order to develop speech synthesis
systems for spécifie applications, Oki Semiconductor offers on a loan basis
the speech analyzer OSA-1 and other support tools. The OSA-1 system allows
the user to make straight/compressed adaptive differential PCM (ADPCM)
data for the speech synthesizers MSM6243 and MSM6212 by applying an in­
put voice via a microphone or a tape deck player. The user can also change the
degree of compression for voice analysis purposes. The ADPCM-analyzed
output data can be downloaded into an EPROM via an RS232 interface.

Speech analyzers can be built around the MSM5218RS to generate the
ADPCM data on a real-time basis by applying the necessary input voice.
These speech data can be stored as ROM data for the simulator MSM5248.

The simulator MSM5248 contains the same functions as the chip MSM5248
and is able to synthesize the same quality voice. There are two more simu­
lators available: the MSM6243 and the MSM6212.

The speech synthesizer MSM5205, for example, is an integrated circuit

1.11 C M O S A D P C M Synthesizers and Recorders 2 7

which accepts ADPCM data. It contains a synthesis stage that expands the 3-
or 4-bit ADPCM data to 12-bit PCM data and a stage that converts the PCM
data to analog signals via a 10-bit D/A converter. The sampling frequency can
be selected by inputs SI and S2 in steps of 2 kHz (4, 6, and 8 kHz) when a
384 kHz crystal is used in conjunction with two timing capacitors of 220 pF.

The MSM5205 device operates from a 5 V power supply with an operating
temperature range of -30°C to +70°C. Figure 1.16 shows the functional
block diagram.

The MSM5218 is a speech analysis/synthesis IC that enables the user to
develop his own speech analysis and synthesis systems. The data compres­
sion is also made by ADPCM. This device also synthesizes PCM data from
ADPCM data. The PCM data are accessible directly or in analog form via the
internal 10-bit D/A converter. The MSM5218 also features variable sampling
frequency (4, 6, and 8 kHz), handshaking signals for synchronous operation
with an external A/D converter, and its typical power comsumption is 15 mW.
It is available in 24-pin plastic DIP and 32-pin plastic flat.

The MSM5248 is an ADPCM voice synthesizer with 48 Kbits of internal
ROM for the user's program. Its sampling frequency is 5.46 kHz when con­
trolled by a 32.768 kHz crystal. The chip supports a maximum length of
speech of 3 seconds with a limit of seven words selectable by the user. For
applications requiring more vocabulary, the speech synthesizer MSM6243,
which contains 192 Kbits of ROM, can support a maximum of 124 words. The
maximum speaking time of compressed ADPCM data for the MSM6243 is 20
seconds, while the MSM6212 has a maximum speaking time of 40 seconds.
The MSM6212 contains 288 Kbits of internal ROM.

D3-T-

D2-ί-
ΟΙ - h
DO 4 -

4 b i t
i nput

r e g i s t e r

4
ADPCM syn thes i s stage 4 b i t

i nput
r e g i s t e r

ADPCM syn thes i s stage

XT -

XT -

51 •

_52

VCK

OSC

Timi ng
c i rcui t

12

10

< + R e s e t

- 4 B / 3 B

10 b i t
D/A

DA OUT

F i g u r e 1.16 Functional block diagram of the MSM5205 speech synthesis IC. (Oki
Voice Synthesis LSI Data Book, July 1989, 29. © 1989, Oki Electric Industry Co. , Ltd. Reprinted with
permission.)

2 8 1 . Speech Processing Chips

BLOCK DIAGRAMS

A. STAND-ALONE VERSION

ST-SP QVF(FST)
REC/PLAY

VSS2 VSS1 VDO

F i g u r e 1.17 MSM6258 Stand-alone version. (Oki Voice Synthesis LSI Data Book, July 1989,
102. © 1989, Oki Electric Industry Co. , Ltd. Reprinted with permission.)

F i g u r e 1,18 MSM6258V Microprocessor interface version. (Oki Voice Synthesis LSI Data
Book, July 1989, 102. © 1989, Oki Electric Industry Co. , Ltd. Reprinted with permission.)

1.12 Samsung Synthesizers ICs 2 9

Oki Semiconductor also produces two types of solid state recorders, the
MSM6258 and the MSM6258V. Both devices contain an ADPCM speech
processor implemented in CMOS technology for low power consumption.

A/D and D/A converters are contained in both chips and can be looped to
connect external devices. They also feature a voice detector circuit and a
phrase selector accepting analog or PCM data input and processing analog
or PCM data output, a static RAM interface accepting a maximum of 128
Kbytes, and a static RAM interface for a maximum of two megabytes. Three
sampling frequencies are possible; 4.0, 5.3, and 8.0 kHz (@4.096 MHz)
clock. It contains recording and playback outputs and seven phrase channels
with individual lengths.

It is available in two versions: for stand-alone operation and for MPU inter­
face (8-bit), as illustrated in Figures 1.17 and 1.18, respectively.

Both devices operate with a single power supply of + 5 V (10%) with a
current consumption of 4 mA (@4.096 MHz) or 10 μΑ during standby condi­
tion for SRAM interface. The stand-alone version comes in a 60-pin plastic
Flat or 68-pin PLCC. The MPU interface version comes in a 44-pin plastic flat
or 40-pin plastic DIP.

1.12 Samsung Voice Synthesizers ICs

The KS59XXX series of speech synthesizers are developed by Samsung
Semiconductor and Telecommunications Co., Ltd.(SST). These devices are
classified as KS5901A, KS5902XX, KS5911, and KS5912XX, using the
encoded reproduction algorithm LPC. Speech is compressed by processing
an externally provided variable bit stream of encoded LPC speech data.
The result is then converted to an audible output with an on-chip 9-bit D/A
converter.

Table 1.5 shows the principal characteristics of the four kinds of speech
synthesizers available from SST.

3 0 1 . Speech Processing Chips

Sampling
Frequency

Bit Rate

Control Mode

Data ROM
(or RAMO

Speech Times

D/A Converter
Bits

PKG

Applications

8 KHz

2. 4-9. 6 Kbps

CPU/Manual

External ROM
Max. 64KBytes

Max. 4 Min.

9 Bits

60 FQP

Sound
Information
A/M

8 KHz
2. 4-9. 6 Kbps

CPU/Manual
/Auto

Internal ROM
48KBits

Max. 20 Sec.

9 Bits

24 DIP

Toy
Simple Sound
Information

8,11,16,32 KHz

8, 11, 16, 32 Kbp:

Talk-Back/
Manual

External RAM
64K/256DRAMX4

Max. 2 Min.

10 Bits

48 FQP

Talk-Back
A/M

8,11,16,32 KHz

8,11,16,32 Kbps

Manual

Internal ROM
64KBits

Max. 8 Sec.

10 Bits

16 DIP

Toy
Natural
Sound Effect

The talk-back speech synthesis system shown in Figure 1.19, for example,
is composed of the following three chips.

1. KS5911A: CMOS speech synthesizer
2. PROM: External 8-bit DRAM memory.
3. LM386: Low-power audio amplifier.

References

Sclater, Neil.: Introduction to Electronic Speech Synthesis. Blacksburg, Howard & Sams
& CO. Inc.

Oki Voice Synthesis LSI Data Book. (First Edition, Aug. 1987)
TSP5220 Speech Synthesis Manual, 1987. Texas Instruments
Stout, David R: Microprocessor Applications Handbook. McGraw-Hill Book Company
Kevin Leary and David Morgan: Fast and accurate analysis with LPC gives a DSP chip speech-

processing power. Electronic Design.
SP0256B Narrator Speech Processor, (DS50018A-1)
SP0264 Narrator Speech Processor, (DS50012C-1)
SPR128A/128B 128K Bit Serial Speech ROM, (DS500006C-1)
SP0256-AL2 Narrator Speech Processor, (DS50005A-1)
-1988 Microchip Technology Inc.

References 3 1

F i g u r e 1.19 KS5911 Block diagram interfaced with an external controller. (Samsung
Semiconductor Product Guide, 1990, p. 207. Reprinted with permission.)

C H A P T E R 2

Experimenting with Speech Processors

2.1 Evaluating the Allophone Addresses
for the SP0256-AL2

Before applying the speech processor SP0256-AL2 in a variety of circuits,
the user should know how every allophone sounds to have an idea of how to
concatenate the right allophone using the basic linguistic rules described in
Chapter 1. The allophone set is shown in Table 1.1 of Section 1.4. Please have
it at hand when you start this circuit, so you can recognize each allophone.

The speech processor SP0256-AL2 is used here to read the allophones that
are contained on its own 64K ROM. The first requirement is to apply a power-
up reset pulse to the 8-bit binary counter CD4520 and to the dual BCD counter
CD4518, ICI and IC4 respectively (see Figure 2.1). This procedure will en­
sure that both counters will start with a count of zero.

Binary counter ICI provides the addresses sequentially to the speech pro­
cessor. IC4 works like a mirror of ICI by counting the same clock pulses, but
in BCD code. The positive reset pulse required by ICI and IC4 is supplied by
the Rl CI network, and the negative reset pulse for the speech processor is
supplied by the R2 C2 network.

When the START switch is pressed, the speech processor vocalizes the first
allophone "AY" and continues with the next allophones in sequential order.

The standby (SBY) output is normally in the high state and will go low
when the /ALD input is pulsed low. That is, the SBY output stays low until the
chip stops vocalizing a particular allophone. A high standby output enables
the Nand gate IC2a for a new input command. There are no timing problems
using the Nand gate since only when the speech processor is ready to accept a
new /ALD pulse will the Nand gate be enabled for transmitting a new pulse.

3 2

2.1 Evaluating Allophone Addresses 3 3

—τ—
2 1 6 2 4 χ To Low Pass F i i t e r

~ ^and audio Amp.

_[8 [9

F i g u r e 2.1 Circuit to evaluate the set of allophones.

The Nand gate pulses the /ALD input low. When the interval of this pulse is
equal to 900 ns, the processor accepts the command and makes the standby
output low while the respective allophone is being vocalized. This low state in
the SBY pin causes the Nand gate output to go to a high state, which in turn
increments counter ICI. The new address is now ready on the address inputs
(A1-A8) of the speech processor in order to be loaded when the /ALD input
goes low again at the end of the last vocalized allophone.

ICI is a dual binary counter configured as a 6-bit binary counter which is
incremented at the positive edge of the clock pulse. The SBY output clocks

3 4 2 . Experimenting with Speech Processors

the dual BCD counter 4518, which is used to observe the decimal address of
the allophone that is currently being vocalized. The BCD output of CD4518 is
fed to a pair of CD4543s (BCD to seven segment decoder-drivers). The pair of
CD4543s drive the two-digit liquid crystal display LCD002. Nand gate IC2b
and associated components form a 100-Hz logic oscillator whose output fre­
quency controls the LCD's back plane input as well as the phase input (pin 6
of CD4543) of the two decoders.

The period of the reset pulses can be obtained by assuming that the reset
inputs have threshold levels of one-half of Vdd; that is, 2.5 V.

For the network Rl CI: Τ = Rl CI In [5/2.5] - 0.7 Rl CI

Τ = 0.7(100K) (Ο.ΙμΡ) = 7 ms

And for the R2 C2 network we get:

Τ = R2 C2 In [5/(5 - 2.5)] = 0.7 R3 C3
Τ = 7 ms

The timing diagram in Figure 2.2 shows the most important waveforms of
the circuit presented in Figure 2.1. Note that the reset pulse applied to ICI and
IC4 is given by the voltage in resistor Rl which is

V(R1) = (Vdd/R)e" t / R C

The reset pulse applied to thp speech processor is given by the voltage in
capacitor C2 which is:

V(C2) = Vdd(l - e - t / R C)

The propagation times tphl and tplh are both equal to 300 ns, and they cor­
respond to the time that the Schmitt trigger Nand gate takes to respond to a
given input.

The next step for this circuit is to create words and phrases that can be
vocalized correctly with this processor; this is achieved by adding an EPROM
memory between ICI and IC3 with a previously tested program. This circuit is
shown in Figure 2.3.

This circuit can be tested by recording the data shown in Table 2.1 in the
EPROM. These data correspond to the words "zero, one, two, three."

A variation of the circuit presented in Figure 2.1 is to set the flip-flop de­
vice when the power is turned on to enable the speech processor to give
spoken instructions for a specific task routine. When the instructions are over,
the 0 6 output of EPROM 2764 resets the flip-flop (4013) and the binary
counter (4040). This is achieved by programming 40H after the last speech
data, where 40H corresponds to a binary output (01000000). The timing dia­
gram in Figure 2.4 shows the pulse generated by EPROM 2764 at the end of a
complete message.

2.1 Evaluating Allophone Addresses

Reset
IC3

S t a r t
Sw i t ch

F i g u r e 2.2 Timing diagram for circuit in Figure 2.1.

3 5

+5V

To low p a s s i
f i I ter and
audio Amp

0.1 uF

F i g u r e 2.3 Circuit to create custom words or phrases with the speech processor
SP0256-AL2.

3 6 2 . Experimenting with Speech Processors

T A B L E 2.1
E P R O M Program for the Words "Zero, One, Two, Three."

Hex
Address

Hex
Data

Hex
Address

Hex
Data

0 4 9 4

1 2B A D

2 3C zero Β IF two

3 35 C 4

4 4 D ID

5 39 Ε Ε three

6 F one F 13

7 F 10 04 pause

8
Continued

Β 11 40 reset pulse

Vdd

Reset

4040 k 4013

SET

ALD

SBY

OUTPUT
06

5V
off

300nS •

300nS-

60GnS

.300 n S -

F i g u r e 2.4 Timing diagram for circuit of Figure 2.3.

2.2 SP0256-AL2-PC/XT Interface 3 7

2.2 Interfacing the SP0256-AL2
with a PC/XT

By using the GWBASIC version 3.21, the parallel port of a PC/XT IBM-
compatible computer can be accessed to control the most important functions
of the speech processor SP0256-AL2. This way, you will be able to practice
with the allophone set to create your own custom vocabulary for a specific
application.

Figure 2.5 shows the schematic diagram for interfacing the speech pro­
cessor with the parallel port of the TANDY 1000SL microcomputer. The con­
nector is a 36-pin card edge type. Notice that the speech processor has the
strobe enable input (SE) tied to ground, which disables the /ALD input (pin
20) of the SP0256-AL2. The speech processor is used in MODE 0, requiring
you to apply zeroes at the address inputs (A1-A6) of the speech processor
after a specific address has been issued.

The computer controls the SP0256-AL2 with simple GWBASIC instruc­
tions. In this project, a TANDY 1000SL microcomputer is used to control the
speech processor via the parallel printer port. The following program allows
you to evaluate the 59 allophones available (see Table 2.2).

Another application for your computer is to make it speak a specific mes­
sage when you instruct it to do so. This will be used in programs written in
GWBASIC. By calling the message routine you will hear your prerecorded
message or group of messages. Table 2.3 shows a program to make your com­
puter speak the message "try again."

The previous routines have as many applications as the scope of your

F i g u r e 2.5 Schematic diagram for the interface of a PC-compatible computer with
the speech processor SP0256-AL2.

3 8 2 . Experimenting with Speech Processors

T A B L E 2.2

Routine to Evaluate the Set of Allophones and Pauses
of the Speech Processor SP0256-AL2.

10 'Evaluating the set of allophones.
20 FOR A = 0 TO 63
30 OUT 32, A Output port is loaded with the value of A
40 OUT 32, 0 Output port is loaded with zeroes to start the
42 'speech utterance, SBY = 0
50 PB = INP(127) 'reads the 7-bits
60 F = PB AND 64 'reads bit 7 only (SBY)
70 IF F<>64 THEN 50 'If SBY=0 continue reading SBY, else goto 80
80 NEXT A 'increment value of A
90 OUT 32, 1
95 END

T A B L E 2.3

Use this BASIC Routine and You Will Hear the Message "Try Again"

10 'try again
20 FOR J = 1 TO 9
22 READ A
30 OUT 32, A 'output port is loaded with the value of A
40 OUT 32, 0 'output port is loaded with zeroes to start the
42 'speech utterance, SBY = 0
50 PB = INP(127) 'reads the 7-bits
60 F = PB AND 64 'reads bit 7 only (SBY)
70 IF F<>64 THEN 50 'If SBY=0 continue reading SBY, else goto 80
80 NEXT J 'increment value of A
90 DATA 13,39,6,4,24,36,7,11,4
95 END

imagination can reach. You may try, for example, to create a routine for a
talking clock program.

2,3 Interfacing a Speech Synthesizer1

to a Commodore 64 Computer

The versatility of a Commodore 64 computer can be enhanced by adding a
speech processor. In this section we will interface the allophone-based speech
processor SP0256-AL2 to the parallel user port of a Commodore 64 computer

'Source: Reprinted and adapted with permission from Computer Digest, August 1986. ©
Copyright Gernsback Publications, Inc., 1986.

2.3 Synthesizer/Computer Interface 3 9

in order to create several software programs to control the speech processor
efficiently.

Figure 2.6 shows the schematic diagram for interfacing the speech pro­
cessor SP0256-AL2 to the Commodore 64 and to the audio amplifier LM386.
The user port must be configurated with lines PBO to PB5 as outputs. Lines
PB6 and PB7 will be configurated as inputs. This is achieved with the state­
ment "POKE 56579,63," where PBO to PB5 send a specified address to the
speech processor ICI (see Figure 2.6,) and PB6 receives the logic status of the
STANDBY output (pin 8 of ICI). In this case, the speech processor is config­
ured in MODE 0; for every speech datum issued by the computer, output lines
PBO to PB6 will go to a low state. In this manner, the speech processor will
enunciate the assigned allophone. Then the computer will start reading the
user port in order to know the STANDBY status (PB6), which tells the com­
puter when the speech processor is ready to be triggered again. The instruc­
tion "PEEK(56577)" reads the user port, but we need to read PB6 only,
which represents the decimal number 64. This is made by masking the user
port with the AND function. If PB6 is a logic one, the computer sends a new
address.

We will now proceed to evaluate the set of allophones of the SP0256-AL2
by using the routine shown in Table 2.4. The FOR-NEXT loop (line 30) is
used to increment the value of A from 0 to 63. The purpose is to use the vari­
able A in the POKE statement (line 40) in order to address each allophone.
The instruction "POKE 56577,0" clears and prepares the user port for the

COMMODORE 64
USER PORT

PBO
PB1
PB 2
PB 3
PB4
PB5
PB7

PB6
5V

GND

1ST
D 17
Ε 16
F 15
H 14
J 13
L

-Γ
Κ Ί L _ T 8

2 t 7
23

14 19

A1
A2
A3
A4
A5
A6
A7
A8

SP0256-
AL2

24 33K 33K + 1 0 u F

• ρ .022/g>.022uF
22pF •=• uF -

F i g u r e 2.6 Schematic diagram of the circuit that interfaces the SP0256-AL2 to a
Commodore 64 computer.

4 0 2 . Experimenting with Speech Processors

T A B L E 2.4
Software Program to Evaluate
the 59 Available Allophones

10 REM ALLOPHONES EVALUATION
12 REM BY R. JIMENEZ AND ADRIAN VALLE
20 POKE 56579,63
30 FOR A=0 TO 64:PRINT A
40 POKE 56577,A
50 POKE 56577,0
60 PB = PEEK(56577)
70 F=PBAND64
80 IF F<>64 THEN 60
90 NEXT A
100 POKE 56577,1
120 END

next data. The PEEK statement (line 60) reads the user port, storing its value
in the variable PB. Then PB is compared with the number 64 on the IF state­
ment (line 80). If F is not equal to 64, the speech synthesizer is not ready to
receive new data, and the computer goes back to line 60 automatically; other­
wise, new data are sent. The statement "POKE 56577,1" makes the speech

T A B L E 2.5
Software Program to Make the Computer
Say the Words " I Am a Talking Computer"

10 REM I'M A TALKING COMPUTER
60 POKE 56579,63
65 FOR J=l TO 27
70 READ A
80 POKE 56577,A
85 POKE 56577,0
90 PB=PEEK(56577)
94 F=PB AND 64
96 IF F<>64 THEN 90
100 NEXT J
102 DATA 24,6,1:REM I
104 DATA 7,7,16,2:REM AM
106 DATA 24,2:REM A
108 DATA 13,23,23,2,42,12,44,1:REM TALKING
110 DATA 42,15,16,9,49,22,13,51,1,4, : REM COMPUTER
160 RESTORE
170 FOR T=l TO 500:NEXTT:GOTO 65
200 END

2.3 Synthesizer/Computer Interface 4 1

processor stop saying the last allophone. If you wish to listen to the allophones
slowly, just press the (CTRL) control key.

Table 2.5 shows a program which makes the speech synthesizer say the
sentence "I am a talking computer." This program works like the first one
(Table 2.4), using the same instruction to write and read by means of the user
port. The only difference is that the data (lines 103-110) are going to be sent

4 2 2 . Experimenting with Speech Processors

with the READ statement (line 70). Note that the data are written in decimal
numbers. The words used in this sentence were taken from the dictionary in­
cluded with the SP0256-AL2 package.

Table 2.6 shows a routine that can be used for data processing. This routine
makes the speech synthesizer say numbers from 0 to 9 when you press the
respective key number. Lines 65 to 100 are used exclusively to assign the data
found in lines 100 to 128 to the dimensioned variables A(I) and B(I,J). Here
you can see how A(I) contains the data that the speech synthesizer will use to
pronounce a particular word. In this case, 10 numbers can be pronounced. For
example, A(I) holds the number 4 when the variable " I " has a value of 0. And
the statement READ (line 70) is executed by the computer. This means that
the word "zero" will be spoken by the speech synthesizer by just sending the
four data contained in the vector Β (I, J) for values of " I " equal to zero with
" J " varying 1 to 4.

The FOR-NEXT loops are used as auxiliaries to the statement READ. Ob­
serve how A(I) holds the first data to be used as a variable of the statement
FOR (line 75) to read the exact quantity of data for each spoken number. Data
from lines 110 to 128 are the decimal number values that we need to make the
speech synthesizer talk. Vector A(I) will store the first data contained in such
lines (4, 5, 3, 4, 4, 5, 8, 8, 4, 5) which, as we said before, indicates the data
contained in the vector B(I,J), respectively. For example, the data of line 110
form the word "ZZ YR OW PA5" where the respective data are 43, 60, 53,
and 4.

Lines 150 to 215 give an example of how to make the speech synthesizer
more versatile. The screen will display "VALUE of X(V)?" where " V " var­
ies from 0 to 9. The A(C) works as a variable in line 220 of the statement
FOR, which means that " I " varies from 1 to the A(C) value where " C " indi­
cates the number that will be spoken. Line 217 POKEs a zero so that the new
data can be accepted without problems. Line 240 serves the same purpose,
and lines 250 to 270 are used to read, as was explained before, the STANDBY
condition.

2.4 Generating a Technical Vocabulary
for the SP0256-AL2

Because most of the projects in this book require technical words for measur­
ing many kinds of variables, it is a good beginning to have these words ready
in hex code. An EPROM or a microcontroller needs the hex code to give out
the desired speech entry points to the speech processor. The column contain­
ing the allophones will be used in two projects presented in Section 10 of this
chapter as well as in most of the circuits used in the following chapters.

Table 2.7 presents the most widely used words as well as the respective hex
code and allophones.

2.4 Generating a Technical Vocabulary 4 3

T A B L E 2.7
Tech nical Vocabulary in Hex Code with the Respective Allophones

Word Hex Code Allophones

Zero 2B,3C,35 ZZ,YR,OW
One 39,F,F,B WW,ΑΧ,ΑΧ,NN1
Two D, IF TT2,UW2
Three 10,E,13 ΤΗ,RR1,IY
Four 28,28,3A FF,FF,OR
Five 28,28,6,23 FF,FF,AY,W
Six 37,37,C,2,29,37 SS,SS, IH,IH,PA3,KK2,SS
Seven 37, 37,7,7,23,7,Β SS, SS, EH, EH, W , EH, NN1
Eight 14,2,D ΕΥ,PA3, TT2
Nine 38,18,6,Β NN2,AA,ΑΥ,ΝΝΙ
Ten D,07,07,Β TT2,EH,EH,NN1
Eleven C, 2D, 7, 7, 23, C, Β IH, LL, EH, EH, W , EH, NN1
Twelve D, 30, 7,7,2D,23 TT2,WH,EH,EH,LL,W
Thirteen ID,33,1,2,D,13,Β TH,ER1,PA2,PA3,TT2,IY,NN1
Fourteen 28, 3A,1,2,D,13,Β FF,OR,PA2,PA3,TT2,IY,NN1
Fifteen 28,C,28,2,D,13,Β FF,IH,FF,PA2,TT2,IY,NN1
Sixteen 37,37,C,2,29,37,2,D, SS,IH,PA2,KK2,SS,PA2,TT2,

13,Β IY,NN1
Seventeen 37,37,7,23,ID,Β,2,D, SS, EH, W , ΤΗ, NN1, PA2, TT2,

13,B, ΙΥ,ΝΝΙ
Eighteen 14, 2, D, 13, Β ΕΥ,PA2,TT2,IY,NN1
Nineteen Β, 6,B, 2,D, 13,Β NN1,ΑΥ,ΝΝΙ,PA3,TT2,ΙΥ,ΝΝΙ
Twenty D, 30, 7,7,B,2,D,13 TT2,WH,EH,NN1,PA3,TT2,IY
Thirty ID,34,2D,13 TH,ER2,PA3,TT2,IY
Forty 28, 3A, 2, D, 13 FF,OR,PA3,TT2,IY
Fifty 28, 28,C,28,2,D,13 FF,FF,IH,FF,PA3,TT2,IY
Sixty 37, 37,C,2,29,37,1, SS,SS,IH,PA3,KK2,SS,PA2,

D, 13 TT2,IY
Seventy 37,37,7,23,C,B,2, SS,SS,EH,NV,IH,NN1,PA3,

D, 13 TT2,IY
Eighty 14,2,D,13 ΕΥ,PA3,TT2,IY
Ninety B, 6, 11,2,D,13 NN1,AY,NN1,PA3,TT2,IY
Hundred 39,F,F,B,1,21, HH2,ΑΧ,ΑΧ,NN1,PA2,DD2,

27,C,C,1,15 RR2,IH,IH,PA1,DDI
Thousand 1D, 18, 2D, 2B, 1, B, 15 TH,AA,ZZ,ΤΗ,PA2,NN1,DDI
Million 10,C,C,2D,31,F,B MM, IH, IH, LL, Yl, ΑΧ, NN1
And 18,B,15 AA,NN1,DDI
Ampere 18,10,9,34 AA,MM,PP,ER2
Cent 37,37,7,B,11 SS,SS,EH,NN1,TT1
Centi 37, 37,7,B,C SS,SS,ΕΗ,ΝΝΙ,IH
Check 32, 7,7,2,29 CH,EH,EHPA3,KK2
Danger 21,7,B,19,33 DD2,EH,NN1,YY2,ER1
Degree 21,C,24,27,C DD2,IH,GG1,RR2,IH
Dollar 21,F,20,33 DD2,AX,LL,ER1
Equal IY,PA2,PA3,KK3,WH,AX,EL,

4 4 2 . Experimenting with Speech Processors

Error 7, 2F,3A EH,XR,OR
Feet 28,C,11 FF,IH,TT1
Farads 28,F,27,F,37 FF,AX,RR2,AX,DDI,SS
Fuel 28,13,2D FF,IY,LL
Gallon 24,F,2D,35,Β GG1,AX,LL,OW,NN1
Go 24, 35 GG1,OW
Gram 24,27,1A,10 GG1, RR2,AE,MM
High 39, 6 HH2, AY
Higher 39,6,33 HH2,AY,ER1
Hour 20, 33 AW,ER1
Inches 13,B,25,7,37 IY,NN1,SH,EH,SS
Is C,37,37 IH,SS,SS
It C, 11 IH,TT1
Kilo 2A,13,2D,35 KK1,IY,LL,OW
Less 2D,7,37,37 LL,EH,SS,SS
Lesser 2D,7,37,33 LL,EH,DD,ER1
Limit 2D,C,10,C,11 LL,IH,MM,C,TT1
Low 2D, 35 LL, OW
Lower 2D,35,33 LL,OW,ER1
Milli 10, C,2D,C MM,IH,LL,IH
Micro 10,6,8,27,35 MM,AY,KK3,RR2,OW
Minus 10,6,B,F,37 MM, AY, NN1, AX, SS
Minute 10,C,B,C,2D MM,IH,NN1,IH,PA3, TT2
Number 38,F,10,3F,33 NN2,AX,MM,BB2,ER1
Off 18,28,28 AA,FF,FF
On 18, B, AA,NN1
Percent 9,33,37,7,38,11 PP,ER1,SS,EH,NN2,TT1
Pico 9, C,8,35 PP, IH, KK3, OW
Please 9, 2D, 13,37 PP,LL,IY,SS
Point 9,5,B,11 PP,ΟΥ,NN1,TT1
Pulses 9, IE, 2D, 37,7,37 PP,UH,LL,SS,EH,SS
Rate E,14,11 RR1,ΕΥ,TT1
Ready E,7,7,1,21,2D RR1,EH,EH,PA1,DD2,IY
Right E,6,11 RR,AY,TT
RPM 3B,9,13,7,10 AR,PP,IY,EH,MM
Set 37,7,D SS,EH,TT2
Speed 37,2,9,C,21 SS,PA1,PP,IH,DD2
Stop 37,37,11,18,9 SS, SS, TT1,AA,PP
Than 36,1A,18 DH2, AE, NN1
The 36, 1A DH2,AE
Time D,18,6,10 TT2, AA, AY, MM
Try D,27,6 TT2,RR2,AY
TemperatureD,7,10,9,33, 25, 34 TT2,EH,MM,PP,ER1,SH, ER2
Volt 23,35,2D,11 W , OW, LL, TT1

2.5 A Speech-Synthesized Event Counter 4 5

2.5 Designing α Speech-Synthesized
Event Counter

The circuit shown in Figure 2.7 is an event counter that can be applied in en­
trance doorways to count the number of persons that enter a building.

The circuit vocalizes the number of persons that have crossed that section
whenever a person breaks the light beam. A normally closed magnetic switch
can also be coupled to a door to determine the number of times it has been
opened.

F i g u r e 2.7 Circuit for the optically coupled speech synthesized event counter.

4 6 2 . Experimenting with Speech Processors

A light beam striking the photocell causes the VI voltage to stay at a logic
high (4.5 V). When a person crossing breaks the light beam momentarily, the
photocell changes its resistance to a higher value (megohms); consequently, the
voltage VI drops below the negative threshold level (V t - = 1.8 V) of Nand
gate IC4a. This in turn triggers the real monostable formed by Nand Gates IC4a
and IC4b. The monostable sends a positive transient pulse, which triggers flip-
flop IC2 to enable Nand gate IC4c. The IC4c Nand gate initiates the speech
processing sequence produced by the speech processor (IC6) in conjunction
with the EPROM memory (IC3) and the binary counter 74HC4040 (ICI).

As we already know, the /SBY output stays high when the speech pro­
cessor is in the standby mode. This output is routed to the input of Nand gate
IC4c. When IC4c is enabled by the flip-flop output, this Nand gate (IC4c)
pulses the / ALD input low, causing the generation of the first allophone. Bear
in mind that when an allophone starts, the /SBY output goes to a logic zero,
causing the Nand gate output (IC4c) to return to a logic one. This way, the
/ALD input is pulsed low until the speech processor accepts such input and
starts generating the first speech-command sequence (allophone or pause).

The binary counter (74HC4040) is used here as an 11-bit EPROM scanner.
When the first person has broken the light beam, for example, counter (ICI)
starts being clocked by Nand gate IC4c via Nand gate IC4d. When the first
speech sequence has been completed, EPROM 2716 sends a positive pulse
(via output 06) to reset flip-flop IC2, thus disabling Nand gate IC4c and the
speech processor. At this point, counter ICI stops the binary counting se­
quence on the decimal number " 5 " because the first word "one" contains
four allophones, a 200 ms pause, and the hex number 40H that gives a logic
one at the output 0 6 of IC3 to reset flip-flop 4013 (IC2). Because flip-flop
4013 needs only a positive transient reset pulse, output 0 6 of the EPROM is
first routed to a pair of inverters that form a buffer. The RC network connected
at the output of Nand gate IC5d provides the required transient pulse to reset
IC2; therefore, flip-flop IC3 is ready to be triggered again.

When a second person breaks the light beam, counter ICI will start the
counting sequence at number six (location six of the EPROM). This process is
repeated until the last speech sequence occurs, then we add a pause, and the
hex number COH gives a logic one at the outputs 0 6 and 0 7 of the EPROM.
In this form, the binary counter 74HC4040 and the flip-flop 4013 receive sepa­
rately a reset pulse in order to restart the entire system. Table 2.8 shows a part
of the speech data table necessary to concatenate the allophones. The com­
plete table depends on the maximum number of persons that you wish to de­
tect. Note that the maximum possible number in this configuration is 200. If
you want to increase the range, augment the EPROM capacity by adding an
EPROM 2732, 2764, or higher.

When all the speech data are over, outputs 0 6 and 0 7 of EPROM 2764
reset the flip-flop (4013) and the binary counter (4040). This is achieved by

2.6 Hex Code for α Four-Bit Input 4 7

T A B L E 2.8
Allophone Sequence for the E P R O M IC3 of Figure 2.7

Hex Hex
Address Data

0 4
1 2B
2 3C "zero"
3 35
4 4 "pause"
5 40 "reset"
6 39
7 F "one"
8 F
9 Β
A 4 "pause"
Β 40 "reset"
C D
D IF two
Ε 4
F 40

10 ID
11 Ε three
12 13
13 04 pause

N-1 04 last pause
Ν CO (resets ICI and IC2; 08-01

= 1100 0000)

programming COH after the last speech data where COH corresponds to a bin­
ary output (11000000).

A different use for this circuit is when the operator needs spoken instruc­
tion just when the circuit is first turned on. In this case the flip-flop 4013 must
be set by a network that is activated by the power-up transition.

2.6 Circuit Vocalizes Hex Code
for a 4-Bit Input

The circuit shown in Figure 2.8 synthesizes audible words for hexadecimal
codes corresponding to the binary input on lines A, B, C, and D. When you
press the test switch, the input present on lines ABCD is stored in the quad

4 8 2 . Experimenting with Speech Processors

To low pass
t i I ter and
audio Amp.

IC 1b
1/4 CD4D93

F i g u r e 2.8 Circuit for vocalizing the 4-bit hex code input.

latch (IC3). This is caused by the output Q of IC2b, which is a BCD counter
configured as a flip-flop.

Pressing the TEST switch to take a reading causes a 4 ms negative pulse to
the 4520 (IC2b) flip-flop provided by the Nand gate IClb, which is configured
as a half-monostable. The negative edge of this pulse latches the 4-bit data
input into the latch 4042. When this transient pulse ends, the positive edge
transition clocks counter 4520, causing a logic one at the Q output. Thus, the
BCD data are applied to the EPROM's upper address inputs A4 to A7. This
action selects a block of memory within the EPROM. The high state of the
Q output of IC2b has the function of enabling the inverter formed by Nand
gate ICla.

As you can see, the SBY output of IC5 is always in a logic one when the
speech processor is not talking; therefore, the output of ICla goes to a logic
zero. When this pulse stays low for 900 ns, the speech processor accepts the

2.7 Eight-Bit Binary Input 4 9

input and starts speaking the first allophone that was previously addressed by
IC3. At this time the SBY output goes to a logic zero, causing the Nand gate
output to go high; it is the positive edge transition that clocks counter IC2a.
This means that, while the speech processor is saying the first allophone, the
EPROM memory is addressing the second allophone to the speech processor
waiting to be loaded by the next /ALD pulse. It is clear that counter IC2a
scans those memory locations in sequence by driving the lower address bits
AO to A3. As a result, the EPROM delivers a preprogrammed sequence of
instructions to the speech processor.

Since four bits (AO to A3) are controlling the sequence of data, a maximum
of 16 allophones is allowed at each block of memory. In this case the blocks of
memory start in the following decimal locations: 16, 32, 48, 64, 80, 96, 128,
144, 160, 176, 192, 208, 224, and 240. This can be seen in Table 2.9, where
the speech data for programming the EPROM are ready to use by selecting the
hex address and the hex code.

The power-up reset pulse to counters IC2a and IC2b is given by the Rl CI
network, which provides a positive transient pulse to allow a zero state before
beginning the operation of the whole circuit.

Following each report, the hex data instructions 4 and 44 reset the speech
processor (internally) and gates IC2a and IC2b via output 0 6 . This output can
be buffered using the two remaining Schmitt trigger Nand gates (IClc and
ICld) if counter 4520 is not reset properly. Diode Dl at the output 0 6 of IC4
prevents the output stage from receiving the power-up reset positive pulse
caused by the Rl CI network. Otherwise, this pulse would destroy the NMOS
output transistor contained in the EPROM.

2.7 Circuit Vocalizes 8-Bit Binary Input

The method of vocalizing a binary code used here is similar to the one ex­
plained in Section 2.6, except for a few enhancements that will be explained
in this section.

To read an 8-bit binary input with the speech processor, the circuit shown
in Figure 2.9 uses an 8-bit latch 74HC373 (IC4), which stores the binary input
on lines Dl to D8.

When power is first turned on, the power-up reset network (Rl CI) gives a
positive transient pulse that resets IC3 and the half-monostable formed by
Nand gates IC2b and IC2c. ICI is a D-type flip-flop that is clocked by the half-
monostable circuit at the negative edge transition.

To start the circuit, press the TEST switch to generate a positive transient
pulse; this pulse will latch the 8-bit data input. IC4 has a propagation time of
15 ns to present the data to the EPROM address inputs (A5 to A12). The
EPROM used here (27C64-3) will take 300 ns to deliver the data output to the
speech processor address inputs Al to A6. By adding the time of each event
we get 315 nanoseconds. If we consider the propagation time (tp) of the Nand

5 0 2 . Experimenting with Speech Processors

T A B L E 2.9
E P R O M Program to be Loaded in E P R O M 27C16

Hex Hex Hex Hex
Address Data Address Data

00 4 72 7
01 2B 73 7
02 3C "ZERO" 74 23
03 35 75 c
04 4 76 Β
05 44 77 4
10 39 78 44
11 F 80 14
12 F "ONE" 81 c "EIGHT"
13 Β 82 D
14 4 83 4
15 44 84 44
20 D 90 38
21 IF "TWO" 91 18 "NINE"
22 4 92 6
23 44 93 Β
30 ID 94 4
31 Ε "THREE" 95 44
32 13 AO 14 "A"
33 4 Al 4
34 44 A2 44
40 28 B0 3F
41 28 "FOUR" Bl 17 " Β "
42 3A B2 4
43 4 B3 44
44 44 CO 37
50 28 CI 37 "C"
51 28 "FIVE" C2 17
52 6 C3 4
53 23 C4 44
54 4 DO 21
55 44 Dl 17 "D"
60 37 D2 4
61 37 "SIX" D3 44
62 C E0 17 "E"
63 C El 4
64 2 E2 44
65 29 F0 7
66 37 Fl 7 "F"
67 4 F2 28
68 44 F3 28
70 37 F4 4 (RESETS IC5)
71 37 "SEVEN" F5 44 (RESETS IC2a & IC2b)

Continued

2.7 Eight-Bit Binary Input
5 1

To low pass
f i l t e r and
audio Atrip.

F i g u r e 2.9 Circuit for the 8-bit vocali;

gate IC2b, we will have a total propagation time of 615 nanoseconds. It is,
therefore, a smart choice to latch the 8-bit data input first and then get a small
delay time to activate the^flip-flop 4013 to give the first allophone time to be
loaded; otherwise the first allophone will not be heard when the /ALD input is
pulsed low. Sometimes glitches are still in process at the EPROM output, in­
creasing the chances of hearing only garbage. In that case the circuit must be
restarted. To solve this problem, the monostable formed by IC2b and IC2c is
used. When the TEST switch is pressed, the negative edge transition of IC2c
latches the 8-bit data input (Dl to D8). When the transient pulse of IC2c goes

5 2 2 . Experimenting with Speech Processors

T A B L E 2.10
Allophone Table Showing Ten Cases for Elaborating the Entire Table

Hex
Address

Hex
Data Word

0 2B,3C,35,4,44 Zero

20 39,F,F,B,4,44 One

40 D, IF,4,44 Two

60 10,E,13,4,44 Three

140 D, 7,7,Β Ten

280 D, 30, 7, 7, B, 2, D, 13 Twenty

B40 39,F,F,B,2,39,F,F,B,1,21,27,C,C,1,15 One Hundred

1900 D,1F,4,39,F,F,B,1,21,27,C,C,1,15,4,44 Two Hundred

1F00 D,1F,4,39,F,F,B,1,21,27,C,C,1,15,18,B,

15, 2, 28, 28, C, 28, 23, D, 13, 2, 28, 28, 6, 23, 4, 44

Two Hundred And

Fifty Five.

back to a logic one, the positive edge clocks flip-flop 4013 that in turn enables
the speech processor via the Nand gate IC2a.

The main difference between this circuit and the one in Section 2.6 is that
there are five bits for scanning a maximum of 32 instructions, including
pauses and reset bytes. Therefore, the blocks of memory fall in multiples of
32, 64, 96, and so on, depending upon the value of the input data on lines Dl
to D8. The difficult part in implementing this circuit is to develop the hex data
for the EPROM. But always bear in mind that here we are using maximum
software with minimum hardware, which has the advantage of reducing costs
of layout for pc board assembling. To help you understand how these data are
formed, Table 2.10 shows a set of 10 different readings for some typical cases.

2.8 Improved Technique Vocalizes
Binary Code for 8-Bit Input

So far our discussions have been primarily directed toward the use of an
EPROM; however, the use of two smaller EPROMs in series reduces memory
data and the time required for programming. The schematic is illustrated in
Figure 2.10.

2.8 Improved Technique for Eight-Bit Input 5 3

The technique consists of recording the basic numbers (zero, one, two,
. . . nineteen, twenty, . . . ninety, hundred, etc.) in the EPROM controlling
the speech processor and using a second EPROM to control the first one by
selecting the words, depending on the data received at its inputs.

The circuit presented in Figure 2.10 shows EPROM 27C16 (IC5), driving
the speech processor directly. This EPROM is programmed with the words
that are essential to form the composed numbers like ''twenty one," "forty
six," "one hundred and twenty four," and so on. Table 2.12 shows the pro­
gram for EPROM 27C16 (IC5). EPROM 27C32 (IC4) will control the
EPROM 27C16 (IC5) with a predetermined program for each particular read­
ing (see Table 2.13). EPROM IC4 will be programmed with up to five in­
structions per reading since the largest readings for the speech processor to

+5V

Γ 201 Q1
Q2

C8 Q3
^ 4 Q4

IC Q5
I373 Q6

Q7

AO 00

A1 01

A2 02

A3 03
04

IC4 05

27C32 06

A4
A5
A6
A.7
A.8
AQ
A. y
A10
A11 07

F i g u r e 2.10 An 8-bit vocalizer using two small EPROMs spends less memory
space.

2 . Experimenting with Speech Processors

pronounce contain five words (e.g., "two hundred and fifty one"). Thus
EPROM IC4 must be able to provide a maximum of five instructions. Even
when three bits of counter 4520 (IC3b) are sufficient to scan the five instruc­
tions required, four bits are connected in this diagram to have the capacity of
addressing a maximum of 16 words per message. Every word can be as long
as 13 allophones, as determined by counter 4520 (IC3a). The upper address
bits of the first EPROM (IC8) are controlled by an 8-bit transparent latch
74CH373 (ICI). These bits will address the starting point of a block of mem­
ory within the EPROM (IC4).

On the other hand, counter 4520 (IC3) will scan the lower address bits of
IC5, which contain the data to concatenate the allophones in sequence. Figure
2.11 shows the timing diagram for the complete circuit.

It is necessary to explain how to develop the hexadecimal programs for
both EPROMS in order to understand how the circuit works. First, we will see
two examples using the timing diagram illustrated in Figure 2.11.

Once the circuit is turned on, press the normally open switch (SI) to set the
D-type flip-flop. This causes a logic zero on /Q and a logic high on Q output
after 2.2 ^ s . The negative edge of /Q latches the 8-bit data input (Dl to D8)

V 1

74HC373

27C32

27C16

IC3b

F i g u r e 2.11 Timing diagram for the circuit shown in Figure 2.10.

2.8 Improved Technique for Eight-Bit Input 5 5

that are controlling the upper address bits of EPROM 27C32 (IC4). For ex­
ample, if the 8-bit data input contains the binary number Q 8 - Q 1 = 0000
0001, EPROM IC4 receives only a logic one at the address input A4; there­
fore, this EPROM goes to address 16 (10#h) where the data stored must corre­
spond, in this case, to hex number 01#h. Now, the second EPROM (IC5) also
receives the address sixteen (10#h). All this takes about 915 ns. Nand gate
(ICla) is still waiting to receive a voltage equal to or greater than 3.3 V (Vt+
= 3.3 V @ 5 V). This time delay is given by the following equation:

t - RC In [Vdd/(Vdd - Vt+)] = 1.1 RC

where R = IK
C = 0.0022 μ¥

With these RC values, Nand gate ICla will be triggered by the Q output
after 2.2 ^ts (2200 ns). This delay is inserted to give sufficient time to both
EPROMs to find the first block of memory. After the 2.2 ^ s delay, Nand gate
ICla pulses low the /ALD input, and after 300 ns the speech processor begins
to announce the first allophone. This 300 ns delay is caused by the standby
(SBY) output which is also controlling Nand gate ICla. Because of the propa­
gation time delay of 300 ns caused by Nand gate ICla, the /ALD input is held
low for an interval of 600 ns. It is here when the output of Nand gate ICla
goes to a logic one which also clocks counter IC3a (1/2 4520), while the
speech processor is still speaking the first allophone. Thus counter IC3a is
now addressing the second data byte because it has incremented the lower ad­
dress bits to Q 4 - Q 1 = 0001. Accordingly, when the speech processor com­
pletes the first allophone, the SBY output goes back to a logic one, causing
Nand gate ICla to pulse the / ALD input low that will clock counter IC3a again
after 600 ns. This process is repeated until the last allophone is heard. At this
point, we have to store a pause (pal to pa5) to make the speech processor stop
talking. In the next byte of EPROM IC5, we have to store the hex code 44H
(01000100) to provide a logic one at the EPROM's output 06. This will cause a
positive voltage at the output 06 (pin 16 of IC5) that will reset binary counter
IC3a and will clock counter IC3b. The time interval of the said pulse will be
given by the propagation time of IC3a plus IC5; that is, 850 ns. When this
happens, counter IC3b is now incremented to the binary count Q 4 - Q 1 =
0001, which generates the next sequentially address "17 ." This address is
given by A4 = Al = 1 with all other address inputs equal to zero. Therefore,
we store the number 80#h = 1000 0000#b in this new address that will give a
positive transient voltage of 850 ns at the output 07 (pin 17 of IC4). This pulse
resets binary counter IC3b (1/2 4520) and flip-flop 4013. Now the speech pro­
cessor is disabled and the 8-bit latch (74HC373) is enabled. The circuit is
now ready to be triggered again by momentarily pressing the normally open
switch SI.

In the case previously explained, the circuit announced the single number

5 6 2 . Experimenting with Speech Processors

Five Typica
T A B L E 2.11

Cases for the Words Zero, One, Two, Twenty, Twenty One

27C32 27C16

Q7 Q6 Q5 Q4 Q3 Q2 Ql Count Hex Hex Count Hex Hex

A10A9 A8 A7 A6 A5 A4 A3-AO Add Data A9 A8 A7 A6 A5 A4 A3-AO Add Data

0 0 0 0 0 0 0 0000 00 00 0 0 0 0 0 0 0000 00 00

0 0 0 0 0 0 1 0000 10 01 0 0 0 0 0 1 0000 10 2B

0 0 0 0 0 1 0 0000 20 02 0 0 0 0 1 0 0000 20 39

0 0 1 0 1 0 0 0000 140 14 0 1 0 1 0 0 0000 140 0D

0 0 1 0 1 0 1 0000 150 14 0 0 0 0 0 0 0000 140 00

0 0 1 0 1 0 1 0001 151 01 0 1 0 1 0 1 0000 10 00

"one ." When the circuit has to enunciate a composed number like "twenty
one," the process is a little different. In that case, EPROM 27C32 (IC4) must
contain three data bytes necessary to find the two messages "twenty" and
"one ," and the data byte that resets IC3b and 1C2.

By looking at the program of the controlling EPROM (IC4), you will see
how composed numbers are formed by calling the correct messages located at
specific addresses in EPROM 27C16 (IC5). Notice that EPROM 27C16 may
also contain any specific message you want to add after a digital reading. You
can call, for example, the word "volt" after the announced reading to indicate
to the user the type of variable he is measuring.

Table 2.11 shows five typical and useful cases of the EPROM programs. As
you can see, the 8-bit data input (Ql to Q8) corresponds to EPROM IC4 inputs
(A4 to Al l) . Note that A l l is not represented for Q8 because of space limita­
tions. The word COUNT represents the 4-bit counter (lC3b) that is interfaced
to the lower address inputs of EPROM 27C32 (IC4). In contrast, IC3a is the
other 4-bit counter used to scan each allophone.

You can use this circuit as a functional box to the different projects pre­
sented in the following chapters. As you can see, Table 2.12 contains only the
control program for composed numbers within the range of "zero" to "fifty
nine." But you can increase the range to create the maximum number of "two
hundred and fifty five" due to the 8-bit data inputs that we are applying. The
user can continue writing the program depending upon the application in
mind. It is important to note that you can also change the scale of readings.
For example, you may need to announce readings in the range of "zero" to
"twenty five point five" (0.0 to 25.5) with a resolution of 0.1, or readings
from "zero point zero zero" to "two point fifty five" (0.00 to 2.55) with a

2.8 Improved Technique for Eight-Bit Input 5 7

T A B L E 2.12
E P R O M Program for E P R O M 27C16(IC5)

Hex Hex
Address Data Word

00 2B,3C,35,4,4 Zero
10 39,F,F,B,4,44 One
20 2B,3C,35,4,44 Two
30 10,E,13,4,44 Three
60 28,28,3A,4,44 Four
70 28,28,6,23,4,44 Five
80 37, 37, C,2,29,37,4,44 Six
90 37,37,7,7,23,7,B,4,44 Seven
AO 14,2,D,4,44 Eight
BO 38,18,6,B,4,44 Nine
CO D, 07, 07,B,4,44 Ten
DO C, 2D, 7, 7, 23, C, B, 4, 44 Eleven
EO D, 30, 7, 7, 2D,23,4,44 twelve
FO ID,33, 1, 2, D,13,B,4,44 thirteen

100 28, 3A, 1, 2,D,13,B,4,44 Fourteen
110 28,C,28,2,D,13,B,4,44 Fifteen
120 37,37,C,2,29,37,2,D, Sixteen

13, B, 4, 44
130 37,37,7,23,ID,B,2,D, Seventeen

13,B,4,44
140 14,2,D,13,B,4,44 Eighteen
150 B, 6, B, 2, D, 13, B, 4, 44 Nineteen
160 D, 30, 7, 7, B, 2, D, 13, 4, 44 Twenty
170 ID,34,2D,13,4,44 Thirty
180 28, 3A,2,D,13,4,44 Forty
190 28, 28, C, 28,2,D,13,4,44 Fifty
1A0 37,37,C,2,29,37,1, Sixty

D, 13,4,44
1B0 37, 37,7,23,C,B,2, Seventy

D, 13,4,44
ICO 14, 2,D,13,4,44 Eighty
1D0 B, 6, 11, 2, D, 13, 4, 44 Ninety
1E0 39, F,F,Β, 1,21,4,44 Hundred
1F0 9, 5, B,11,4,44 Point
200 ID, 18,2D,2B, 1,B, 15,4,44 Thousand
210 10, C, C, 2D, 31, F, B, 4, 44 Million
220 18, B, 15,4,44 And
230 7,2F,3A,4,44 Error
240 28,F,27,F,37,4,44 Farads
250 10, C,2D,C,4,44 Milli
260 10,6,8,27,35,4,44 Micro
270 10, C, B,C,2D,4,44 Minute
280 9, C,8,35,4,44 Pico
290 23, 35,2D,11,4,44 Volt

5 8 2 . Experimenting with Speech Processors

resolution of 0.01. In both cases, EPROM IC5 remains unaltered; that is, with
the same program, but you will have to program the controlling EPROM (IC4)
to fit the scale with which you are working. (See Table 2.13.) The time re­
quired for programming EPROM IC4 is greatly reduced in comparison to the
program employed in Section 2.7.

The circuit presented in this section can be simplified by using a micro­
controller or a microsequencer; these topics will be treated in detail in the fol­
lowing section and chapters.

T A B L E 2.13
Program in Hex Code for E P R O M 27C32 (IC4)

Hex
Address

Hex
Data

Hex
Address

Hex
Data

00 00 "zero" 100 10
01 80 "Reset" 101 80
10 01 "one" 110 11
11 80 "Reset" 111 80
20 02 "two" 120 12
21 80 "Reset" 121 80
30 03 "three" 130 13 "nineteen"
31 80 131 80 "Reset"
40 04 140 14 "twenty"
41 80 141 80 "Reset"
50 05 150 14 "twenty"
51 80 151 01 one"
60 06 152 80 "Reset"
61 80 160 14 "twenty-
70 07 161 02 two"
71 80 162 80 "Reset"
80 08 170 14 "twenty-
81 80 171 03 three"
90 09 172 80 "Reset"
91 80 180 14
AO OA "ten" 181 04
Al 80 "Reset" 182 80
B0 OB 190 14
Bl 80 191 05
CO oc 192 80
CI 80 1A0 14
DO OD 1A1 06
Dl 80 1A2 80
E0 OE 1B0 14
El 80 1B1 07
F0 OF 1B2 80
Fl 80 ICO 14

Continued Continued

2.8 Improved Technique for Eight-Bit Input 5 9

ICI 08 2C1 04
1C2 80 2C2 80
1D0 14 2D0 16
1D1 09 2D1 05
1D2 80 2D2 80
1E0 15 "thirty" 2E0 16
1E1 80 2E1 06
1F0 15 2E2 80
1F1 01 2F0 16
1F2 80 2F1 07
200 15 2F2 80
201 02 300 16
202 80 301 08
210 15 302 80
211 03 310 16
212 80 311 09
220 15 312 80
221 04 320 17
222 80 321 80
230 15 330 17
231 05 331 01
232 80 332 80
240 15 340 17
241 06 341 02
242 80 342 80
250 15 350 17
251 07 351 03
252 80 352 80
260 15 360 17
261 08 361 04
262 80 362 80
270 15 370 17
271 09 371 05
272 80 372 80
280 16 "forty" 380 17
281 80 "Reset" 381 06
290 16 "forty- 382 80
291 01 one" 390 17
292 80 "Reset" 391 07
2A0 16 392 80
2A1 02 3A0 17
2A2 80 3A1 08
2B0 16 3A2 80
2B1 03 3B0 17
2B2 80 3B1 09
2C0 16 3B2 80
Continued

"fifty"
"Reset"
"fifty-
one"

"fifty-
nine"
"Reset"

6 0 2 . Experimenting with Speech Processors

2.9 Microcontroller Routine Handles
the Basic Functions of a
Speech Processor

In this section we will be headed to the development of the routines necessary
to drive the two most commonly used speech processors (SP0256-AL2 from
Microchip and DT1050 from National Semiconductor) by using the versatile
microcontroller (μΟ) 8748.

A brief description of the 8748 architecture will be helpful to start develop­
ing the program.

8748 Architecture

The functional blocks of the 8748 family are now described. The arithmetic
section is for basic data manipulation and is divided in the following blocks:
arithmetic logic unit (ALU), accumulator, carry flag, and instruction decoder.
The program memory is stored in the resident EPROM memory, which is
formed by 1024 bytes for the μC 8748 and 2048 bytes for the μC 8749. There
are 27 I/O lines grouped as three ports of eight lines each. TO, T l , and INT
serve as inputs and are testable with the conditional JUMP instruction without
needing to load an input port into the accumulator. Finally, a timer/counter is
also contained to aid the user in counting external events or generate accurate
time delays without disturbing the processor for these functions. For complete
and detailed information about the μΟ 8748 or μΟ 8749, consult the reference
section at the end of this chapter.

Figure 2.12 shows the μΟ 8748 interfaced with the SP0256-AL2 to pro­
vide full control of the input and output lines of the speech processor. Input Tl
will be the external switch that initiates the speech processing sequence; there­
fore, the μC 8748 will be reading the logical value of input Tl . When the user
presses the test switch, a logic high will be present momentarily at the input
T l , causing the μΟ to initiate the control program.

At this point, we want the μC program to drive the speech processor by
sending a preprogrammed group of allophones. In this case, we will program
it to hear the words "one, two, three, and four." The speech data will be pro­
grammed in page three of the μ Ο ^ internal EPROM. We know that page three
consists of 256 bytes available for speech data programmed by the user. In this
manner, a maximum of 256 allophones can be stored for any other spécifie
application you may have in mind. In this example, the four words occupy 17
bytes (11H hexadecimal). The flowchart illustrated in Figure 2.13 shows the
steps that must be executed to control the speech processor with the μΟ 8748.

The following routine (see Table 2.14) corresponds to the flowchart shown
in Figure 2.13. It is a good example of how the μC 8748 is instructed to make
the speech processor speak four word numbers.

In the software program shown in Table 2.14, the instruction that pulses the

2.9 Basic Functions of a Speech Processor 6 1

100K

F i g u r e 2.12 SP0256-AL2 controlled by the ^C8748.

write output (/WR) low is MOVX @R0, A. This negative transient pulse
stays low for 5 ^ s when a 6 MHz crystal is used. At this point, the speech
processor starts the first speech sequence, causing the standby output (/SBY)
to go low while the speech processor is speaking the first utterance. Our next
instruction must read the STANDBY status; this is made using the JNTO in­
struction. When TO goes to a logic high, the program jumps to the next in­
struction. In order to hear the next allophone, seven instructions must be exe­
cuted to bring out the respective speech data. This process causes a total delay
of 22.5 ^ s ; that is, 0.0225 ms for listening to the next allophone. This short
delay will not affect the natural sound because the duration of the allophones
varies from 10 to 420 ms. The routine must search for the next speech data if
you want to reduce the 22.5 ^ts delay, and have it ready it to load it into the
speech processor before reading the STANDBY status. This new method is
shown in the program in Table 2.15. Register R4 is used as a counter that is
decremented every time the speech processor speaks a new allophone. This is
performed by the DJNZ instruction on address 21H. There is also register R5
which is incremented in order to find the next allophone on page three of
ROM. The instruction to find the next allophone is "MOVP3 A, @ A " located
on address 19H.

The enhanced routine shown in Table 2.15 reduces the 22.5 /xs delay to 7.5
/xs by introducing the instructions: "INC R5 , " "MOV A, R 5 , " and "MOVP3
A, @ A , " then proceeding to read the SBY status of the speech processor.
(There is plenty of time to do this because the speech processor is a relatively
slow device compared with the /xC 8748.)

6 2 2 . Experimenting with Speech Processors

(START)
3 E

F i g u r e 2.13 Flowchart for the control routine of the μ€ 8748.

T A B L E 2.14
Software for the μ€8748 Interfaced with the SP0256-AL2

Add Op Code Mnemonic Comments

OOH 04 05 JMP 05H ;jump to address 5
05 46 05 JNT1 05H ;jump to address 5 if Tl is
07 04 10 JMP 10H ;jump to address 10H
10 99 00 ANL PI, #00H ; clear port 1
12 9A 00 ANL P2, #00H ; clear port 2
14 BC 11 MOV R4, #11H ; load Reg 4 with the # of

;allophones
16 BD 00 MOV R5, #00H ; clear register 5

2.9 Basic Functions of a Speech Processor 6 3

18 FD MOV A, R5
19 E3 MOV P3 A, (SA
1A 39 OUTL PI, A
IB 90 MOVX caRO, A
IC 26 IC JΝΤΟ 1CH
IE ID INC R5
IF 00 NOP
20 EC 18 DJNZ R4, 18H

21 04 05 JMP 05H
300 04
301 2B
302 3C
303 35
304 04
305 39
306 OF
307 OF
308 OB
309 04
30A OD
30B IF
30C 04
30D ID
30E OE
3 OF 13
310 04

move reg 5 to ACC
move page 3 of ROM to ACC
load speech data to port 1
/WR output is pulsed low
read the SBY status of the SP
inc reg 5 to select new
allophone
decrement the number of
allophones
jump to address 05H
speech data stored in page 3
consisting of the words one,
two, three, four.
pause (pa3) is added between
each word.

The following timing diagram (see Figure 2.14) corresponds to the pro­
gram shown in Table 2.15. The program starts when the normally closed
switch is opened momentarily. After 11 instructions (27.5 /xs), the first al­
lophone will be heard. The /ALD waveform illustrates the 7.5 μ$ time delay
before listening to the next allophone (speech data).

NC
SWITCH

ALD

SBY

A1-A6

CLOSED OPEN

7.5
uS

5uS-H

1st α I lophone 2nd α I lophone

Y

F i g u r e 2.14 Timing diagram for the program of Table 2.15.

6 4 2 . Experimenting with Speech Processors

T A B L E 2.15
Enhanced Software for the /xC8748 Interfaced with the SP0256-AL2

Add Op Code Mnemonic Comments

00 27 CLR A ,clear accumulator
01 04 05 JMP 05H go to address 5
05 46 05 JNT1 05H jump to 05H if Tl is low
07 04 10 JMP 10H go to address 10H
10 99 00 ANL PI, #00H clear port 1
12 9A 00 ANL P2, #00H clear port 2
14 BC 11 MOV R4, #11H reg 4 is loaded for 17

allophones
16 BD 00 MOV R5, #00H clear reg 5
18 39 OUTL PI, A load speech data to port 1
19 90 MOVX r«R0, A pulse low the /WR output
1A ID INC R5 increment reg 5 to select next

allophone
IB FD MOV A, R5 increment ACC to search next

speech data
1C E3 MO VP 3 A, («A load new allophone to ACC
ID 26 JNTO 1DH test SBY input
IF EC 18 DJNZ R4, 18 decrement R4 and test for zero
21 04 00 JMP 00H go to address 00H
300 04 speech data stored in page 3
301 2B consisting of the words one,
302 3C two, three, four.
303 35
304 04
305 39
306 OF
307 OF
308 OB
309 04
3 OA OD
3 OB IF
30C 03
30D ID
30E OE
30F 13
310 04

In the following chapters, we will be using this routine for more complex
applications. The microcontroller 8748 is a powerful device that can be ap­
plied in almost any kind of instrumentation system. It is now a cheap and
commercially available device that you can find through most mail-order
distributors.

2.10 FPC Am29CPL100 Drives the SP0256-AL2 6 5

2.10 Field Programmable Controller
Am29CPL100 Drives the Speech
Processor SP0256-AL2

The Advanced Micro Devices Am29PL100 is a family of compatible field pro­
grammable controller (FPC) devices that permits the designer to implement
complex state machines and controllers by programming a specific sequence
of instructions in its internal PROM or EPROM. Using these devices results in
a savings of board area, power, and critical design time.

The Am29PL100 family members are shown in Table 2.16.
This single-chip CMOS device contains a set of powerful instructions that

allow conditional branching, conditional looping, conditional subroutine call,
and multiway branch. Engineers can develop optimal solutions with the com­
puting power to control peripherals, instead of using SSI and MSI devices. All
Am29CPL100 devices integrate the elements of an intelligent controller into a
single chip. These flexible field programmable controllers replace multiple
chip alternatives consisting of several programmable and MSI devices, or
costly ASIC devices. In this section we will see how FPCs simplify a speech
processor's control.

Figure 2.15 shows the simplified block diagram of the FPC Am29CPL151.
Table 2.17 shows the instruction set. The Am29CPL100 architecture is com­
posed of three basic functional blocks:

• Address sequencer. Controls the sequence in which instructions are
fetched from program memory.

• Program memory. Field programmable controllers feature on-chip pro­
gram memory for minimum chip count and maximum system speed.
Memory size ranges from 64 to 512 words for handling even the most
complex controls algorithms. Memory output is fed to the pipeline
register.

• Pipeline Register. A portion of the pipeline register's contents provides
the outputs that control other devices in the system. The other portion of
the register is fed back to the address sequencer.

T A B L E 2.16
Am29Pll00 Family Members

P a r t Memory Words I n p u t s O u t p u t s I n s t r u c t i o n s C l o c k R a t e

Am29CPL151 EPROM 6 4 7 16 2 9 3 0 MHz

Am29CPL152 EPROM 6 4 8 16 2 8 2 5 MHz

Am29CPL154 EPROM 6 4 8 16 2 8 2 5 MHz

(Copyright © Advanced Micro Devices, Inc. October 1988. Publication #10389A p. 1. Reprinted
with permission of copyright owner. All rights reserved.)

6 6 2 . Experimenting with Speech Processors

ZERO** SDI* DCLK* P[15:8] P[7:6]** P[5:0]
Outputs

* These pins available only in S S R mode.
** These pins available only in normal mode.

*** Each of the T[5:0], RESET, and CC inputs can be individually registered or left unregistered as a programmable option.

F i g u r e 2.15 Block diagram of the FPC Am29CPL151. (Copyright © Advanced Micro De­
vices, Inc. June 1988. Publication #10135 p. 7. Reprinted with permission of copyright owner. All rights
reserved.)

The Am29CPL100 FPC structure is a cross between a state machine and a
microcontroller, giving it a combination of high-speed operation with the con­
venience of programming using an instruction set. Microcode features a wide
instruction word that allows operations to be performed in parallel instead of
sequentially, as in microcontrollers. This results in higher performance, but
without added design complexity. Using AMD's FPC assembler (ASM14X),
code is written in high-level language constructs, using symbolic values for
addresses and I/O.

As a first approach, we will use the Am29CPL151 to control the speech

2.10 FPC Am29CPL100 Drives the SP0256-AL2 6 7

T A B L E 2.17
Am29CPL141/CPU51 Microprogram Instruction Set

opcode mnemonics Assembler statement

(1) * 19 GOTOPL IF (cond) THEN GOTO PL(data)
(2) * OF GOTOTM IF (cond) THEN GOTO TM(data)
(3) OB GOTOPLZ IF (CREG = 0) THEN GOTO PL(data)

or OB GOTOPLZ IF (CREG = 0) THEN
GOTO PL(data) AND CLEAR-EQ

(4) * 18 FORK IF (cond) THEN GOTO PL(data)
ELSE GOTO (SREG)

(5) * IC CALPL IF (cond) THEN CALL PL(data)
(6) * ID CALPLN IF (cond) THEN CALL PL(data).NESTED
(7) * IE CALTM IF (cond) THEN CALL TM(data)
(8) * IF CALTMN IF (cond) THEN CALL TM(data),NESTED
(9) 04 LDPL IF (cond) THEN LOAD PL(data)

(10) 05 LDPLN IF (cond) THEN LOAD PL(data),NESTED
(11) 06 LDTM IF (cond) THEN LOAD TM(data)
(12) 07 LDTMN IF (cond) THEN LOAD TM(data),NESTED
(13) 15 PSH IF (cond) THEN PUSH
(14) 17 PSHN IF (cond) THEN PUSH,NESTED
(15) 14 PSHPL IF (cond) THEN PUSH,LOAD PL(data)
(16) 16 PSHTM IF (cond) THEN PUSH,LOAD TM(data)
(17) 02 RET IF (cond) THEN RET
(18) 03 RETN IF (cond) THEN RET,NESTED
(19) 00 RETPL IF (cond) THEN RET,LOAD PL(data)
(20) 01 RETPLN IF (cond) THEN

RET NESTED,LOAD PL(data)
(21) 09 DEC IF (cond) THEN DEC
(22) OC DECPL WHILE (CREG <> 0) WAIT

ELSE LOAD PL(data)
(23) OE DECTM WHILE (CREG <> 0) WAIT

ELSE LOAD TM(data)
(24) * IB DECGOPL IF (cond) THEN GOTO PL(data)

ELSE WHILE (CREG <> 0)
WAIT

(25) * 1A WAIT IF (cond) THEN GOTO PL(data)
ELSE WAIT

(26) 08 LPPL WHILE (CREG <> 0) LOOP TO PL(data)
or 08 LPPL WHILE (CREG <> 0)

LOOP TO PL(data) AND CLEAR-EQ
(27) OA LPPLN WHILE (CREG <> 0) LOOP TO PL(data)

ELSE NEST
or OA LPPLN WHILE (CREG <> 0)

LOOP TO PL(data) AND CLEAR-EQ
ELSE NEST

(28) OD CONT CONTINUE
(29) 10 - 13 CMP CMP TM(mask) TO PL(constant)

* = If test field selects EQ, and if branch is taken, EQ flag is cleared

(Copyright © Advanced Micro Devices, Inc. June 1988. Publication #10135 pp. 11-18. Reprinted
with permission of copyright owner. All rights reserved.)

6 8 2 . Experimenting with Speech Processors

processor SP0256-AL2 and to make it speak a preprogrammed sequence of
allophones. Figure 2.16 shows the circuitry configuration to achieve this spe­
cific task.

As shown in Figure 2.16, Nand gates ICla and IClb form a monostable that
gives a positive transient pulse of 0.1 s each time the normally open test
switch is pressed. The timing equation for this monostable is given by

t = RC In [Vdd/Vt-]

Substituting Vdd and Vt—, we get:

t = RCln [5V/1.8V]
t = 1.02 RC

In this form, the FPC (IC2) will read the logic high in order to start the
microprogram; otherwise, the program keeps reading the low state of TO. To
send the data that correspond to the allophone table of the speech processor
SP0256-AL2, we will be using 6 of the 16 outputs of the FPC. The fixed
clock frequency of 3.12 MHz used to clock the speech processor is also ap­
plied to the field programmable controller. This is a good way to reduce the
number of components, by not having to build an extra oscillator. You will see
by looking at Figure 2.16 that outputs P0 to P7 of IC2 give the desired address
to the speech processor. Considering that the speech processor contains only
63 speech locations, P6 and P7 will be providing a logic zero in this circuit all
the time. Figure 2.17 illustrates the flowchart required to bring out sequen-

->1ϋϋΚ

IC1<jj

ts t

icib)
H ^ , 9 J 2 ,

13

f5Y

To LPF and
t a u d i o
amp i ί f i e r

22pF

φ 3 . 1 2 MHz

2£

2 2 ρ F -φ

10DK J-5V

1N914A

F i g u r e 2.16 FPC Am29CPL151 interface with the speech processor SP0256-AL2.

2.10 FPC Am29CPL100 Drives the SP0256-AL2 6 9

RESET

*5Γ

F i g u r e 2.17 Flowchart to develop the control program of the circuit shown in Fig­
ure 2.16.

tially a certain number of allophones. The process starts when the user presses
the test (tst) switch that causes a logic high at the TO input of the FPC. When
the FPC detects that TO is high, it will jump automatically to the next instruc­
tion; therefore, while the microinstruction asks for the SBY status of the
SP0256-AL2, the first allophone will be issued by the FPC.

It is clear that the SBY output will be in a logic high because the inputs Al
to A8 have not yet been pulsed low; therefore, the program now calls condi­
tionally the "read" subroutine which pulses the inputs Al to A8 low. The
/ALD input is disabled because the strobe enable input of the speech processor
is tied to a logic low. In this mode of operation there is an extra byte penalty
for each allophone issued, and pause pal cannot be used. This extra byte, con­
sisting of zeroes at the inputs Al to A8, is supplied with the output " p a l " in
subroutine "pl(read)." It is better to use this mode of operation because we
have to define the allophone we desire once only. Otherwise, we would define
every allophone twice along with the word "aid" in the first instruction and
without the word "aid" in the second instruction, just to indicate that the
/ALD input is pulsed low in the second instruction.

When the inputs Al to A8 receive the byte 00#h , it causes the SBY output
to stay low for an interval appropriate to the first speech data, in this case, the

7 0 2 . Experimenting with Speech Processors

pause pa5. The program now proceeds to read the SBY status. When the SBY
output returns to a logic high, the program returns to the next instruction that
contains the second speech entry point. This process will be repeated until the
last speech data has been issued. Then the program will jump conditionally to
the first line with the instruction "if (sby) then goto pl(zero)"; where "zero"
is the label of the first instruction. Notice that the particular allophone you
wish to listen to must be specified before each instruction and separated by a
comma. When you need more outputs, they must be specified, for example,
as output 1 + output2. This is why the program contains the required allo­
phone or pause to maintain any one or more of the outputs PI to P8 at a logic
high for every instruction, except when the program goes to the byte "zero"
(see line 28). Bear in mind that the last speech data must be a pause (pa2 to
pa5) in order to stop the processor saying the last allophone.

Table 2.18 shows the ascii file that represents the program for the FPC
Am29CPL151 that is suitable for our purposes because it supports a maximum
of 64 instructions, while our program spends only 30. To assemble and simu­
late the program with the ASM14X software package, you have to create
a pure ascii file containing the key words DEVICE, DEFAULT, DEFINE,
BEGIN, and END as illustrated in Table 2.18.

T A B L E 2.18
Program to Control the Speech Processor with the FPC Am29CPL151

DEVICE (CPL141)

DEFAULT = 1;

DEFINE "test inputs"
tst = t o "when the n.o. switch is closed t o goes high"
sby = tl "STANDBY goes to zero when A1-A8 are zero"

"ouput control bits speech data = 59 allophones plus five pauses"
pal -= 00#h pa2 = 01#h pa3 = 02#h pa4 = 03#h pa5 = 04#h
oy = 05#h ay = = 06#h eh = 07#h kk3 = 08#h PP = 09#h
jh = 0A#h nnl = 0B#h ih = 0C#h tt2 = 0D#h rrl = 0E#h
ax = 0F#h mm -= 10#h ttl = ll#h dhl = 12#h iy = 13#h
ey = 14#h ddl = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 ^ = 19#h ae -= lA#h hhl = lB#h bbl = lC#h th = lD#h
uh lE#h uw2 = lF#h aw = 20#h dd2 = 21#h gg3 = 22#h
vv = 23#h ggl = 24#h sh = 25#h zh = 26#h rr2 = 27#h
ff = 28#h kk2 = 29#h kkl = 2A#h zz = 2B#h ng = 2C#h
11 = 2D#h W W = = 2E#h xr = 2F#h wh = 30#h yyi = 31#h
ch = 32#h erl = 33#h er2 = 34#h ow = 35#h dh2 = 36#h
S S = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h
yr = 3C#h gg2 = 3D#h el = 3E#h bb2 = 3F#h;

2.10 FPC Am29CPL100 Drives the SP0256-AL2 7 1

BEGIN
"the speech processor announces the words: zero, one, two, three, bye"
"wait for test nput to go high -- Strobe Enable = 0 (pin 19)

"400 ms pause"
"ze"
"r "
"o"
"400 ms pause"
"etc.,,,"

"l"zero pa5, if (not tst) then goto pi (z
-2" pa5, if (sby) then call Pi (read)
"3" zz, if (sby) then call Pi (read)
"4 » yr, if (sby) then call Pi (read)
"5" ow, if (sby) then call Pi (read)
"6" pa5, if (sby) then call Pi (read)
"7" WW, if (sby) then cal] Pi (read)
"8" ax, if (sby) then call Pi (read)
"9" ax, if (sby) then call Pi (read)
"10" nnl, if (sby) then call Pi (read)
"11" pa5, if (sby) then call Pi (read)
"12" tt2, if (sby) then call Pi (read)
"13" uw2, if (sby) then call Pi (read)
"14" pa5, if (sby) then call Pi (read)
"15" th, if (sby) then call Pi (read)
"16" rrl, if (sby) then call Pi (read)
"17" iy, if (sby) then call Pi (read)
"18" pa5, if (sby) then call Pi (read)
"19" ff, if (sby) then call Pi (read)
"20" ff, if (sby) then call Pi (read)
"21" or, if (sby) then call Pi (read)
"22" pa5, if (sby) then call Pi (read)
"23" pa5, if (sby) then call Pi (read)
"24" bbl, if (sby) then call Pi (read)
"25" ay, if (sby) then call Pi (read)
"26" pa5, if (sby) then call Pi (read)
"27" pa2, if (sby) then goto pi (zero)

"routine for reading the standby status of the speech processor"
"28"read:pal, continue;"allow SBY pin to go low in 300ns"
"29"
"30"

"31"

END.

if (not sby) then goto pi(stay)
if (sby) then ret;

pal,
pal,

.org 63#d
goto pi(zero

"reading SBY"

The program shown in Table 2.18 specifies the device that we are using, in
this case the Am29CPL141, denoted as CPL141. Notice that Figure 2.16 speci­
fies the Am29CPL151 because this is a version with a self-contained EPROM.
The DEFAULT section, equal to 1, means that unspecified fuses will remain
unblown, thus leaving unspecified microcode words and files at a logic level
one. According to the circuit shown in Figure 2.16, the DEFINE section is
where we assign names to the test inputs and output control bits; it is here that
the 5 pauses, 59 allophones, and the /ALD output are assigned with the hexa­
decimal value required for addressing the speech processor correctly. In this

7 2 2 . Experimenting with Speech Processors

manner, we will be applying the allophones or pauses in our main program in
an easy-to-follow format.

The assembler program produces three files; JEDEC, PROM bit, and the
error file. For more information on how to install and run the assembler
(ASM14X) and the simulator (SIM14X), consult the files with the extension
" . T X T " contained in the software package ASM14X from Advanced Micro
Devices. Assembler statements are written using any familiar word processor.
Assembly is done on any personal computer using ASM14X. Error messages
are returned for incorrect syntax. Once the error messages have been elimi­
nated, a JEDEC file is produced with the assembler output. Table 2.19 shows
the JEDEC file that is generated by the assembler program in order to be
downloaded to a standard logic programmer. Table 2.20 illustrates the PROM
bit pattern file. By looking at this PROM bit pattern, you will see that the
outputs and inputs that we specified for controlling the speech processor are
the equivalent outputs but in binary code. Line " 2 8 " is responsible for pulsing
low the outputs P 0 - P 7 of the FPC to load a speech entry point.

T A B L E 2.19
J E D E C File for the FPC Am29CPL151

fspeech3.doc] JEDEC map for device [cpll411 *
L0000 0 00110 0 111 111111 1111111111111011 *
L0032 0 00011 1 110 100100 1111111111111011 *
L0064 0 00011 1 110 100100 1111111111010100 *
L0096 0 00011 1 110 100100 1111111111000011 *
L0128 0 00011 1 110 100100 1111111111001010 *
L0160 0 00011 1 110 100100 1111111111111011 *
L0192 0 00011 1 110 100100 1111111111010001 *
L0224 0 00011 1 110 100100 1111111111110000 *
L0256 0 00011 1 110 100100 1111111111110000 *
L0288 0 00011 1 110 100100 1111111111110100 *
L0320 0 00011 1 110 100100 1111111111111011 *
L0352 0 00011 1 110 100100 1111111111110010 *
L0384 0 00011 1 110 100100 1111111111100000 *
L0416 0 00011 1 110 100100 1111111111111011 *
L0448 0 00011 1 110 100100 1111111111100010 *
L0480 0 00011 1 110 100100 1111111111110001 *
L0512 0 00011 1 110 100100 1111111111101100 *
L0544 0 00011 1 110 100100 1111111111111011 *
L0576 0 00011 1 110 100100 1111111111010111 *
L0608 0 00011 1 110 100100 1111111111010111 *
L0640 0 00011 1 110 100100 1111111111000101 *
L0672 0 00011 1 110 100100 1111111111111011 *
L0704 0 00011 1 110 100100 1111111111111011 *
L0736 0 00011 1 110 100100 1111111111100011 *
L0768 0 00011 1 110 100100 1111111111111001 *

2.10 FPC Am29CPL100 Drives the SP0256-AL2

L0800 0 00011 1 110 100100 1111111111111011
L0832 0 00110 1 110 111111 1111111111111110
L0864 0 00110 0 110 100100 1111111111111111
L0896 0 11101 1 110 000000 1111111111111111
L0928 00000000000000000000000000000000*
L0960 00000000000000000000000000000000*
L0992 00000000000000000000000000000000*
L1024 00000000000000000000000000000000*
L1056 00000000000000000000000000000000*
L1088 00000000000000000000000000000000*
L1120 00000000000000000000000000000000*
L1152 00000000000000000000000000000000*
L1184 00000000000000000000000000000000*
L1216 00000000000000000000000000000000*
L1248 00000000000000000000000000000000*
L1280 00000000000000000000000000000000*
L1312 00000000000000000000000000000000*
L1344 00000000000000000000000000000000*
L1376 00000000000000000000000000000000*
L1408 00000000000000000000000000000000*
L1440 00000000000000000000000000000000*
L1472 00000000000000000000000000000000*
L1504 00000000000000000000000000000000*
L1536 00000000000000000000000000000000*
L1568 00000000000000000000000000000000*
L1600 00000000000000000000000000000000*
L1632 00000000000000000000000000000000*
L1664 00000000000000000000000000000000*
L1696 00000000000000000000000000000000*
L1728 00000000000000000000000000000000*
L1760 00000000000000000000000000000000*
L1792 00000000000000000000000000000000*
L1824 00000000000000000000000000000000*
L1856 00000000000000000000000000000000*
L1888 00000000000000000000000000000000*
L1920 00000000000000000000000000000000*
L1952 00000000000000000000000000000000*
L1984 00000000000000000000000000000000*
L2016 00000000000000000000000000000000*
L2048 0 *
L2049 0 *
L2050 0 *
L2051 0 *
L2052 0 *
L2053 0 *
L2054 0 *
L2055 0 *
L2056 0 *
L2057 0 *
C4EB7*
21C8

7 4 2 . Experimenting with Speech Processors

T A B L E 2.20
P R O M Bit Pattern for the FPC Am29CPL151

PROM Contents:
hex < dec> OE O P C O D E P O L T E S T D A T A O U T P U T

0 0 0 < 0 > f 1 ! 1 1 0 0 1 ι : 0 0 0 ! 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 < 1 > [1 ! 1 1 1 0 0 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 2 < 2 > [1 ! 1 1 1 0 0 ο : 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

0 0 3 < 3 > f 1 ! 1 1 1 0 0 ο : 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 4 < 4 > f 1 ! 1 1 1 0 0 ο : 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1

0 0 5 < 5 > f 1 ! 1 1 1 0 0 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 6 < 6 > f 1 ! 1 1 1 0 0 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

0 0 7 < 7 > [1 ! 1 1 1 0 0 ο : 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 8 < 8 > f 1 ! 1 1 1 0 0 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 9 < 9 > F 1 ! 1 1 1 0 0 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

0 0 A < 1 0 > [ι : 1 1 1 0 0 0 ! o o i : 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 B < 1 1 > [1 ! 1 1 1 0 0 , 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

ooc < 1 2 > f 1 ! 1 1 1 0 0 ! 0 1 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

OOD < 1 3 > f 1 ! 1 1 1 0 0 ! 0 I 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

OOE < 1 4 > f 1 ! 1 1 1 0 0 i 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

OOF < 1 5 > f 1 ! 1 1 1 0 0 ! 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 1 0 < 1 6 > f 1 ! 1 1 1 0 0 ! ο : 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

O i l < 1 7 > [1 ! 1 1 1 0 0 ! 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 2 < 1 8 > f 1 ! m o o : 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 1 3 < 1 9 > [1 ! 1 1 1 0 0 ! ο : 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 1 4 < 2 0 > f 1 ! 1 1 1 0 0 ! 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0

0 1 5 < 2 1 > [1 ! 1 1 1 0 0 ! 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 6 < 2 2 > f 1 ! 1 1 1 0 0 ! 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 7 < 2 3 > [1 ! m o o : 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 1 8 < 2 4 > f 1 ! 1 1 1 0 0 ! 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 1 9 < 2 5 > f 1 ! 1 1 1 0 0 ! 0 ! 0 0 1 ! 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 A < 2 6 > f 1 ! 1 1 0 0 1 ! 0 ! 0 0 1 ! 0 1

0 1 B < 2 7 > [1 ! 1 1 0 0 1 ! ι : o o i : 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 C < 2 8 > [1 ! 0 0 0 1 0 ! 0 ! 0 0 1 ! 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The Am29CPL151 operates at a maximum frequency of 30 MHz, con­
sumes 115 mA, and its operating voltage range is 4.5 to 5.5 V. All the instruc­
tions are executed in one clock cycle. You can modify the program to suit your
specific needs, but remember that a maximum of 64 instructions are allowed
using the Am29CPL151.

Now we will use the field programmable controller Am29CPL152 to make
the speech processor vocalize a BCD code input. Figure 2.18 shows the re­
spective circuit where the Am29CPL152 receives the BCD code input on the
test input lines (TO to T3). The test input line t4 is now used here to read the
STANDBY status (SBY) of the speech processor. Output lines PO to P7 are
configured as the circuit explained before.

2.10 FPC Am29CPL100 Drives the SP0256-AL2 7 5

By looking at Table 2.21 you will see first the keyword DEVICE
(CPL142). This indicates that we are using the field programmable controller
Am29CPL142 which contains a CMOS EPROM of 128 words by 34-bit. As
you can see, we are using the FPC CPL142 in the design file, and the CPL152
in the schematic. The FPC CPL152 is a space-saving version of the CPL142;
both devices contain the same architecture and the same set of instructions.
The DEFINE section assigns TO to T3 to be the test inputs for the BCD code.
The test (tst) switch is assigned to the conditional code input (cc). The word
equal is given to the eq flag to determine when a number is equal with respect
to a given constant. The SBY input is assigned to t4. Output control bits (the
allophones) are assigned the same hexadecimal numbers as the previous
example.

The BEGIN section of our program starts in line " 1 " where the first in­
struction waits for the "tst" input to go high. When this happens,the second
instruction loads the four LSB of the test input, as indicated by the mask
" 0 F # h . " Instructions two to twenty three are used to compare the BCD code
input with respect to a constant specified in "pl(constant)." When the com­
pared number is equal to the constant, the program jumps to the routine that
contains the allophones corresponding to the BCD code input. When the first
allophone is issued in this routine, the same instruction calls the subroutine to
send zeroes at outputs P0 to P7. This subroutine keeps reading the SBY status
of the speech processor until it goes high. If it is high, the next instruction is
executed (the return instruction), causing the program return to the routine

BCD
code
Î nput

F i g u r e 2.18 Circuit for vocalizing a BCD code input when the test switch is pressed
momentarily.

7 6 2 . Experimenting with Speech Processors

T A B L E 2.21
Program for Controlling the Speech Processor and

Make It Speak the Respective BCD Code Input

DEVICE (CPL142)

DEFAULT 1;

bl = tO
b2 = tl

DEFINE "test inputs"
"when the n.o. switch
"STANDBY goes to zero

is closed t o goes high'
when A1-A8 = 00#h"

b3 = t2
b4 = t3
tst = cc
equal = eq
sby = t4

"Ouput control bits. Speech data = 59 allophones plus five pauses"
pal = = 00#h pa2 = 01#h pa3 = 02#h pa4 = 03#h pa5 = 04#h
oy = 05#h ay = -- 06#h eh = 07#h kk3 = 08#h PP = 09#h
jh = OA#h nnl = OB#h ih - OC#h tt2 = OD#h rrl = OE#h
ax = OF#h mm -- 10#h ttl = ll#h dhl = 12#h iy = 13#h
ey = 14#h dd I = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = = 19#h ae = - lA#h hhl = lB#h bbl = lC#h th = lD#h
uh = lE#h uw2 = lF#h aw = 20#h dd2 = 21#h gg3 = 22#h
w = 23#h ggl = 24#h sh = 25#h zh = 26#h rr2 = 27#h
ff = 28#h kk2 = 29#h kkl = 2A#h zz = 2B#h ng = 2C#h
11 = 2D#h W W = - 2E#h xr = 2F#h wh = 30#h yyi = 31#h
ch = 32#h erl = 33#h er2 = 34#h ow = 35#h dh2 = 36#h
ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h
yr = 3C#h gg2 = 3D#h el = 3E#h bb2 = 3F#h;

BEGIN
"wait for test input to go high. SE = 0 (pin 19 of SP0256-AL2)"
"l"stay pal, if (not tst) then goto pi(stay
"2" pal, cmp tm(0F#h) to pi(00#h);
"3" pal, if (equal) then goto pi(zero);
"4" pal, cmp tm(0F#h) to pi (01#h) ;
"5" pal, if (equal) then goto pi(one);
"6" pal, cmp tm(0F#h) to pi(02#h);
II 7 I I pal, if (equal) then goto pi(two);
"8" pal, cmp tm(0F#h) to pi(03#h);
"9" pal, if (equal) then goto pi(thre);
"10" pal, cmp tm(0F#h) to pi(04#h);
"11" pal, if (equal) then goto pi(four);
"12" pal, cmp tm(0F#h) to pi(05#h);
"13" pal, if (equal) then goto pi(five);
"14" pal, cmp tm(0F#h) to pi(06#h);
"15" pal, if (equal) then goto pi(six);
"16" pal, cmp tm(0F#h) to pi(07#h);
"17" pal, if (equal) then goto pi(svn);

2.10 FPC Am29CPL100 Drives the SP0256-AL2 7 7

"18" pal, cmp tm(0F#h) to pi(08#h);
"19" pal, if (equal) then goto pi (eit);
"20" pal, cmp tm(0F#h) to pi(09#h);
"21" pal, if (equal) then goto pi(nin);
"22" pal, cmp tm(0F#h) to pl(0A#h);
"23" pal, if (equal) then goto pi(error)

"routine for the word zero"
"24"zero:zz, if (sby) then call pi (read)
"25" yr, if (sby) then call pi (read)
"26" ow, if (sby) then call pi (read)
"27" pa4, if (sby) then call pi(read)
"28" pal, if (sby) then goto pi(stay)

"routine for the word one"
"29"one: W W , if (sby) then call pi(read)
"30" ax, if (sby) then call pi(read)
"31" ax, if (sby) then call pi(read)
"32" nnl, if (sby) then call pi(read)
"33" pa4, if (sby) then call pi(read)
"34" pal, if (sby) then goto pi(stay)

"routine for the word two"
"35"two: tt2, if (sby) then call pi(read)
"36" uw2, if (sby) then call pi(read)
"37" pa4, if (sby) then call pi(read)
"38" pal, if (sby) then goto pi(stay)

"routine for the word three"
"39"thre th, if (sby) then call pi(read)
"40" rrl, if (sby) then call pi (read)
"41" iy, if (sby) then call pi (read)
"42" pa4, if (sby) then call pi (read)
"43" pal, if (sby) then goto pi(stay)

"routine for the word four"
"44"four ff, if (sby) then call pi(read)
"45" ff, if (sby) then call pi(read)
"46" or, if (sby) then call pi(read)
"47" pa4, if (sby) then call pi(read)
"48" pal, if (sby) then goto pi(stay)

"routine for the word five"
"49"five ff, if (sby) then call pi(read)
"50" ff, if (sby) then call pi (read)
"51" ay, if (sby) then call pi (read)
"52" w , if (sby) then call pi (read)
"53" pa4, if (sby) then call pi(read)
"54" pal, if (sby) then goto pi(stay)

"routine for the word six"
"55"six:ss, if (sby) then call pi(read)
"56" ss, if (sby) then call pi(read)
"57" ih, if (sby) then call pi(read)
"58" ih, if (sby) then call pi(read)
"59" pa3, if (sby) then call pi(read)
"60" kk2, if (sby) then call pi(read)

7 8 2 . Experimenting with Speech Processors

"61" S S , if (sby) then call pi (read)
"62" pa4, if (sby) then call pi (read)
"63" pal, if (sby) then goto pi(stay)

"routine for the word seven"
"64"svn S S , if (sby) then call pi(read)
"65" S S , if (sby) then call pi (read)
"66" eh, if (sby) then call pi (read)
"67" eh, if (sby) then call pi (read)
"68" w , if (sby) then call pi(read)
"69" eh, if (sby) then call pi (read)
"70" nnl, if (sby) then call pi (read)
"71" pa4, if (sby) then call pi (read)
"72" pal, if (sby) then goto pi(stay)

"routine for the word eight"
"73"eit ey, if (sby) then call pi(read)
-74·. pa3, if (sby) then call pi(read)
"75" tt2, if (sby) then call pi(read)
"76" pa4, if (sby) then call pi(read)
"77" pal, if (sby) then goto pi(stay)

"routine for the word nine"
"78"nin. nn2, if (sby) then call pi(read),
"79" aa, if (sby) then call pi(read)·
"80" ay, if (sby) then call pi(read);
"81" nnl, if (sby) then call pi(read);
"82" pa4, if (sby) then call pi(read);
"83" pal, if (sby) then goto pi(stay);

"routine error"
"84"error eh, if (sby) then call pi (read)
"85" xr, if (sby) then call pi (read)
"86" or, if (sby) then call pi (read)
"87" pa4, if (sby) then call pi (read)
"88" pal, if (sby) then goto pi(stay)

"subroutine for reading the standby status of the speech processor"
"89"read:pal, if (not sby) then goto pi(read); "reading SBY"
"90" pal, if (sby) then ret;

.org 127#d
"91"pal, if (sby) then goto pi (stay);
END.

that contains the next allophone. This process continues until all the allo­
phones have been issued. Note that the last instruction of each routine sends
the program back for reading the test (tst) switch. If the number ten (1010) is
received at the four inputs (TO to T3), the program goes to a routine that
makes the speech processor announce the message "error." The user can add
more instructions if he or she desires to detect the numbers eleven to fif­
teen. Try doing this and assemble your circuit and verify its operation by
building this compact unit. Table 2.22 presents the prom bit pattern for the

2.10 FPC Am29CPL100 Drives the SP0256-AL2 7 9

Am29CPL152. The JEDEC file is not shown here, but you will get it when
you assemble the file speech 4.doc. The JEDEC file is required for the
EPROM burner and is directly downloaded from your computer. While the
FPCs labeled with the letters PL have a built-in PROM, remember that the
field programmable controllers containing the letters CPL have a built-in
CMOS EPROM.

If you want to design a 5-bit binary input vocalizer, try to design your pro­
gram in a form such that the FPC combines the words. For example, the num­
ber "twenty one" requires the use of two words: "twenty" and "one ." The

T A B L E 2.22
Prom Bit Pattern for the Am29CPL152

PROM Contents:
hex <dec> ΟΕ O P C O D E P O L T E S T D A T A O U T P U T

0 0 0 < 0 > [1 ! l i o o i : ι ! o u i ι 0

0 0 1 < 1 > f 1 !

O P C O D E

o o i i o : 0 ! 0 1 1 1 !

C O N S T A N T D A T A

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 < 2 > f ι : 1 0 0 ! 0 0 0 0 0 0 0 ! 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3 < 3 > [ι !

O P C O D E

1 1 0 0 1 ! 0 ! 1 0 0 0 !

C O N S T A N T D A T A

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 4 < 4 > f 1 ! 1 0 0 ! 0 0 0 0 0 0 1 ! 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 5 < 5 > f ι :

O P C O D E

1 1 0 0 1 ! 0 ! 1 0 0 0 !

C O N S T A N T D A T A

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 6 < 6 > [1 ! 1 0 0 ! 0 0 0 0 0 1 0 ! 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 7 < 7 > [1 !
O P C O D E

1 1 0 0 1 ! 0 ! 1 0 0 0 !

C O N S T A N T D A T A

0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 8 < 8 > f 1 ! 1 0 0 ! 0 0 0 0 0 1 1 ! 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 9 < 9 > [1 !

O P C O D E

1 1 0 0 1 ! 0 ! 1 0 0 0 !

C O N S T A N T D A T A

0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 A < 1 0 > f 1 ! 1 0 0 ! 0 0 0 0 1 0 0 ! 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 B < 11> f 1 i
O P C O D E

1 1 0 0 1 ! 0 ! 1 0 0 0 !

C O N S T A N T D A T A

0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

o o c < 12> f 1 ! 1 0 0 ! 0 0 0 0 1 0 1 ! 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00D < 1 3 > f ι :

O P C O D E

l i o o i : ο : ι ο ο ο ι
C O N S T A N T D A T A

0 1 1 0 0 0 1 0000000000000000

0 0 E < 14> f 1 ! l o o : o o o o i i o ! 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

OOF < 1 5 > [1 !
O P C O D E

1 1 0 0 1 ! 0 ! 1 0 0 0 !

C O N S T A N T D A T A

0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 < 1 6 > [ι : 1 0 0 ! 0 0 0 0 1 1 1 ! 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O i l < 1 7 > f ι :

O P C O D E

l i o o i : ο : ι ο ο ο ι
C O N S T A N T D A T A

1 0

0 1 2 < 1 8 > [1 ! l o o ; o o o i o o o ! 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 3 < 1 9 > [ι :

O P C O D E

l i o o i : ο i ι ο ο ο ι
C O N S T A N T D A T A

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 4 < 2 0 > f ι : l o o ! o o o i o o i : 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 5 < 21> f 1 ! 1 1 0 0 1 ! 0 ! 1 0 0 0 ! 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 2 . Experimenting with Speech Processors

OPCODE CONSTANT DATA
016 < 22> [1 100 0001010 0001111 0000000000000000
017 < 23> f 1 11001 0 : l o o o 1010100 0000000000000000
018 < 24> f 1 11100 0 : o i o o 1011001 0000000000101011
019 < 25> f 1 11100 0 ', 0100 1011001 0000000000111100
01A < 26> [1 11100 0 : o i o o 1011001 0000000000110101
01B < 27> [1 11100 0 ! 0100 1011001 0000000000000011
01C < 28> f 1 11001 0 : o i o o 0000000 0000000000000000
01D < 29> [1 11100 0 : o i o o 1011001 0000000000101110
01E < 30> f 1 11100 0 ! 0100 1011001 0000000000001111
OIF < 31> f 1 11100 0 ! 0100 1011001 0000000000001111
020 < 32> { 1 11100 0 : o i o o 1011001 0000000000001011
021 < 33> f 1 11100 0 ! 0100 1011001 0000000000000011
022 < 34> f 1 11001 0 i 0100 0000000 0000000000000000
023 < 35> [1 11100 0 1 0100 1011001 0000000000001101
024 < 36> f 1 11100 0 ! 0100 1011001 0000000000011111
025 < 37> f 1 11100 0 ! 0100 1011001 0000000000000011
026 < 38> f 1 11001 0 : o i o o 0000000 0000000000000000
027 < 39> f 1 11100 0 ! 0100 1011001 0000000000011101
028 < 40> f 1 11100 0 ! 0100 1011001 0000000000001110
029 < 41> f 1 11100 0 ! 0100 1011001 0000000000010011
02A < 42> r ι 11100 0 ! 0100 1011001 0000000000000011
02B < 43> f 1 11001 0 : o i o o 0000000 0000000000000000
02C < 44> [1 11100 0 : o i o o 1011001 0000000000101000
02D < 45> f 1 11100 0 ! 0100 1011001 0000000000101000
02E < 46> \ 1 11100 0 : o i o o 1011001 0000000000111010
02F < 47> f 1 11100 0 : o i o o 1011001 0000000000000011
030 < 48> [1 11001 0 : o i o o 0000000 0000000000000000
031 < 49> f 1 11100 0 i 0100 1011001 0000000000101000
032 < 50> f 1 11100 0 : o i o o 1011001 0000000000101000
033 < 51> f 1 11100 0 : o i o o 1011001 0000000000000110
034 < 52> f 1 11100 0 : o i o o 1011001 0000000000100011
035 < 53> f 1 11100 0 : o i o o 1011001 0000000000000011
036 < 54> f 1 11001 0 : o i o o 0000000 0000000000000000
037 < 55> [1 11100 0 ! 0100 1011001 0000000000110111
038 < 56> f 1 11100 0 : o i o o 1011001 0000000000110111
039 < 57> f 1 11100 0 : o i o o 1011001 0000000000001100
03A < 58> [1 11100 0 1 0100 1011001 0000000000001100
03B < 59> f 1 11100 0 : o i o o 1011001 0000000000000010
03C < 60> \ 1 11100 0 : o i o o 1011001 0000000000101001
03D < 61> f 1 11100 0 : o i o o 1011001 0000000000110111
03E < 62> f 1 11100 0 ! 0100 1011001 0000000000000011
03F < 63> f 1 11001 0 : o i o o 0000000 0000000000000000
040 < 64> [1 11100 0 : o i o o 1011001 0000000000110111
041 < 65> \ 1 11100 0 i 0100 1011001 0000000000110111
042 < 66> f 1 11100 0 : o i o o 1011001 0000000000000111
043 < 67> f 1 11100 0 ! 0100 1011001 0000000000000111
044 < 68> f 1 11100 0 i 0100 1011001 0000000000100011
045 < 69> f 1 11100 0 : o i o o 1011001 0000000000000111
046 < 70> [1 11100 0 ! 0100 1011001 0000000000001011
047 < 71> [1 11100 0 ! 0100 1011001 0000000000000011

2.11 Multiplexing α Speech Processor 8 1

048 < 72> f 1 11001 0 0100 0000000 0000000000000000
049 < 73> f 1 11100 0 0100 1011001 0000000000010100
04A < 74> f 1 11100 0 0100 1011001 0000000000000010
04B < 75> f 1 11100 0 0100 1011001 0000000000001101
04C < 76> [1 11100 0 0100 1011001 0000000000000011
04D < 77> f 1 11001 0 0100 0000000 0000000000000000
04E < 78> [1 11100 0 0100 1011001 0000000000111000
04F < 79> f 1 11100 0 0100 1011001 0000000000011000
050 < 80> [1 11100 0 0100 1011001 0000000000000110
051 < 81> f 1 11100 0 0100 1011001 0000000000001011
052 < 82 > f 1 11100 0 0100 1011001 0000000000000011
053 < 83> [1 11001 0 0100 0000000 0000000000000000
054 < 84> [1 11100 0 0100 1011001 0000000000000111
055 < 85> [1 11100 0 0100 1011001 0000000000101111
056 < 86> f 1 11100 0 0100 1011001 0000000000111010
057 < 87> f 1 11100 0 0100 1011001 0000000000000011
058 < 88> f 1 11001 0 0100 0000000 0000000000000000
059 < 89> f 1 11001 1 0100 1011001 0000000000000000
05A < 90> f 1 00010 0 0100 1111111 0000000000000000

use of subroutines containing the basic numbers will help to develop a pro­
gram that compares the magnitude of the digital input in order to determine
the way to make the speech processor announce the correct number. In this
manner, you will save memory space for other possible tasks of your program.

2.11 Multiplexing α Speech Processor
with Different Data Sources

To be able to interface a speech processor with several data sources to read
and vocalize the information, it is necessary to consider the use of multiplex­
ers (MUX). Multiplexing will permit us to use only one speech processor
when we want to measure different types of data sources.

A MUX can be implemented with MSI chips or with programmable logic
(PALs or PLDs). It is up to you to decide the technology that better suits your
specific needs.

For the interpretation of different data sources using a single speech pro­
cessor, the circuit shown in Figure 2.19 provides a solution. The 8-bit data
input sources may represent any physical or electrical measurement that is in
binary code ready to be latched and selected by the 8-bit transparent latches
ICla, IClb, . . . ICln (74HC373). It is not necessary to have 8-bit data inputs
in all the latches; 7-bit data inputs or less can be used in this specific circuit. If
this is the case, data lines must be shifted to the next lower address pin of the
EPROM, reducing the size of the EPROM from a 27256, for example, to a
27128, 2764, and so on.

8 2 2 . Experimenting with Speech Processors

Y0/Y1

F i g u r e 2.19 Circuit for multiplexing the speech processor with different data
sources.

Once the selecting inputs YO and Yl receives the desired logic, the SET
input of flip-flop 4013 must be pulsed high to enable the selected latch to store
the 8-bit data input. The decoder's outputs /YO and /Yl are also routed to the
EPROM 27256 to select a block of memory. Depending upon the user's appli­
cation, each block of memory will be programmed with the words or numbers
in the scale that he/she is using or planning to use. Do not forget to include the
pauses pa5 (04H) and (44H) at the end of every sequence of allophones in
order to stop the speech processor and reset binary counter (IC4) and flip-flop
(IC3), respectively.

When A13 = A14 = 0, the first block of memory is ready to work with the
data input DA. With the type of decoder described in Figure 2.19, a maximum
of four 8-bit data inputs are allowed. If A13 = 1, DA is enabled and the block

2.11 Multiplexing α Speech Processor 8 3

of memory starting at location 2 1 4 is selected. Once the flip-flop is high,
the SP0256 is enabled to start the timing of the allophone's sequence. IC4
(74HC4040) configured as a 5-bit binary counter is reponsible for scanning in
sequence a maximum of 32 speech entry points per reading. This counter is
triggered at the rising edge of the /ALD input signal. In this form, while the
speech processor is speaking the first speech data, counter IC4 is clocked; that
is, it is incremented to give time for the EPROM to access the new speech data
to the input port (Al to A6) of the speech processor.

It is very important to avoid glitches in the input port lines (Al to A6) of the
speech processor when you want to pulse the /ALD input low. That considera­
tion is taken into account here because the SBY output gives a logic low at its
output, indicating that the speech processor is talking. This causes a logic
high at the output of Nand gate IC6a, which in turn clocks counter IC4 via
Nand gate IC6b. Counter IC4 specifies the next address for the EPROM mem­
ory. The propagation time delay caused by Nand gates ICla, IClb, counter
IC4, and the EPROM memory (IC5) is about 1300 ns (see Figure 2.20). After
that short time delay, the circuit will call out readings.

In the same way, the type of circuit that the user selects to control the in­
puts (Y0, Yl , and SET) plus the 8-bit data inputs must wait a short time to

F i g u r e 2.20 Timing diagram for the circuit shown in Figure 2.19.

8 4 2 . Experimenting with Speech Processors

avoid reading glitches from the 8-bit data inputs. In this case, a "Ready" sig­
nal coming from the data source would be very important.

Finally, the new designing tools now available for programmable array
logic (PALs) and generic array logic (GALs) will permit you to achieve the
kind of multiplexer you are looking for. If you include Nand gates and the flip-
flop used in the circuit previously explained, you will save more hardware and
space when building this unit.

References

CMOS Logic Databook. 400039 Rev. 1. National Semiconductor. 1989.
SP0256B Narrator Speech Processor, (DS50018A-1)
SP0256-AL2 Narrator Speech Processor, (DS50005A-1) Microchip Technology Inc. 1989.
MOS Memory Products. Toshiba Semiconductor, Inc. 1987.
Am29CPL100 Family of Field Programmable Controllers. Handbook. Advanced Micro De­

vices. 1988.
Am29CPL141 FPC Data sheet Advanced Micro Devices. 1988.
Am29CPL142 FPC Data sheet Advanced Micro Devices. 1989.
Am29CPL144 FPC Data sheet Advanced Micro Devices. 1989.
8049/8051 Microcontrollers User's Guide. Signetics. 1989.
GW Basic User's Manual for TANDY 1000SL. Tandy Corporation. 1989.
Ricardo Jimenez-G., Circuit Vocalizes Hex Code for a 4-bit Input. EDN, March 18, 1987,

pp. 204-206.

C H A P T E R 3

Analog Circuits

3.1 Basics of the A / D Converters

Now that digital computers and digital control systems are finding widespread
uses, measuring the natural and artificial variables found in the real world is
becoming less of an analog function. The variables of temperature, pressure,
speed, and so on are natural and artificial variables that occur in quantities that
change continuously. In order to change most variables from an analog do­
main to a digital domain, an interface device is usually required—the analog-
to-digital (A/D) converter.

Essentially, an A/D converter is an encoding device that accepts an analog
signal (Vi) and an analog reference (Vr) as inputs and generates a digital out­
put (Do) which is an effect related to the input.

The design and selection of the best converter for a particular system is by
no means simple. There is usually no single converter that will meet all speci­
fications; however, to obtain optimum performance at minimum size and cost,
the designer must consider factors that are common to all converters: perfor­
mance, speed, reference supplies, power supplies, buffers, and other factors
not considered in this book. Within the framework of these factors, the A/D
converters used in this section were selected as the optimum devices for our
speech synthesis applications based on availability of product and price, and
also because they are the most widely used products by designers.

Analog-to-Digital Converters

National Semiconductor's low-cost, CMOS 8-bit successive approximation
A/D converters, designated as ADC0800, are compatible with most micro­
processors/microcontrollers, and in most applications they do not require

8 5

8 6 3 . Analog Circuits

added interfacing logic. These devices operate from a single 5-V supply, and
the conversion time is 100 /ots. Five accuracies are available in this family of
A/D converters:

ADC0801 +1/4 LSB full scale adjusted
ADC0802 +1/2 LSB unadjusted (Vref/2 - 2.500)
ADC0803 +1/2 LSB adjusted
ADC0804 +1 LSB unadjusted
ADC0805 + 1 LSB

These converters contain a new differential analog voltage input, which
allows the common-mode rejection to be increased and the analog zero input
voltage value to be offset. In addition, National Semiconductor has 10-bit and
12-bit versions of these A/D converters (ADC) to provide a complete family
of ADC0800 devices. Figure 3.1 shows the pin configuration for the
ADC080X.

Functional Description

It is our goal in this section to show you how to use the A/D converters (series
ADC080X). Figure 3.2 shows the logic diagram of the A/D converters of the
series ADC080X.

Before you start applying these converters to speech processors, it is rec­
ommended that you first test the A/D converter, because you will be able to
test the first phase of your system. The simplest test consists of applying a
known analog input voltage to the converter and using LEDs to display the
resulting digital output code.

Figure 3.3 shows the basic configuration for this test.
The first phase is to test the operation of the circuit illustrated in Figure 3.3

by using a full-scale adjustment. An analog input voltage of 2.55 Vdc should
be applied to the Vin(+) pin with the V i n (-) grounded. The value of the
Vref/2 input voltage should then be adjusted until the digital output code
is just changing from 1111 1110 to 1111 1111. In this case, Vref/2 is set to

F i g u r e 3.1 Pin configuration for the ADC080X.

3.1 Basics of the A / D Converters 8 7

F i g u r e 3.2 Logic diagram of the ADC080X family of A / D converters. (Reprinted with
permission from National Semiconductor Corp. © 1980, Linear Data Book, 1982, pp. 8 -41 .)

1.30 Vdc. The reference voltage Vref/2 of 1.30 Vdc should then be used for
all the tests. This fixed value of Vref/2 provides an LSB value of 0.01 V. The
operating input voltage is from 0 to 2.55 V, with a resolution of 0.01 V. Table
3.1 shows the binary equivalent of six different input voltage readings.

When the circuit of Figure 3.3 is first turned on, the monostable circuit
formed by ICla and IClb pulses low the /WR input for an interval of 80 μ$ to
ensure start-up under all possible conditions during the first power-up cycle.
Notice that the monostable lacks power-up reset circuitry which is normally
applied to pin 6 of Nand gate IClb; due to this fact, the monostable is self-
triggered when the circuit is first turned on.

Now you can apply, for example, an input voltage of 1.00 Vdc and then
press the test switch to pulse the / WR input low. This action causes the /INTR
output to go high. After 100 /xs the correct output code will be present on
outputs DB0 to DB7. These outputs are buffered with Nand gates to provide

8 8 3 . Analog Circuits

< M 0 K

10 2 1 7 8 300 X S

F i g u r e 3.3 Circuitry for testing the ADC0803 converter.

the sink current to drive the eight LEDs. At this time you can check the binary
code with Table 3.1. For interfacing purposes, the output reading in binary
code is ready and correct when the interrupt /INTR output of the A/D con­
verter goes to a logic low.

With respect to the A/D conversion process, the most significant bit is
tested first and, after eight comparisons (64 cycles) a digital 8-bit binary code

Input Voltages
T A B L E 3.1

and Their Equivalent in Binary Code

Vin(+) ! DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

1. 0.00 V ! 0 0 0 0 0 0 0 0

2. 0. 05 V ! 0 0 0 0 0 1 0 1

3. 1. 00 V ! 0 1 1 0 0 1 0 0

4. 2. 00 v : 1 1 0 0 1 0 0 0

5. 2. 50 V ! 1 1 1 1 1 0 1 0

6. 2. 55 V ! 1 1 1 1 1 1 1 1

5V

3.1 Basics of the A / D Converters 8 9

is transferred to an output latch; then an interrupt is asserted (/INTR makes a
high-to-low transition). The pin functions assigned as write (/WR) and inter­
rupt (/INTR) will be the most widely used for operation with a micro­
computer-based system.

In applications where the sensor and the A/D converter are using the same
reference, the drift of the reference will not matter, because it will cancel out.

If speed is important, consider the use of ADCs that employ flash conver­
sion techniques. The high speed of this technique lies in the fact that all com­
parators examine the input voltage simultaneously in parallel mode and make
an immediate total conversion. A flash converter has a separate comparator
for each of the possible digital output values. All the comparators receive the
input voltage. Comparators in which the input is above the reference will gen­
erate zeros. The output of all the comparators is fed to an encoder which con­
verts the data to a binary value. This approach is limited by the number of
comparators required. The flash A/D converter does not need a sample-hold
circuit or a D/A converter. An 8-bit resolution converter requires 255 com­
parators (2 8 — 1). See Figure 3.4 for a block diagram of a typical flash
converter.

If you are planning to use a flash converter for a control system contain­
ing speech synthesis, bear in mind that the speech processor is a relatively
low-speed device compared to the flash converter; consequently, your control

1

NPUT '

F i g u r e 3.4 Block diagram of a flash converter.

9 0 3 . Analog Circuits

system must be able to respond rapidly to take control of the situation, and
then the speech processor will proceed to give the messages required for a
specific situation.

The following sections of this chapter will be using A/D converters and
comparators, which will be interfaced to a controller that will take care of
driving a speech processor.

3.2 Interfacing the ADC0804 to Digitalker
DTI 050

This application covers all the possible interface combinations for the μC de­
scribed below. This interface offers the following advantages:

1. Fast complete cycle times for loading the A/D address, performing con­
version, retrieving the conversion, and loading the conversion to a
speech processor.

2. Flexible use of A/D converter pins for either A/D conversion or input
of digital data.

3. Low cost.

The Intel Corporation microprocessor families for the μΟ 8048/8049 con­
sist of the following:

8035AHL 8048AH 8748H
8039AHL 8049AH 8749H
8040AHL 8050AH 80C49

Figure 3.5 shows the circuit configuration for the interface. This circuit can
be used for the 8048 and 8049 devices interfaced to the ADC0804 device, and
the 8051 and 8052 devices interfaced to the ADC0804. The system clock for
the A/D converter is obtained from the RC logic oscillator. The RC logic os­
cillator does not exceed the upper frequency limit of the A/D converter. You
can also obtain the system clock for the A/D converter from the micro­
controller crystal oscillator. In this case, a high impedance buffer must be
used to avoid overloading the oscillator. The buffered crystal oscillator signal
must be frequency divided to ensure that the resulting system clock frequency
does not exceed the upper limit frequency of the A/D converter. Any conve­
nient divider circuitry may be used to accomplish this task.

The flowchart required to develop the control routine is shown in Figure
3.6. A conversion cycle consists of reading the digital data register and load­
ing the speech data to the Digitalker DT1050. The complete software program
can be incorporated into a subroutine, so the designer can easily access the
software with a simple subroutine call. Also, the conversion software assumes
that the A/D converter address has been placed into the accumulator and then

3.2 ADC0804/Digitalke r Interfac e 9 1

+5V 7805 • +9 V

20pF 40

26
40

6 MHz C D IE
20pF

1uF 2 0
RST

GND
uC8748

P1.0
P1.1
P1.2
P I . 3
P1.4
P1.5
P1.6
P I .7

WR

T1

27 15
28 14
29 13
30 12
31 11
32 10

9
8

10 4
S

39
>* 6

21

Vin+ F A

0K

100K

SH1
5W2
SW3
SW4
SW5 ISVÏ6
SW7
SW8

WR

OUT

MM54104

NTR

A0-A13 D1-D 8
J3J712Q
- 5 V J24

39 Χ OUDIÛ "̂AMPL IF IER
1M„

2

1.5K

F i g u r e 3. 5 Circuitr y fo r interfacin g th e ADC080 3 t o th e DT1050 .

the μ-C starts the conversion process in order to drive the Digitalker system
correctly. The A/D converter's data port (DB0-DB7) is connected to the
microcontroller's data bus.

Flowchart Description

Figure 3.6 illustrates the flowchart to develop the control program while Fig­
ure 3.7 presents the subroutines. From the microcontroller, eight address lines
(DB0-DB7) and two control signals (P2.0 and TO) are used to handle the A/D

9 2 3 . Analog Circuits

200H) -

C _ START
- < " C A L L DELAY >̂ 1

ACC = OOH
R5 OOH
CY = ODH
R1 OOH
P 2 — F F H
P2 = F E H
P 2 F F H

A = BUS
R 1 = ACC

- < C A . L L C O M P A R E ^ 1

A<10

F i g u r e 3.6 Flowchart for the software program.

converter. On the other hand, another eight address lines (P1.0-P1.7) and two
control signals (Tl and / WR) are utilized to drive the Digitalker DT1050. Two
speech ROMs (SSR1 and SSR2) contain in compressed form the data required
for the 144 addressable words.

The circuit announces the analog voltage corresponding to the digital input
from the microcontroller. With a resolution of 0.1 V, the operating voltage
range for this circuit is adjusted for 0 < Vin < 5.9 Vdc. The heart of the
circuit is the software program that is designed to keep the circuit reading and
announcing voltage readings every 30 seconds. Figure 3.6 is now our point of
reference. As you can see, the flowchart starts calling the subroutine DELAY

3.2 ADC0804/Digitalker Interface 9 3

which is illustrated in Figure 3.7. The subroutine DELAY loads the decimal
numbers 92, 255, and 255 in registers RO, Rl , and R2, respectively. Notice
that all subroutines are located in page two of ROM, leaving page zero and
page one with some memory space available for adapting or augmenting the
program to your needs. The memory space gives you the convenience of aug­
menting the program without having to modify the current addresses.

The instruction "DJNZ R2, T2" is executed in 5 ^ s because it is a two-
byte instruction. The delay caused by this instruction is

5 /xs x 255 = 1275 ^ s

When the register R2 is zero, the program jumps to the next instruction
"DJNZ Rl , T 3 " which decrements register Rl by one. The program will keep
jumping to address T3 of the current page. This loop takes 10 μς times 255
plus the time required to decrement register R2 (1275 x 255); therefore, we
will have the following elapsed time:

(10 μϊ x 255) + (1275 μϊ x 255) = 0.327675 s.

C C Ô M P Â R O

CY = o

RO = R D + 1
R3 = R 3 - 1

F i g u r e 3.7 Flowcharts for the subroutines.

9 4 3 . Analog Circuits

The final step to increase this delay is to make a loop by decrementing register
RO 92 times, that is

0.3276 s x 92 = 30.14 s

After this delay the program clears the accumulator, registers Rl and R6,
the carry flag (CY), and port one. Output line P2.0 controls the write input
(/WR) of the ADC0803 by sending a low transient pulse of 5 /xs (see address
lines OEH to 1EH). This negative transient pulse initiates the conversion pro­
cess that takes 100 pts. When the conversion process ends, the interrupt output
(/INTR) goes to a logic zero. The negative edge of this pulse is detected by the
input TO of the microcontroller 8748. When this happens, the microcontroller
proceeds to load the digital reading into the accumulator. This digital reading
is then transferred to register Rl for future use. Now the program starts com­
paring the digital reading in order to know in what range the reading is lo­
cated. This is achieved with the subroutine COMPARE located in address
OOH of page two. The COMPARE subroutine determines whether the digital
reading loaded in the accumulator is less than the decimal number 10. If that is
the case, the carry flag (CY) is set to one. If CY is equal to one, the program
jumps to subroutine ZERO. This subroutine loads the word "zero" into the
address lines (SW1-SW8) of the Digitalker. The subroutine ZERO now calls
the subroutine WRITE, which makes the Digitalker announce the correspond­
ing correct words such as ' 'zero . . . point . . . two" or "zero . . . point . . .
nine." The words "zero . . . point" are already contained in the subroutine
WRITE. The last word is a number that is obtained from page three of the
EPROM memory.

When a digital reading is greater than 10 and less than 20, the program first
performs the comparison to issue the words "one . . . point." The program
then proceeds immediately to subtract 10 numbers of the digital reading before
searching the word in page three of ROM. For example, if the digital reading
is 00001 l l l # b , which is the equivalent of 1.5 V, the program first compares
the magnitude of the reading by finding that such a reading is less than the
constant 20. At this point, the Digitalker will say the words "one . . . point."
To find the following correct word "five," the binary reading 00001111#b is
decremented 10 times. As a result, the digital reading is now converted to the
number 0000010l#b. It is this new number that is used by the accumulator to
point to address five of page three. By looking at page three of the software
program (Table 3.2), you will see that the number 05H is stored at address
five; the program takes this new speech datum which is transferred to port 1 in
order to have the Digitalker announce the last word "five."

The advantage of this technique is that the words "zero," "one" up to
"nine" are stored only one time in ROM in order to save memory space.

The STROBE routine has two functions: to issue a negative transient pulse
to the /WR input of the Digitalker and then to proceed to read the interrupt
status (/INTR) in order to know when the Digitalker stops saying a word.

3.2 ADC0804/Digitalker Interface 9 5

T A B L E 3.2
Software for μC 8748 to Control the Interface between the ADC0803

and the Digitalker System

Add Op Code Mnemonics Comments

00 8A FF START: ORL P2, #FFH
02 54 2A CALL DELAY
04 9A FF ANL P2, #FFH
06 99 00 ANL PI, #00H
08 27 CLR A
09 97 CLR C
OA A9 MOV Rl, A
OB AA MOV R2, A
OC AB MOV R3, A
OD AC MOV R4, A
OE AD MOV R5, A
OF AE MOV R6, A
10 AF MOV R7, A
11 9A FE ANL P2, #FEH
13 8A FF ORL P2, #FFH
15 36 15 WAIT JTO WAIT
17 00 NOP
18 08 INS A, BUS
19 A9 MOV Rl, A
1A 54 00 CALL COMPARE
IC F6 49 JC ZERO
IE F9 MOV A, Rl
IF 54 00 CALL COMPARE
21 F6 4F JC ONE
23 F9 MOV A, Rl
24 54 00 CALL COMPARE
26 F6 57 JC TWO
28 F9 MOV A, Rl
29 54 00 CALL COMPARE
2B F6 5F JC THREE
2D F9 MOV A, Rl
2E 54 00 CALL COMPARE
30 F6 67 JC FOUR
32 F9 MOV A, Rl
33 54 00 CALL COMPARE
35 F6 6F JC FIVE
37 00 NOP
38 00 NOP

39 BC 04 MOV R4, #04H

3B BD 64 MOV R5, #64H
3D 27 CLR A
3E 39 RICK OUTL PI, A
3F 80 MOVX CaRO, A

/CS1=1, /WR1=1

/CS1=0, /WR=

Acc =00H
Clear carry flag
Clear registers R0-R7

A/D starts conversion
Set /WR = 1
Wait for /INTR to go low
Delay to avoid reading glitches
Load BUS contents to accumulator
Store reading in register Rl
Call compare to see if A<10
Go to subroutine ZERO if A<10
Load voltage reading to Acc
Call compare to see if A<20
Go to subroutine ONE if A<20
Load voltage reading to Acc
Call compare to see if A<30
Go to subroutine TWO if A<30
Load voltage reading to Acc
Call COMPARE to see if A<40
Go to subroutine THREE if A<40
Load voltage reading to Acc
Call COMPARE to see if A<50
Go to subroutine FOUR if A<50
Load voltage reading to Acc
Call COMPARE if A<60
Go to subroutine FIVE if A<60

Routine for message "danger"
R4 is loaded with the number of
words of the message
R5=#100d to find data in page 3

9 6 3 . Analog Circuits

40 ID INC R5
41 FD MOV A, R5
42 E3 MOVP3 A, faA
43 46 43 JNT1, SBY
45 EC 39 DJNZ R4, RICK
47 04 00 JMP OOH

49 89 IF ORL PI, #1FH
4B 54 20 CALL WRITE
4D 04 00 JMP OOH

4F 89 01 ONE ORL PI, #01H
51 FE OA MOV R6, #0AH
53 54 OB CALL SEARCH
55 04 00 JMP OOH

57 89 02 TWO ORL PI, #02H
59 FE 14 MOV R6, #14H
5B 54 OB CALL SEARCH
5D 04 00 JMP OOH

5F 89 03 THREE ORL PI, #03H
61 FE IE MOV R6, #1EH
63 54 OB CALL SEARCH
65 04 00 JMP OOH

67 89 04 FOUR ORL PI, #04H
69 FE 28 MOV R6, #28H
6B 54 OB CALL SEARCH
6D 04 00 JMP OOH

6F 89 05 FIVE ORL PI, #05H
71 FE 32 MOV R6, #32H
73 54 OB CALL SEARCH
75 04 00 JMP OOH

END

200 97 COMPARE CLR C
201 BB OA MOV R3, #0AH
203 18 Tl INC RO
205 EB 03 DJNZ R3, Tl
207 37 CPL A
208 68 ADD A, RO
209 27 CLR A
to 1
20A 83 RET

Reading /INTR status of DT1050

Subroutine ZERO
"Zero"

Subroutine ONE
"One"
R6 = #10d
Call address IF in page two

Subroutine TWO
"Two"
R6 = #20d

Subroutine THREE
"Three"
R6 = #30d

Subroutine FOUR
"Four"
R6 = #40d

Subroutine FIVE
"Five"
R6 = #50d

; Subroutine COMPARE

;R3 = #10d
; Increment RO ten times to do A<R0
; Decrement R3 ten times
; Compare A<R0 in order to determine
; the magnitude of the digital
; reading. If carry flag is set

; then A<R0

3.2 ADC0804/Digitalker Interface

Subroutine SEARCH
20B 54 1A SEARCH;CALL STROBE
20D 89 7A ORL PI, #122d "Point"
2 OF 54 1A CALL STROBE
211 F9 MOV A, Rl Load Acc with voltage reading
212 07 DEC:DEC A
213 EE 12 DJNZ R6, DEC Decrement Acc η times, where n=]
215 E3 MO VP 3 A, (a A Transfer the byte in page three
216 39 OUTL PI, A Load speech data to Digitalker
217 54 1A CALL STROBE
219 83 RET

Subroutine STROBE
21A 90 MOVX (aRO, A /
WR of DT1050 is pulsed low for 5uS
21B 46 IB RIC:JNT1, RIC Reading /INTR status
21D 99 00 ANL PI, #00H Clear port 1 to load a new byte
21F 83 RET

Subroutine WRITE
220 54 1A WRITE:CALL STROBE
222 89 7A ORL PI, #7AH "Point"
224 54 1A CALL STROBE
226 F9 MOV A, Rl Load Acc with voltage reading
227 E3 MOVP3 A, faA
228 39 OUTL PI, A
229 54 1A CALL STROBE
22B 83 RET

Routine DELAY (30.14 seconds)
22C B8 5C DELAY:MOV RO, #5CH Do delay to allow "n" system
22E B9 FF T4.MOV Rl, #FFH clocks to occur.
230 BA FF T3:MOV R2, #FFH
232 EA 32 T2:DJNZ R2, T2
234 E9 30 DJNZ Rl, T3
236 E8 2E DJNZ RO, T4
238 83 RET

Speech data in page 3 for words
300 IF "Zero"
301 01 "One"
302 02 "Two"
303 03 "Three"
304 04 "Four"
305 05 "Five"
306 06 "Six"
307 07 "Seven"
308 08 "Eight"
309 09 "Nine"
364 00 "This is Digitalker"
365 4C "Danger"
366 41 "Try"
367 8C "Again"

9 8 3 . Analog Circuits

3.3 Handling Multiple A / D Converters

The purpose of controlling multiple A/D converters is to have the capacity to
measure several variables by making a different interface circuitry for each
A/D converter. To accomplish this task, it is necessary to have a micro­
controller with one of the ports dedicated to select each different A/D con­
verter only. In this way, the 8-bit output bus of all the A/D converters will be
routed to the input BUS of the microcontroller. Figure 3.8 shows the circuitry

V î n + t

1G0K

F i g u r e 3.8 Circuitry for handling multiple A / D converters using the 8748 inter­
faced with the speech processor SP0256-AL2.

3.3 Handling Multiple A / D Converters 9 9

required for interfacing a maximum of eight A/D converters. For explanation
and simplifying purposes, only two A/D converters are considered in the cir­
cuitry shown in Figure 3.8. A 3-to-8 line decoder (74HC138) is used to select
one of the two A/D converters (ADC0804) by controlling their chip select
inputs (/CS1 or /CS2) via the YO and Yl outputs. Notice that output control
lines Y2 to Y7 are left unconnected and can be used to control six more A/D
converters. The three input lines (A, B, and C) of the 74HC138 are controlled
by port two of the μC 8748 (P2.4, P2.5, and P2.6). On the other hand, an
8-channel analog multiplexer (74HC4051) configured as a selector is respon­
sible for selecting the interrupt output (/INTR) of each A/D converter.
The output of this selector (pin 3 of 74HC4051) is routed to the TO input
of the microcontroller. Three lines of port two (P2.1, P2.2, and P2.3) are
used to select the interrupts (/INT1 or /INT2) of each A/D converter. Out­
put line (P2.0) of the microcontroller is normally held at a logic high and is
pulsed low for 5 μ$ in order to start the conversion process of the selected
A/D converter.

The method used here is similar to the one used in Section 3.2 of this chap­
ter. The main difference of this method is that we will be using allophones
instead of words; therefore, the amount of speech data stored in page three is
larger because it contains the allophones to construct the words required for
measuring different variables. For explanation purposes we will suppose that
we are measuring two different variables: one within the range of 0 to 5.9 V
and the other within the range of 0 to 2.0 mA. Both digital readings have a
resolution of 0.1 V and 0.1 mA, respectively. Accordingly, both A/D convert­
ers are adjusted with a reference voltage of 1.30 V, which is applied to the
input Vref/2.

The flowchart illustrated in Figure 3.9 presents the steps that must be exe­
cuted in order to make the speech processor announce the correct readings.
The first instructions enable the A/D converter (ADC0804) located on the left
corner of Figure 3.8. Lines OAH to 12H are required to clear the accumulator
and register RO to R7. The instructions "ANL P2, # 0 0 H " and "ANL P2,
0 1 H " located in lines 13H and 15H, respectively, cause a low transient pulse
of 5 μ$, which starts the A/D conversion process of the selected A/D con­
verter. The program now proceeds to call the subroutine AD1.

Figure 3.10 shows the circuitry for handling the multiple converters. Sub­
routine AD1 first reads the status of the /INT2 output of the A/D converter.
When the interrupt signal (/INT) goes low, it indicates that the conversion
process is over. Now the digital reading is loaded into the accumulator and
stored in register Rl for future use. The next step is to compare the digital
reading against the decimal constants 10, 20, 30, 40, 50, and 60. The task of
comparing is made by the subroutine COMPARE. Subroutine COMPARE de­
termines if the reading is less than 10. If so, the carry flag (CY) is set to one.
When the program returns from the subroutine COMPARE, the instruction

1 0 0 3 . Analog Circuits

(START)

- < C A L L D E L A Y

^

FIRST A/D
IS SELECTED

Ψ
R0-R7 = OOH
ACC=OOH CY=0

WR1 is pulsed
low for 5 uS

I

F i g u r e 3.9 Flowchart subroutines for controlling two A / D converters interfaced to
the speech processor SP0256-AL2.

"JNC, TEST 1" in line 34H detects that CY is set to one. Thus, the program
does not jump to label "TEST 1" but continues with the next instruction. Here
the program loads register R6 with OOH as well as the accumulator. Now the
program calls the subroutine FIND which is located in address OOH of page
one. Subroutine FIND clears register R5, loads register R5 with the value con­
tained in the accumulator, and proceeds to interchange the value pointed by
the accumulator in page three of ROM. The new value in the accumulator is a
pointer that indicates the exact location of the speech data that must be issued
to the speech processor. Notice that the first speech data correspond to the
number of allophones that contain the message to be spoken. This number is
stored in register R4. Now the accumulator is cleared, and register R5 is incre­
mented in order to find the first speech data.

The first speech data are located by moving the contents of register R5 into
the accumulator and then pointing to page three of ROM. The first speech data
are now transferred to the accumulator and then to port one. At this point, the
speech processor receives the binary address for finding the allophone. The
program now calls subroutine STROBE, which pulses low the /ALD input of
the speech processor SP0256-AL2; also, subroutine STROBE keeps reading
the standby (SBY) status of the SP0256-AL2 in order to determine when the

3.3 Handling Multiple A / D Converters 1 0 1

speech processor is ready to be triggered again. When the standby output of
the SP0256-AL2 is high, the program returns to line 10CH. Now the instruc­
tion "DJNZ R4, PATY2" decrements register R4, indicating that one al­
lophone has been issued. Furthermore, the instruction "DJNZ R4, PATY2"
tests register R4 against zero. If register R4 is not zero, the program jumps to
label PATY2, and the process is repeated until the three allophones for the
word "zero" have been issued to the speech processor.

Ί 0 0 Χ -

2nd A/D i s
SELECTED

£ 5 Β

WR2 IS PULSED
LOW FOR 5 uS

(JQF)< <Ç CALL COMPARE > — j

R6 = OSH
ACC = OEH

ACC = BUS
R1 = ACC

T Y

(g X < CALL FIND > η

() 0 F) < <T CALL COMPARE) > — | (Î Î A) £ < C C A L L S E A R C H
 j

'CY=0?
YES

R6 = OO H
ACC = OO H

Φ
CALL FIND

T E S T

(J Ô F K 'C C A L L COMPAR E >— j

(H a) < <£ CAL L POIN T

— — YF S
T E 5 T 3 > < ^ C Y = 0 ? ~

ACC = R 1
A ^ P 3

R6 - 14 H
A = 13 H

f ioo 'X- CALL FIN D

CALL FIN D

CALL SEARC H

(RE T

F i g u r e 3.1 0 Flowchar t subroutine s fo r controllin g tw o A / D converter s interface d t o
the speec h processo r SP0256-AL2 .

1 0 2 3 , Analog Circuits

When the program returns, it goes to address 3CH of page zero where the
instruction "CALL POINT" is executed. The purpose of subroutine POINT
is to make the speech processor say the word "point."

It is important to notice that we are dealing with cases where readings have
a magnitude of less than 10. That is, the cases correspond to readings that
range from 0000 0000#b to 0000 1010#b. Because we are working with a
resolution of 0.1 for readings of voltage or current, the speech processor has to
announce the words "zero point.." prior to a digital reading. The final step to
get the next word is made by the set of instructions that start at address 3EH of
page one. Here the accumulator is loaded with the value of the digital reading
that had been previously stored in register Rl . The contents of the accumulator
are then used to transfer the pointer from page three of ROM that will be used
by the subroutine FIND. Finally, subroutine FIND will take care of finding
the word that corresponds to the digital reading.

When the program returns from subroutine FIND, the program goes back
to address 19H of page one. Here subroutine VOLTS is called in order to
make the speech processor say the word "volts." In this way, the user knows
what variable has been measured and announced. Now the program calls sub­
routine DELAY that makes the system halt for 15 s. You can adjust this time
delay according to your needs by changing the value of register R0 (see line
4B in page one). When this delay has occurred, the program now calls sub­
routine AD2. Subroutine AD2 disables the first A/D converter and enables the
second via the 3-to-8 line decoder (74HC138). Once the second A/D con­
verter is enabled, the write input of both converters is pulsed low, but only the
second converter initiates the conversion process.

The procedure for having the speech processor enunciate the second read­
ing is similar to the one explained above. The only difference is that, when the
speech processor ends saying the second reading, the program makes the
speech processor enunciate the word "milliamperes." This makes the user
aware of what type of reading he is listening to. Line 26H of page one is the
end of the program. Here, instruction "JUMP START" makes the program
start again by loading port two with ones in order to enable the first A/D con­
verter again.

If you want to increase the range of the digital readings, increase the num­
ber of comparison routines that take place in the instructions labeled
"TESTΓ' to "TEST5." Also, bear in mind that the words or numbers that you
are planning to use are already stored in page three of ROM.

Figure 3.10 : Circuitry for handling multiple converters using the uC 8748
along with the SP0256-AL2.

The ^ C software program is shown in Table 3.3.

3.3 Handling Multiple A / D Converters 1 0 3

T a b l e 3.3
Software Program for Interface and Control of Multiple A / D Converters to the Speech

Processor SP0256-AL2

Add Op Code Mnemonics Comments

00 8A FF START: ORL P2, #FFH ,/CS1=1, CS2=1, /WR1=1
02 34 46 CALL DELAY
04 9A 01 ANL P2, #01H ;/CSl=0, CS2=1, /WR=1
06 9A 00 ANL PI, #00H
08 00 NOP
09 00 NOP
OA 27 CLR A ; Acc =00H
0B 97 CLR C ; Clear carry flag
OC A9 MOV Rl, A ,Clear registers R0-R7
0D AA MOV R2, A
0E AB MOV R3, A
OF AC MOV R4, A
10 AD MOV R5, A
11 AE MOV R6, A
12 AF MOV R7, A
13 9A 00 ANL P2, #00H ,/WR1=0, A/D initiates conversion
15 8A 01 ORL P2, #01H /WR1=1
17 34 2E CALL AD1
19 34 IF CALL VOLTS
20 34 46 CALL DELAY
22 14 28 CALL AD2
24 34 24 CALL AMPS
26 04 00 JMP START
28 8A IF AD2 ORL P2, #1FH /CS1=1, /CS2=0, /WR2=1
2A 9A 10 ANL P2, #10H /CS1=1, /CS2=0, /WR2=0
2C 8A IF ORL P2, #1FH /CS1=1, /CS2=0, /WR2=1
2E 36 2E AD1 JTO AD1 Wait for A/D conversion to occur
2F 00 NOP ,Delay to avoid reading glitches
30 08 INS A, BUS Load digital reading Vinl into Acc.
31 A9 MOV Rl, A Store digital reading in register
Rl
32 34 OF CALL COMPARE Vin < #10d?
34 E6 43 JNC TEST 1
36 BE 00 MOV R6, #00H
38 23 00 MOV A, #00H Acc=00H to anounce the word "ZERO"
3A 34 00 CALL FIND
3C 34 1A CALL POINT Word "Point"
3E F9 MOV A, Rl Acc is loaded with reading less than

10.
3F E3 MOVP3 A, (&A Load the pointer byte
40 34 00 CALL FIND
42 83 RET
43 34 OF TEST1 CALL COMPARE Vin <#20d?
45 E6 50 JNC TEST2
47 BE 08 MOV R6, #08H R6=#10d
49 23 0E MOV A, #0EH Pointer for the word "ONE"
4B 34 00 CALL FIND
4D 34 30 CALL SEARCH

1 0 4 3 . Analog Circuits

4F 83 RET
50 34 OF TEST2 : CALL COMPARE
52 E6 5D JNC TEST3
54 BE 14 MOV R6, #14H
56 23 13 MOV A, #13H
58 34 00 CALL FIND
5A 34 37 CALL SEARCH
5C 83 RET
5D 34 OF TEST3: CALL COMPARE
5F E6 6A JNC TEST4
61 BE IE MOV R6, #1EH
63 23 17 MOV A, #17H
65 34 00 CALL FIND
67 34 37 CALL SEARCH
69 83 RET
6A 34 OF TE ST 4 CALL COMPARE
6C E6 77 JNC TEST5
6E BE 28 MOV R6, #28H
70 23 IB MOV A, #1BH
72 34 00 CALL FIND
74 34 30 CALL SEARCH
76 83 RET
77 34 OF TEST5 CALL COMPARE
79 E6 84 JNC ERROR
7B BE 32 MOV R6, #32H
7D 23 IF MOV A, #1FH
7F 34 00 CALL FIND
81 34 30 CALL SEARCH
83 83 RET

84 07 ERROR MOV A, #3CH
86 34 00 CALL FIND
88 04 00 JMP START

100 BD 00 FIND MOV R5, #00H
102 AD MOV R5, A
103 E3 MO VP 3 A, «<A
104 AC MOV R4, A
105 27 CLR A
106 ID PATY2 INC R5
107 FD MOV A, R5
108 E3 MOVP3 Α, «Ά
109 39 OUTL PI, A
10A 34 2A CALL STROBE
IOC EC 06 DJNZ R4, PATi
10E 83 RET

10F F9 COMPARE MOV A, Rl
110 97 CLR C
111 BB MOV R3, #0A
113 18 DEC INC RO
114 EB 13 DJNZ R3, DEC
116 37 CPL A
117 68 ADD A, RO

Vin <#30d?

R6=#20d
Pointer for the word "TWO"

Vin <#40d?

R6=#30d
Pointer for the word "THREE"

Vin <#50d?

R6=#40d
Pointer for the word "FOUR"

Vin <#60d?

R6=#50d
Pointer for the word "FIVE"
/ALD=0

Message "ERROR"
"EH"

Subroutine FIND

Pointer for page three
Acc = # of allophones
R4 = #n; for η allophones

Increment R5 to get next allophone

Subroutine COMPARE; A < RO?
Acc = Vinl
CY = 0
R3 = #10d

3.4 Using α Window Comparator 1 0 5

118 27 CLR A ;
119 83 RET ;

11A 23 3C POINT MOV A, #3CH ;
11C 34 00 CALL FIND ;
H E 83 RET ;

11F 23 46 VOLTS MOV A, #46H ;
121 34 00 CALL FIND ;
123 83 RET ;

124 23 4E AMPS MOV A, #4EH ;
126 34 00 CALL FIND ;
128 04 00 JMP START ;

12A 80 STROBE MOVX («R0, A ;
12B 46 2B WAIT JNT1, WAIT ;
12D 99 00 ANL PI, #00H ;
12F 83 RET

130 BD 00 SEARCH MOV R5, #00H
132 34 1A CALL POINT
134 F9 MOV A, Rl ;
135 07 DEC2 DEC A ;
= R6
136 EE 35 DJNZ R6, DEC2 ;
138 E3 MO VP 3 A, («Α

Load byte that points to the
word

139 AD MOV R5, A ;
13A E3 MO VP 3 A, «χ
A ; Load first byte containing #
13B AF MOV R7, A ;
13C ID LUIGI INC R5 ;
13D FD MOV A, R5 ;
13F E3 MOVP3 A, f«A ;
140 39 OUTL PI, A ;
141 34 2A CALL STROBE ;
143 EF 3C DJNZ R7, LUIGI ;
145 83 RET ;

146 23 04 DELAY: MOV A, #04H ;
148 39 OUTL PI, A
149 34 2A CALL STROBE ;
14B B8 2E MOV RO, #2EH

14D B9 FF C: MOV Rl, #FFH ;
14F BA FF B: MOV R2, #FFH ;
151 EA 51 A: DJNZ R2, A ;
153 E9 4F DJNZ Rl, Β ;

Message "POINT"

Message "VOLTS"

Message "MILLIAMPERES"

Subroutine STROBE
/ALD is pulsed low for five uS
Wait for SBY to go high

Subroutine SEARCH

Acc = voltage reading
Decrements η times Acc, where η

Store it in register R5

of ;alloph.
Store it in register R7

Routine DELAY (15 seconds)

Pause 3
/ALD = 0
Do delay to allow "n" system clocks
to
occur

1 0 6 3.1 Basics of the A / D Converters

155 E8 4D
157 83

DJNZ RO, C
RET

; Addresses 00 to 09 of page three
; contain the pointers for the
; speech data located from address
; OA to 3A

Add Comments Add Data Comments

300 OA , Zero
301 OE , One
302 09 , Two
303 13 ,Three
304 1A , Four
305 IE Five
306 23 Six
307 2A Seven
308 32 Eight
309 36 Nine
3 OA 03 3 allophones
30B 2B "ZERO"
30C 2C
30D 35
30E 04 4 allophones
3 OF 39 "ONE"
310 OF
311 OF
312 OB
313 02 2 allophones
314 OD TWO
315 IF
316 03 3 allophones
317 10 THREE
318 OE
319 13
31A 03 3 allophones
31B 28 FOUR
31C 28
31D 3A
31E 04 4 allophones
31F 28 FIVE
320 28
321 06
322 23
323 06 6 ALLOPHONES
324 37 SIX
325 37
326 OC
327 02
328 29
329 37
32A 07 7 allophones
32B 37 "SEVEN"
Continued

32C 37
32D 07
32E 07
32F 23
330 07
331 OB
332 03 ;3 allophones
333 14 ;"EIGHT"
334 02
335 OD
336 04 ; 4 allophones
337 38 ;"NINE"
338 18
339 06
33A OB
33B 04 ;4 allophones
33C 07 ;"ERROR"
33D 2F
33E 3A
33F 04
340 04 ; 4 allophones
341 09 ;"POINT"
342 05
343 OB
344 11
345 07 ; 7 allophones
346 23 ;"VOLTS"
347 35
348 2D
349 11
34A 09
34B 37
34C 04
34D OA ; 10 allophones
34E 10 ;"MILLIAMPERES
34F OC
350 2D
351 OC
352 18
353 10
354 09
355 34
356 37
357 04

3.4 Using α Window Comparator 1 0 7

3.4 Using a Window Comparator to
Drive a Speech Processor

Window comparators are frequently employed in the design of test equipment
to detect either the presence of a signal within a specified voltage range, or to
detect when a signal has stepped outside the specified range.

We will design a window comparator that will be interfaced to a field pro­
grammable controller (FPC) Am29CPL151. The FPC will drive the speech
processor SP0256-AL2 that will give three different messages about the input
voltage. In this case, the window comparator is adjusted for detecting voltage
levels in the range of 2 to 4 V; this is achieved by the resistor network Rl , R2,
and R3 (see Figure 3.11). In order to have a current consumption of 1 mA in
this divider network, we must have a total resistor Rt as follows:

Rt = 5V/1 mA = 5,000 ohms

Now, the noninverting comparator " B " must receive a fixed input voltage
of 2 V, and the inverting comparator " A " must receive a fixed input voltage of
4 V; consequently, a resistor network divides the power supply voltage of 5 V
in two voltages of 4 and 2 V. The resistor values selected for Rl , R2, and R3
are IK, 2K, and 2K respectively. These resistor values give the Rt value that
we desire for a low current consumption in this network.

In this application, the speech processor is programmed for three different
cases: an input voltage lower than 2 V; an input voltage between the range of 2
to 4 V; and an input voltage higher than 4 V. These three cases are presented
in binary format to the controller. Because the complete circuit designed to do
this task requires only three different messages to be announced, the FPC
Am29CPL151is selected.

The three different cases with the respective selected voiced messages are
shown in Table 3.4.

The messages "Lower," "Ok," and "Higher" indicate how the input volt­
age is with respect to the fixed window levels of 2 and 4 V. First, the message
"Lower" means that the voltage being monitored is lower than 2 V. Second,
the message "Ok" indicates that the voltage being monitored is in the pre-

T A B L E 3.4
Three Different Cases for the Window Comparator

! Input voltage Tl TO ! Message !

! 0V<Vin<2.00V 0 1 ! "Lower" !

! 2V<=Vin<4. 00V 1 1 : "Ok" !

! 4V<=Vin<=5.00V 1 o : "Higher" !

1 0 8 3 . Analog Circuits

programmed range; that is, equal to or higher than 2 V and less than 4 V. The
last message "Higher" states that the input voltage being monitored is equal
to or higher than 4 V.

The words of the messages were selected to permit the designer to change
the window levels without having to alter the allophones that are already pro­
grammed in the FPC Am29CPL151.

The software program for the FPC Am29CPL151 is shown in Table 3.5. By
looking at the circuitry shown in Figure 3.11, you will see that we are using
four testable inputs, TO to T4. Inputs TO and Tl are directly interfaced to the
FPC. The input T2 is normally held at a logic low. When the test switch is
pressed, the input T2 goes momentarily to a logic high. This initiates the test­
ing process of the input voltage which is presented in binary format at inputs
TO and T l . The input T3 is employed for monitoring the STANDBY status of
the speech processor.

In most applications where the field programmable controllers of the series
Am29CPL15X are driving the speech processor SP0256-AL2, the speech
processor will be used in mode zero. This mode disables the /ALD input;
therefore, the speech processor is triggered by applying the data byte into the
input port and then by applying a byte zero (0000 0000) in order to start the

T A B L E 3.5
Software Program for the FPC Am29CPL151

DEVICE (CPL141)

DEFAULT = 1;

DEFINE "test inputs"
higher = t o
lower = tl
test = t2
sby = t3
equal = eq
"ouput control bits"
"speech data = 59 allophones plus five pauses"
pa2 = 01#h pa3 -= 02#h pa4 = 03#h pa5 = 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = = 08#h PP '-= 09#h jh = = 0A#h nnl = 0B#h ih 0C#h
tt2 = OD#h rrl : = 0E#h ax -= 0F#h mm = = 10#h ttl = ll#h dhl = 12#h
iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = lA#h hhl = lB#h bbl = lC#h th = lD#h uh lE#h
uw2 = lF#h aw = 20#h dd2 = 21#h gg3 = 22#h w = 23#h ggl = 24#h
sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h W W = 2E#h xr = 2F#h wh = 30#h
yyi = 31#h ch = 32#h erl = 33#h er2 = 34#h O W = 35#h dh2 = 36#h
S S = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h yr = 3C#h
gg2 = 3D#h el = 3E#h bb2 = 3F#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = sby; "default test condition"

3.4 Using α Window Comparator 1 0 9

BEGIN
"wait for test input to go high"
"l"start: ,if (not test) then goto pi(start);
"2" ,load tm(03#h);
"3" ,cmp tm(03#h) to pi (01#h);
"4" ,if (equal) then goto pi(msgl);
"5" ,cmp tm(03#h) to pi (02#h);
"6" ,if (equal) then goto pi(msg2);
"7" ,cmp tm(03#h) to pi (03#h);
"8" ,if (equal) then goto pi(msg3);
"9" msgl:11, call pi(read); "LOWER
"10" ow, call pi(read);
"11" erl, call pi(read);
"12" pa5, call pi(read);
"13" ,goto pi(start);
"14"msg2:ao, call pi(read); "OK"
"15" kkl, call pi(read);
"16" eh, call pi(read);
"17" ih, call pi(read);
"18" pa5, call pi(read);
"19" ,goto pi(start);
"20"msg3:hhl, call pi(read); "HIGHER"
"21" ay, call pi(read);
"22" erl, call pi(read);
"23" pa5, call pi(read);
"24" ,goto pi(start);
"25"read: ,continue;
"26"stay: ,if (not sby) then goto pi(stay);
"27" ,ret;

.org 63#d
"28" ,goto pi(start);

END.

speech sequence. This sequence is easily solved by calling a subroutine that
contains the byte zero and that also keeps reading the /SBY status of the
speech processor.

The software program shown in Figure 3.13 presents the complete routine
that reads the status of the window comparator and then proceeds to announce
the required message.

Notice that the key word "DEVICE" is specifying the FPC Am29CPL141
even when the circuit is using the FPC Am29CPL151. Both devices are func­
tionally identical. The Am29CPL141 is a 28-pin device, one-time program­
mable, and 0.6 inches wide. On the other hand, the FPC Am29CPL151 is a
space-saving version of 28 pins and 0.3 inches wide. The Am29CPL151 is
field programmable and contains an 32-bit per 64 words EPROM.

The key word "DEFINE" specifies the test inputs to be used with name
assignments. In this case, the word "test" is used for the input T2 while the

1 1 0 3 . Analog Circuits

26

1 KHz
27

14

Vcc

CLOCK

PO
P1
P2
P3
P4
P5
P6

Am29CPL151 P 7

P8

T3

GND R5T

T2 TO T1

3 17
4 16
5 15
6 14
7 13
8 11
9 10

10 20
2 2 a < 2

To LPF and
^ audio
x a m p l i f i e r

19

TEST H

F i g u r e 3·11 Circuit for driving a window comparator and a speech processor using
the FPC Am29CPL151.

word "sby" is employed for the input T3. Also, the flip-flop EQ of the FPC is
assigned as equal. If the flip-flop "equal" is set to one, the comparison of two
numbers previously defined is equal. Continuing with the program, now the
59 allophones plus the four pauses are defined with hexadecimal numbers. In
this way, you do not have to specify an equivalent number for every allo­
phone. All you have to do is write the abbreviation of each allophone in the
line in which you desire to produce the desired sound. Notice that pause 1 is
not defined. That is because the speech processor does not accept pause 1 in
mode zero.

The key word 4 'DEFAULT_OUTPUT" is used to specify the required 16-
bit output at p 0 - p l 5 . In this case, when a line of the program does not indi­
cate any output, it will be full of zeros in the 16-bit output (p0-p l5) . The
keyword "TEST_CONDITION" is used to specify the STANDBY input

3.4 Using α Window Comparator 1 1 1

coming from the speech processor as the default test condition. This feature
reduces the text of the program because you do not have to ask if the "sby"
input is present to continue with the program.

The program starts with the key word "BEGIN." The instruction in line
one is continuously reading the input defined as "test," that is, T2. When the
user presses the "test" switch, the program automatically jumps to line two
and loads the value of the test inputs TO and Tl; this is achieved by loading all
the test inputs with the immediate mask 03 # h (00011#b). Now lines three to
eight are used to compare TO and Tl against constant numbers. If the testable
inputs are Tl = 1 and Tl = 0, the program jumps to label " m s g l " where the
message "Lower" must be announced. Notice that line nine calls subroutine
"read" while it is giving the allophone "11." The program jumps to subroutine
"read" when the following clock cycle arrives. The subroutine "read" (lines
25-27) starts with the instruction "continue," which by default issues the
byte zero to the outputs (p0-p7). At this point, the speech processor starts
saying the first allophone and, simultaneously, the speech processor indicates
that by pulsing low the /SBY output. According to the data sheet, the /SBY
output spends 300 ns to go to the low state when the speech processor is trig­
gered; therefore, the instruction "continue" (line 25) is added to give the
/SBY time to go low before the FPC starts reading its logic status. It is the
next instruction "If (not sby) then goto pl(stay)," located in line 26, the one
that keeps reading the /SBY status. When the /SBY function goes to a logic
high, the program jumps to line 27, which contains the return (ret) instruction
that makes the program jump automatically to line 10.

As you can see in line 10 of the program, the instruction "call pl(read)"
issues the next allophone "ow" to the speech processor and the program
jumps again to subroutine "read." This process is repeated until the program
reaches line 13, which makes the internal PC counter of the FPC jump condi­
tionally to the label "start."

Now, with the FPC controller in line one, the program will be waiting
again for the "test" input to go high. The two final instructions located below
line 27 are utilized as a software reset when the program is first initialized;
consequently, we can ensure that the program will start at line one when the
circuitry is first turned on.

The box indicating the 1 kHz oscillator can be any kind of CMOS free-
running oscillator. The frequency of 1 kHz is equivalent to pulses with a pe­
riod of 1 ms; this means that the FPC executes every instruction in 1 ms. Ac­
cording to the software program shown in Table 3.5, the FPC will spend 2 ms
between each allophone; 1 ms for the instruction "ret" and another one for the
instruction "call pl(read)." It does not mean that there will be pauses of 2 ms
between each allophone. Remember that the speech processor SP0256-AL2
keeps saying the last sound of each allophone until one of the pauses is as­
serted. That is why we are adding a pause at the end of each of the three mes­
sages (see lines 12, 18, and 23).

1 1 2 3 . Analog Circuits

T A B L E 3.6
P R O M Bit Pattern for the FPC Am29CPL151

PROM Contents :
hex <dec> OE OPCODE POL TEST DATA OUTPUT
000 < 0> Γ 1 11001 1 ! 010 ! 000000 0000000000000000]
001 < 1> [1 00110 0 ! O i l ! 000011 0000000000000000 ι

OPCODE CONSTANT DATA
002 < 2> [ι 100 000001 ! 000011 0000000000000000 ι
003 < 3> f ι 11001 0 ! 111 ! 001000 0000000000000000]

OPCODE CONSTANT DATA
004 < 4> f ι 100 000010 ! 000011 0000000000000000]
005 < 5> f ι 11001 0 ! 111 ! 001101 0000000000000000]

OPCODE CONSTANT DATA
006 < 6> [ι 100 000011 ! 000011 0000000000000000 ι
007 < 7> f ι 11001 0 ! 111 ! 010011 0000000000000000]
008 < 8> [ι 11100 ' 0 i o n : 011000 0000000000101101 ι
009 < 9> [ι 11100 1 0 ! O i l ! 011000 0000000000110101]
00A < 10> f ι 11100 1 0 ! O i l ! 011000 0000000000110011 ι
OOB < 11> f ι 11100 ! 0 i O i l ! 011000 0000000000000100 ι
OOC < 12> [ι 11001 ! ο : O i l ! 000000 0000000000000000]
OOD < 13> [ι m o o : ο : O i l i 011000 0000000000010111 ι
OOE < 14> [ι 11100 ! ο : O i l ! 011000 0000000000101010 }
OOF < 15> f ι m o o : ο : o n : 011000 0000000000000111 ι
010 < 16> [ι 11100 ! 0 ! O i l ! 011000 0000000000001100]
O i l < 17> f ι 11100 ! 0 1 o n : 011000 0000000000000100 ι
012 < 18> f ι l i o o i : 0 ! O i l i 000000 0000000000000000 ι
013 < 19> f ι 11100 ! ο : O i l i 011000 0000000000011011]
014 < 20> [ι m o o : ο : O i l ! 011000 0000000000000110]
015 < 21> [ι m o o : ο : O i l ! 011000 0000000000110011 ι
016 < 22> ί ι 11100 ! 0 ! O i l ! 011000 0000000000000100]
017 < 23> [ι l i o o i : ο : O i l ! 000000 0000000000000000 ι
018 < 24> f ι 01101 ! 1 ! Ill ! 111111 0000000000000000 ι
019 < 25> [ι 11001 ! 1 ! O i l ! 011001 0000000000000000 ι
01A < 26> f ι 00010 ! 0 ! o n : 111111 0000000000000000 ι
03F 63> f ι l i o o i : ο : O i l ! 000000 0000000000000000 ι

The advantage of the circuit presented in this section in relation to the cir­
cuits presented in Chapter two is that here we are using an intelligent program­
mable controller that saves space; therefore, the cost for building this type of
circuit is much less than using MSI circuitry.

Table 3.6 shows the PROM bit pattern generated by the software ASM14X
from Advanced Micro Devices. A JEDEC file (not shown) is also generated
by the assembler ASM14X in order to be loaded to the PROM programmer.
The PROM programmer then loads the JEDEC file into the FPC Am29CPL151
which will be used to read the window comparator and to control the speech
processor.

3.5 Using α 10-Step Voltage Comparator 1 1 3

3.5 Using a 10-Step Voltage Comparator
to Drive a Speech Processor

Figure 3.12 shows the circuitry for interfacing the 10-step voltage comparator
(LM3914) to the speech processor SP0256-AL2. The FPC Am29CPL152 is
used here as the central processor for the circuit. Notice that the LM3914 is
interfaced to a programmable array logic PAL20R4 before reaching the FPC
Am29CPL152. The PAL20R4 is programmed as a 10-to-4 lines registered pri-

1 KHz

5νι
TEST (H

1K

To LPF and
y audio

^ amp l i f t e r

22 ρ F 4 r

100K ί 5 ν

^1Ν914Α

F i g u r e 3.12 Circuitry for driving a speech processor with a 10-steps voltage com­
parator LM3914.

1 1 4 3 . Analog Circuits

T A B L E 3.7
Truth Table for PAL20R4

I η ρ u t s 0 u t Ρ u t s ! Comments

/OC Α Β C D E F G H I J C3 C2 Cl CO :

L L H H H H H H H H H L L L L Level 0

L L L H H H H H H H H L L L H Level 1
L L L L H H H H H H H L L H L Level 2

L L L L L H H H H H H L L H H Level 3

L L L L L L H H H H H L H L L Level 4

L L L L L L L H H H H L H L H Level 5
L L L L L L L L H H H L H H L Level 6

L L L L L L L L L H H L H H H Level 7

L L L L L L L L L L H H L L L Level 8

L L L L L L L L L L L H L L H Level 9
H X X X X X X X X X X Hi Ζ

ority encoder. The truth table and the design equations for the PAL20R4 are
shown in Tables 3.7 and 3.8, respectively.

The LM3914, manufactured by National Semiconductor, is a dot/bar dis­
play driver, a chip that contains 10 independent comparators and a voltage
divider network. It has a self-contained decoding network that is capable of
driving the output in bar-graph mode or in single dot mode. This feature is
controlled by the input MODE-CONTROL (pin 9). The chip incorporates out­
puts with constant current that allow direct drive of the LEDs. The LM3914
has active low outputs that generate the truth table shown in Table 3.7. In this
case, the outputs of the LM3914 have been designated by the letters A to J.
Notice that the level zero is indicated by a low-state " L " at output A. In this
case, the readout range for the LM3914 is 0.1 to 1.0 V (0.1 V per LED). To
adjust this scale, apply 1.00 V to the Vin input (pin 5) and adjust the IK pot
(Rl) until LED 10 (output A) glows. Repeat this procedure by applying 0.1 V
at Vin input and check that the output one (pin 1) goes low.

In order to make the best possible interface of the LM3914 to the FPC
Am29CPL152, we need to encode the 10 bits of the LM3914 by using a 10-
to-4 line priority encoder. The encoder must be able to accept low-active in­
puts and must contain a 4-bit register at the output. Accordingly, the 4-bit reg­
ister contained in the encoder will be storing the 4-bit readings so that the FPC
can take a reading without problems. Also, the encoder must have priority
inputs to permit the user to select both modes of control: dot or bar.

3.5 Using α 10-Step Voltage Comparator 1 1 5

T A B L E 3.8
Design Equations for PAL20R4

CO : = /A * /B
+ /A * / B * /C * /D
+ /A * /B * /C * /D * /E * /F
+ /A * /B * / c * /D * /E * /F * /G * /H
+ /A * /B * / c * /D * /E * /F * /G * /Η * /I * /J

Cl : = /A * /B * / c

+ /A * /B * / c * /D
+ /A * /B * / c * /D * /E * /F * /G
+ /A * /B * / c * /D * /E * /F * /G * /H

C2 ; - /A * /B * / c * /D * /E
+ /A * /B * / c * /D * /E * /F
+ /A * /B * / c * /D * /E * /F * /G
+ /A * /B * / c * /D * /E * /F * /G * /H

C3 : = /A * /B * / c * /D * /E * /F * /G * /Η * /I
+ /A * /B * / c * /D * /E * /F * /G * /Η * /I * /J

Table 3.7 shows the 10 inputs named A to J, and the four encoded outputs
C3 to CO. From Table 3.7 we obtain the design equations for the PAL20R4.
The design equations are obtained using minterms for each of the outputs. The
symbol ": = " means that the respective output is registered with a flip-flop
that is self-contained in the PAL20R4.

You can use any type of software to assemble and simulate your design
equations.

The software program for the Am29CPL152 is shown in Table 3.9. In the
circuitry shown in Figure 3.12, the PAL20R4 outputs are routed to the four
testable inputs TO, T l , T2, and T3 of the FPC Am29CPL152. Outputs P0 to
P7 are dedicated to load the speech entry points to the speech processor. The
output P8 of the FPC is used to control the latch function of the PAL20R4.
When the latch pin makes a low-to-high transition, the registered outputs CO
to C4 are latched.

The first line of the software program after the keyword "BEGIN" (see
Table 3.9) corresponds to the instruction "if (not tst) then goto pl(stay)." This
instruction keeps the program continuously reading the "test" switch which is
connected to the input T5 of the FPC. When the "test" switch is pressed mo­
mentarily, a logic high is present at the input T5, causing the program jump to
line two. The instruction "continue" in line two is used only to give a logic
high at the latch input of the PAL20R4. For instance, the 4-bit encoded output
of the PAL20R4 is latched. Now the program jumps to line three where the

1 1 6 3 . Analog Circuits

T A B L E 3.9
Software Program for the FPC Am29CPL152

DEVICE (CPL142)

DEFAULT = 1;

"test inputs" DEFINE
CO = t o

CI = tl
C2 = t2
C3 = t3
tst = t5
equal = eq
sby = t4
"ouput control bits
"speech data
pa2 = 01#h
eh = 07#h
tt2 = 0D#h
iy = 13#h
yy2 = 19#h
uw2 = lF#h
sh = 25#h
= 2A#h zz =
= 30#h
yyl = 31#h
ss = 37#h
gg2 = 3D#h

pa3 =
kk3 =
rrl =
ey =
ae =
aw =
zh =

2B#h

ch =
nn2 =
el = 3E#h

allophones plus five pauses"
02#h pa4 = 03#h pa5 = 04#h oy 05#h ay = 06#h
08#h PP = 09#h jh = OA#h nnl = OB#h ih = 0C#h
OE#h ax = OF#h mm = 10#h ttl ll#h dhl = 12#h
14#h ddl = 15#h uwl = 16#h ao 17#h aa = 18#h
lA#h hhl = lB#h bbl = lC#h th = lD#h uh = lE#h
20#h dd2 = 21#h gg3 = 22#h vv 23#h ggl = 24#h
26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl

ng = 2C#h 11 = 2D#h W W = 2E#h xr = 2F#h wh

32#h erl = 33#h er2 = 34#h ow = 35#h dh2 = 36#h
38#h hh2 = 39#h or = 3A#h ar = 3B#h yr = 3C#h

bb2 = 3F#h
latch = 100#h;

DEFAULT-OUTPUT = 0000#h;

TEST_CONDITION = SBY; "default test condition"

BEGIN
"wait for test input to go high. SE = 0 (pin 19 of SP0256-AL2)'
" 1 " stay: if (not tst)
"2" latch, continue; "Re
"3" latch, load tm(OF#h)
"4« 11, call pi(read)
"5" eh, call pi(read)
"6" w , call pi(read)
7 el, call pi(read)

"8" pa5, call pi(read)
"9"
"10"
"11"

,cmp tm(0F#h) to pi(00#h);
,if (equal) then goto pi(zero)
,cmp tm(0F#h) to pi(01#h);

3.5 Using α 10-Step Voltage Comparator 1 1 7

"12" ,if (equal) then goto pi(one);
"13" ,cmp tm(0F#h) to pi(02#h);
"14" ,if (equal) then goto pi(two);
"15" ,cmp tm(0F#h) to pi(03#h);
"16" ,if (equal) then goto pi(thre)
"17" ,cmp tm(0F#h) to pi(04#h);
"18" ,if (equal) then goto pi(four)
"19" ,cmp tm(0F#h) to pi(05#h);
"20" ,if (equal) then goto pi(five)
"21" ,cmp tm(0F#h) to pi(06#h);
"22" ,if (equal) then goto pi(six);
"23" ,cmp tm(0F#h) to pi(07#h);
"24" ,if (equal) then goto pi(svn);
"25" ,cmp tm(0F#h) to pi(08#h);
"26" ,if (equal) then goto pi (eit);
"27" ,cmp tm(0F#h) to pi(09#h);
"29" ,if (equal) then goto pi(nin);
"30" ,goto pi(stay);

"routine for the word zero"
"31"zero:zz, call Pi (read)
"32" yr, call Pi (read)
"33" ow, call Pi (read)
"34" pa4, call Pi (read)
"35" , goto Pi (stay)

"routine for the word one"
"36"one:ww, call Pi (read),
"37" ax, call Pi (read)
"38" ax, call Pi (read)
"39" nnl, call Pi (read)·
"40" pa4, call Pi (read)·
"41" , goto Pi (stay);

"routine for the word two"
"42"two:tt2, call Pi (read);
"43" uw2, call Pi (read);
"44" pa4, call Pi (read);
"45" , goto Pi (stay);

"routine for the word three'
"46"thre:th, call Pi (read);
"47" rrl, call Pi (read);
"48" iy, call pi (read);
"49" pa4, call Pi (read);
"50" , goto Pi (stay);

"routine for the word four"
"51"four:ff, call Pi (read);
"52" ff, call Pi (read);
"53" or, call Pi (read);
"54" pa4, call Pi (read);
"55" , goto pi (stay);

1 1 8 3 . Analog Circuits

"routine for the word five"
"56"five:ff, call Pi (read)
"57" ff, call Pi (read)
"58" ay, call Pi (read)
"59" w , call Pi (read)
"60" pa4, call Pi (read)
"61" , goto Pi (stay)

"routine for the word six"
"62"six: SS, call Pi (read)
"63" SS, call Pi (read)
"64" ih, call Pi (read)
"65" ih, call Pi (read)
"66" pa3, call Pi (read)
"67" kk2, call Pi (read)
"68" SS, call Pi (read)
"69" pa4, call Pi (read)
"70" , goto Pi (stay)

"routine for the word seven
"71"svn: SS, call Pi (read)
"72" SS, call Pi (read)
"73" eh, call Pi (read)
"74" eh, call Pi (read)
"75" w , call Pi (read)
"76" eh, call Pi (read)
"77" nnl, call Pi (read)
"78" pa4, call Pi (read)
"79" , goto Pi (stay)

"routine for the word eight
"80"eit: ey, call Pi (read)
"81" pa3, call Pi (read)
"82" tt2, call Pi (read)
"83" pa4, call Pi (read)
"84" , goto Pi (stay)

"routine for the word nine"
"85"nin: nn2, call Pi (read)
"86" aa, call Pi (read)
"87" ay, call Pi (read)
"88" nnl, call Pi (read)
"89" pa4, call Pi (read)
"90" , goto Pi (stay)

"subroutine for reading the standby status of the speech processor"
"91"read: ,continue;
"92"styl: ,if (not sby) then goto pl(styl); "reading SBY"
"93" ,ret;

.org 127#d
"94" ,goto pi(stay);

END.

3.6 Speech Processor/Logic Probe Interface 1 1 9

instruction "load tm(0F#h)" is used for loading only four of the six testable
inputs. Because we only need to read the testable inputs TO to T3, the immedi­
ate mask " 0 F # h " is used.

Lines four to seven contain four allophones and one pause in order to make
the speech processor say the word "level." Certainly, when the user hears the
word "level," he will be expecting to hear a number that indicates in what
level the reading is at that moment. Lines 9 to 29 compare the 4-bit reading
against a constant number. If the 4-bit reading is equal to the constant number
stored in the pi field, the internal flag "eq" is set to one. In this case, the flag
"eq" was assigned the name "equal"; therefore, the program keeps reading
for this flag after every comparison. If the flag is set to one, the program
jumps to the routine indicated in the pi field. Once the program jumps to the
routine used for announcing the respective number, the routine issues the re­
quired allophones and keeps calling the "read" subroutine. It is the "read"
subroutine that starts the speech sequence of the speech processor (see lines 91
to 93). When the respective number has been correctly announced, the pro­
gram jumps again to the beginning at line one that is labeled "stay." Here the
program waits again for the test switch to be pressed momentarily in order to
repeat the process.

You can make certain modifications to the software program presented in
Table 3.9. For example, you can add a time delay at the beginning of the pro­
gram and avoid reading the status of the "test" switch. In this way, your pro­
gram will be reading and announcing continuously the encoded reading that
corresponds to the voltage level presented at the input Vin of the LM3914. In
the program presented here, a total of 94 lines of real instructions were spent;
consequently, you can augment the size of the program for more specific in-
tructions. For example, you can add warning messages if the voltage level has
reached a "dangerous" zone or a message of the steps that must be followed
when the voltage level has dropped below a "permitted" level. As you can
see, the flexibility of this circuit relies on the capacity of the field program­
mable controller to be reprogrammed according to the needs of the user.

3.6 Interfacing a Speech Processor to a
Logic Probe

The multifunction logic probe shown in Figure 3.13 is able to indicate logic
states and the presence of pulses. In digital circuits, finding out if the the clock
section of a module is functioning properly can be a difficult job, especially
when you do not have access to an oscilloscope.

The logic probe presented in Figure 3.13 is divided into two parts: the logic
part and the programmable part. The logic part corresponds to the upper por­
tion of the circuit. Here, the circuit will be working as a conventional logic
probe that indicates the state of the input by merely glowing two LEDs. When

1 2 0 3 . Analog Circuits

300 Λ 300

1 KHz

5V

l LOGIC K. t PULSE

TEST

TO V« po
P1

CLOCK P2

P3:
Am29CPL152 ^

P6
P7 Tl

GND
T2

RST

3 17
4 16
5 15
6 14
7 13
8 11
9 10

I2 «
19 19

A1
A2
A3
A4 SP0256-
A5 A L 2

A.6
A7
A8

24

28

SBY
SE RST

SBYRST

Π 2 2

To LPF and
AUDIO

- ' A M P I IF TER
22pF

I
I .

if
3,12 MHz

O.LUF

22pF

100K *5V

ΊΝ914Α

F i g u r e 3.13 Circuitry for the logic probe.

the DPDT switch is set to pulse mode, the upper part of this logic probe will
be working as an audible pulse detector that indicates the presence of a pulse
by the activation of a piezotransducer.

In the mode pulse, the four Nand gates ICa to ICd and a timer will be en­
abled. Nand gates ICla and IClb configured as a monostable are used for de­
tecting the low-to-high transition of an input pulse presented at inverter's input
INVI (1/6 74HC14). When a low-to-high transition occurs, the monostable is
triggered for a time interval of 0.33 s. This short pulse enables timer T l , con­
figured as a 5 kHz free-running oscillator, which makes the piezotransducer
be activated for the same time. When this pulse ends, the second monostable
formed by Nand gates IClc and ICld is triggered. This second monostable is

3.6 Speech Processor/Logic Probe Interface 1 2 1

also triggered for an interval of 0.33 s. Notice that the negative output of the
second monostable is utilized for disabling the first monostable for the period
of 0.33 s. This feature permits the monitoring of a continuous stream of
pulses which will be heard as an intermittent sound caused by the piezotrans-
ducer. Otherwise, a continuous sound generated by the buzzer would be in­
dicating the presence of pulses.

The main feature of this logic probe is that it has the capability of indicat­
ing the logic state of an input as well as the presence of pulses by means of a
speech processor. This enables the user to monitor or test a digital circuit
without having to look at the analog or digital display and waste precious
time.

The logic probe is interfaced to the speech processor SP0256-AL2 by
means of the field programmable controller Am29CPL151. In this case, TO is
designated as the logic input, while Tl is connected to a DPDT switch that
will be indicating the mode of operation. When the mode of operation is
PULSE, the testable input Tl is held at a logic low. By looking at Table 3.10
you will see that the keyword "DEFINE" assigns the name "probe" to input
TO, the name "pulse" for input T l , and the name "sby" for input T2. After
all the allophones have been assigned with hexadecimal equivalents, the pro­
gram starts at line one.

T A B L E 3.10
Software Program to Control the Logic Probe Using the FPC Am29CPL151

DEVICE (CPL141)

DEFAULT = 1;

DEFINE "test inputs"
prob = tO
puis = tl
sby = t2
"speech data = 59 allophones plus four pauses"
pa2 = 01#h pa3 = 02#h pa4 = 03#h pa5 = 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = 08#h PP 09#h jh = 0A#h nnl = 0B#h ih = 0C#h
tt2 = 0D#h rrl = 0E#h ax 0F#h mm = 10#h ttl = ll#h dhl - 12#h
iy = 13#h ey 14#h ddl 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = lA#h hhl = lB#h bbl = lC#h th = lD#h uh = lE#h
uw2 = lF#h aw = 20#h dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24#h
sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h WW = 2E#h xr 2F#h wh = 30#h
yyi = 31#h ch = 32#h erl = 33#h er2 = 34#h OW 35#h dh2 = 36#h
S S = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h y r = 3C#h
gg2 = 3D#h el = 3E#h bb2 = 3F#h;

DEFAULT-OUTPUT = 000 0#h;

TEST—CONDITION = sby; "default test condition"

1 2 2 3 . Analog Circuits

BEGIN
"read tl for mode pulse or mode logic"
"l"start: ,if (puis) then goto pi(edge);

then goto pi(one)
"ZERO"

"2" ,if (not prob)
"3" ZZ, call pi (read)
»4» yr, call pi (read)
"5" ow, call pi (read)
"6" pa5, call pi (read)
"7" pa5, call pi (read) ·
"8" , goto pi(start)
"9"one:ww, call pi(read);
"10* ax, call pi(read);
"ll 1 ax, call pi(read);
"12' nnl, call pi(read);
"13" pa5, call pi(read);
"14» pa5, call pi(read);
"15" , goto pi(start)
"16" edge: ,if (not prob)
"17" PP, call pi(read);
"18" uh, call pi(read);
"19" 11, call pi(read);
"20" SS, call pi(read);
"21" pa5, call pi(read);
"22" pa5, call pi(read);
"23" , goto pi(start)
"24" read: ,continue;
"25" stay: ,if (not sby) t
"26" , ret;

.org 63#d
"27" , goto pi(start)

"reading SBY"

END.

The program first asks for the mode of selection, that is, whether it is
LOGIC or PULSE that the user has chosen. In this case the program was de­
signed for monitoring the signal automatically, so the user does not spend
time pressing a switch for each test. If the mode LOGIC is selected, the pro­
gram jumps to line two, which reads the logic status of the input named
"probe." If the input pulse is low, the program makes the speech processor
say the word "zero"; otherwise, the speech processor will announce the
word "one ." When the announcing of the word ends, the program goes back
again to line one in order to read the new status of the input assigned as
"probe."

On the other hand, if the user selects the logic probe in the mode "PULSE,"
the first instruction makes the program jump to the label "edge" located in
line 6. The instruction "if (not probe) then goto pl(edge)" keeps the FPC
reading the status of the input "probe." If a low-to-high transition occurs at

3.7 Talking Programmable Gain Amplifier 1 2 3

the input of the logic probe, the speech processor will say the word "pulse."
When this word ends, the program goes back to line one in order to know if
the mode of operation has changed. In fact, after any of the three messages is
heard, the program goes back and reads the mode of operation for a possible
new selection.

In the program shown in Table 3.10, you can see that only 26 lines were
spent for developing the program; therefore, you have lines 27 to 63 free for
augmenting or adapting the program with some different features. For ex­
ample, you can add a low-battery indicator to this logic probe, so that the
program monitors when the voltage has dropped below a preprogrammed
level. In this case, the speech processor would issue a warning message in­
dicating that the battery is losing power. Many other features can be added to
this logic probe, but most of them will depend upon the imagination of the
user.

3.7 Talking Programmable Gain
Amplifier

The Figure 3.14 circuit is a programmable gain amplifier that has the capacity
of selecting 16 different gains by means of a switching network. The switch­
ing network is controlled by the FPC Am29CPL151. In addition, the speech
processor SP0256-AL2 announces the gain every time the user selects it.

The op-amp LF353 configured as an inverting amplifier is controlled by the
CMOS switching network contained in the IC CD4066. A set of four resistors
connected to the CD4066 is used to make 16 possible combinations. In other
words, 16 possible resistor values are obtained to control the gain of the op-
amp. The gain equation for the inverting amplifier is

Vout = - Vin (R2/R1)

In the preceding equation, resistor R2 can have 16 different values, starting
with the value of zero ohms. To make the selection of resistors, the four con­
trol inputs named A, B, C, and D will select the required combination via the
control outputs p8, p9, ρ 10, and p l l provided by the FPC Am29CPL151.

After the power-up reset, the circuit starts selecting the value of resistor
two as zero ohms. To select the next 15 gain levels, the user only has to press
the normally open switch "SEL." When the user presses this switch for the
first time, the first gain level is selected and the resistor Ra is connected. This
event causes the speech processor to say the message "level one." If the user
needs a higher gain, he will have to press the switch "SEL" again. In this
way, the speech processor will be announcing the selected gain level just after
the switch is pressed.

1 2 4 3 . Analog Circuits

Vîn

1 KHz

5V f

SEL H

To LPF and
^ audio

amp I ί f i e r

5V

ΊΝ9Ί4Α

F i g u r e 3.14 Circuitry for the talking programmable gain amplifier.

The software program for controlling the gain of the op-amp and the speech
processor is shown in Table 3.11. The section "DEFINE" of the program as­
signs the names of "SEL" and "sby" to TO and Tl respectively. Also, al­
lophones and pauses are defined in the same way as in the previous programs.

Once you have written your program as a pure ascii file, you can assemble
it to produce the JEDEC file. The JEDEC file must be loaded into the FPC
Am29CPL151 by using an appropriate PLD programmer.

3.7 Talking Programmable Gain Amplifier 1 2 5

T A B L E 3.11
Software Program for the Programmable Gain Amplifier

DEVICE (CPL141)

DEFAULT = 1;

DEFINE "test inputs"
sel = tO
sby = tl
"output control bits are given allophone assignments"
"speech data = 59 allophones plus four pauses"
pa2 = 01#h "
pa3 = 02#h "/zero->11 28 - Vcc
pa4 = 03#h p0<-!2 27 <-clk
pa5 = 04#h pl<-!3 26 <-cc
oy = 05#h p2<-!4 25 < - t o

ay = 06#h p3<-!5 Am29CPL 24 <-tl
eh = 07#h p4<-!6 151 23 <-t2
kk3 = 08#h p5<-!7 22 <-t3 "
PP = 09#h p6<-!8 21 <-t4
jh = OA#h p7<-!9 20 <-t5
nnl = OB#h p8<-!10 19 <-/reset"
ih = OC#h p9<-', 11 18 ->pl5 "
tt2 = OD#h " pl0<-!l2 17 ->pl4 "
rrl = OE#h " pll<-113 16 ->pl3 "
ax = OF#h Gnd-!14 15 ->pl2 "
mm = 10#h " "
ttl = ll#h dhl = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = lA#h hhl = lB#h bbl = lC#h
th = lD#h uh = lE#h uw2 = lF#h aw = 20#h dd2 = 21#h gg3 = 22#h
w = 23#h ggl = 24#h sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h
kk2 = 29#h kkl = 2A#h zz = 2B#h ng = 2C#h 11 = 2D#h W W = 2E#h
xr = 2F#h wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h
ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h bb2 = 3F#h
gainl = 100#h
gain2 = 200#h
gain3 = 300#h
gain4 = 400#h
gain5 = 500#h
gain6 = 600#h
gain7 = 700#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDIΤION = SBY; "default test condition"

BEGIN
"read tl for mode pulse or mode logic"
"l"stay: ,if (not sel) then goto pi(stay); "Gain zero"
"2" W W , call pi (read)
"3" ax, call pi (read)
-4" ax, call pi (read)
"5" nnl, call pi (read)
"6" pa2, call pi (read)

1 2 6 3 . Analog Circuits

" 7"styl:gainl,
" 8 " tt2,
"9" uw2,
"10" pa2,
"ll"sty2:gain2,
"12" th,
"13" rrl,
"14" iy,
"15" pa2,
"16"sty3:gain3,
"17" ff,
"18" ff,
"19" or,
"20" pa2,
"21"sty4:gain4,
"22"
"23"
"24"
"25"
"26"

ff,
ff,
ay,
w ,
pa2,

"27"sty5:gain5
"28"
"29"
"30"
"31"
"32"
"33"
"34"
"35"

ss,
ss,
ih,
ih,
pa2,
kk2,
ss,
pa2,

"36"sty6:gain6.
"37"
"38"
"39"
"40"
"41"
"42"
"43"
"44"

ss,
ss,
eh,
eh,
w ,
eh,
nnl,
pa2,

"45"sty7:gain7
"46"
"47"read:
"48"sty8:
"49"

"50"

END.

"THREE"

then goto pi (sty3);
'FOUR"

then goto pi(sty5);

if (not sel) then goto pi(styl)
call pi(read); "TWO"
call pi(read);
call pi(read);
if
ca
ca
ca
ca
if
ca
ca
ca
ca
if
ca
ca
ca
ca
ca
if

ca
ca
ca
ca
ca
ca
ca
ca
if
ca
ca
ca
ca
ca
ca
ca
ca
if (not sel) then goto pi(sty7)

,goto pi(stay);
,continue;
,if (not sby) then goto pi(sty8)
, ret;
.org 63#d
,goto pi(stay);

(not sel)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
(not sel)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
(not sel)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
(not sel)

1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
(not sel)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)
1 Pi (read)

"reading SBY"

3.8 Designing an Electronic Thermometer 1 2 7

3.8 Designing an Electronic Thermometer
that Announces Readings

The Figure 3.15 circuit is an LED digital thermometer that has an operating
range of - 5 ° C to 45° C with a resolution of 0.1° C. Thermistor YSI44202 is
manufactured by Yellow Springs Instruments and is used as the sensor ele­
ment that sends the voltage variations to ICL7117's input (pins 31 and 30) via
the instrumentation amplifier formed by IC2, IC3, and IC4.

The temperature range used in the thermometer was selected based on bio­
logical applications. The main advantage for the LED digital thermometer cir­
cuit is that it can measure small changes in temperature accurately and quickly
in comparison to other conventional thermometers such as mercury ther­
mometers. The temperature measurements are exhibited in an LED display
and announced by a speech processor simultaneously.

The thermolinear sensor contains a linearization network formed by two
thermistors and two resistors (see Figure 3.16). This network provides a linear
output voltage versus temperature.

The output voltage Vo of the thermistor is described by the equation:

Vo = 0.77 + (0.028875 V/°C)T

By substituting the temperature Τ from - 5 ° C to 45° C in the preceding equa­
tion, we get Table 3.12.

The 3-V power supply biasing the thermistor is used to avoid the errors
produced by internal heating in the sensor, which would produce wrong
readings.

An instrumentation amplifier (see Figure 3.17) is employed in order to get
accurate readings at the ICL7117's input. The instrumentation amplifier is a
fixed-gain differential amplifier consisting of three op-amps, as indicated in
the circuitry of Figure 3.17. The gain expression is formally the same as that
for an op-amp, for example,

Vo = A(E1 - E2)

except that the open-loop gain is replaced by the gain with feedback A.
Specifically,

A = (2 R l l + RIO) R15/(R10 R13)

It is basically an improved version of the differential amplifier. The main
features are (1) high input impedance, especially with FET op-amps on the
input; (2) high CMRR, and (3) precision high gain. High input impedance
is achieved by using the noninverting amplifier configuration on the inputs.
Precision high gain is obtained by two stages of feedback amplifiers. High
common-mode rejection is achieved by the dual noniverting-configuration cir­
cuit, which utilizes a common feedback resistor RIO.

1 2 8 3 . Analog Circuits

-ΞΞ.Β L
A3-G3 A2-G2 A1-G1

74C915 74C915 74C915

P2,7
UC8748

700

+9V +9V a . f . e . d
+9V

F i g u r e 3.15a Circuitry for the thermometer that vocalizes temperature readings.

The output voltage for the above circuit is given by the equation:

Vo = R14/R13 (1 + 2 R11/R10) (El - E2)

With this equation we can adjust the gain in order to get the right voltage at the
input of the A/D converter ICL7117. Accordingly, we select a temperature of
40° C where the respective reference voltage Vref is 0.77 V with V(t) equal to
1.925 V. When the temperature is at 40° C, we compute the resistor values for
the amplifier.

3.8 Designing an Electronic Thermometer 1 2 9

(2)CD4050

"~° 9V

F i g u r e 3.15b

Let's assume:
R l l = 22K Vo = 400mV
R 1 4 = 1 0 K E l - 1.925 V
R12 = 47K E2 = 0.77 V
RIO - ?
From the equation of the instrumentation amplifier we get RIO,

R14/R12(l + 2R11/R10)(E1 - E2)
RIO = - - = 100096.55 ohms

R12 Vo - R14(E1 - E2)

1 3 0 3 . Analog Circuits

Green
3V

R3 R4
6K @25C < 30K @25C<

R5

L R 7
<JOK

"R6
*5.7K

^ V _ J 10K ^ Brown V r e f t = Q.77V

12K *

Red

V i t)

F i g u r e 3.16 Thermistor linearization network.

The gain " A " is given by:
A = Vo / (E l - E2) = R 1 5 / R 1 3 (l + 2 R11 /R10) = 0 .3463

From Table 3 .12 we pick up the voltage values of Vo to verify the output
voltage Vo of the instrumentation amplifier depending upon the temperature;
thus we get Table 3 . 1 3 . Notice that V(t) is the output voltage of the thermistor
network. In Table 3 .13 Vo is now the output voltage that is routed to the
ICL7117. The values of Vo are obtained by substituting the gain A in Eq.
Vo = A(E1 - E2) .

In the instrumentation amplifier, resistor R15 is used to adjust the common
mode gain, and resistor RIO is used to adjust the gain (see Figure 3.17) .

The ICL7117 is a 3-1/2 digit single-chip converter. This A / D converter

Temperatu
T A B L E 3.12

re versus Voltage for the Thermistor Network

Τ (°C) Vo (Volts)

-5 0 6256

0 0 7700

5 0 9143

10 1 0587

15 1. 2031

20 1. 3475

25 1. 4918

35 1 7806

40 1 9250

45 2 0693

3.8 Designing an Electronic Thermometer 1 3 1

Typica 1 Values of Vo
T A B L E 3.13

versus Tempérât ure When Vref = 0.77V

Τ (C) Vref (E2) V(t) (El) Vo = A (El - E2)

-5 0. 77 0 6256 -0 05

0 0. 77 0 7700 0 00

5 0. 77 0 9143 0 05

10 0. 77 1 0587 0 10

15 0. 77 1 2031 0 15

20 0. 77 1 3475 0 20

25 0. 77 1 4918 0 25

30 0. 77 1 6362 0 30

35 0. 77 1 7806 0 35

40 0. 77 1 9250 0 40

45 0. 77 2 0693 0 45

contains all the necessary active devices in a single CMOS IC. Included are
seven segment decoders, display drivers, a voltage reference, and a clock.
The ICL7117 is designed to interface with a common anode LED display.

To interface the temperature readings to a speech processor, we have to
convert the low-active seven segment outputs of the ICL7117 to a BCD code.

+9V

F i g u r e 3.17 The instrumentation amplifier.

1 3 2 3 . Analog Circuits

The conversion is achieved by using three seven-segment-to-BCD decoders
74C915. The LSB digit that represents the decimal values of the temperature
is sent to P2 .0-P2.3 of the microcontroller. Because the microcontroller's
operating voltage is 5 V, the BCD code received by port two as well as by the
BUS must be in the logical levels of 0 to 5 V. To reduce the logical levels from
9 to 5 V, 12 voltage followers contained in two CD4050s are used. The output
P2.7 of the μC 8748 is selected for handling the hold reading (HLDR) func­
tion of the ICL7117. In this way, the ^ C 8748 holds the temperature reading
temporarily and selects the three 74C915s by holding low the input control
(/OC) via the output P2.6.

Now, the software program of the microcontroller is the one responsible
for making the decisions to drive correctly the speech processor Digitalker.
The Digitalker will proceed to announce the temperature readings every time
the user presses the TEST switch. The software program used to convert the
BCD code temperature readings to vocal messages is described below.

Table 3.14 shows different cases for temperature readings presented in
BCD code.

By looking at Table 3.14, you will see that some temperature readings re­
quire three words and others require four words. For temperature readings be-

T A B L E 3.14
A Temperature Reading Presented in BCD Code at the Inputs Port 2.X and BUS,

Causes a Spoken Message in the Speech Processor

Β υ s Ρ 0 r t

Message Temperature 7 6 5 4 3 2 1 0 3 2 1 0

five point zero 5 0 0 0 0 0 0 1 0 1 0 0 0 0
five point one 5 1 0 0 0 0 0 1 0 1 0 0 0 1
six point zero 6 0 0 0 0 0 0 1 1 0 0 0 0 0
nine point nine 9 9 0 0 0 0 1 0 0 1 1 0 0 1
ten point zero 10 0 0 0 0 1 0 0 0 0 0 0 0 0
nineteen point zero 19 0 0 0 0 1 1 0 0 1 0 0 0 0
twenty point zero 20 0 0 0 1 0 0 0 0 0 0 0 0 0
twenty one point zero 21 0 0 0 1 0 0 0 0 0 0 0 0 0
twenty one point five 21 5 0 0 1 0 0 0 0 1 0 1 0 1
twenty two point zero 22 0 0 0 1 0 0 0 1 0 0 0 0 0
thirty point zero 30 0 0 0 1 1 0 0 0 0 0 0 0 0
thirty point nine 30 9 0 0 1 1 0 0 0 0 1 0 0 1
thirty one point zero 31 0 0 0 1 1 0 0 0 1 0 0 0 0
thirty nine point zero 39 0 0 0 1 1 1 0 0 1 0 0 0 0
forty point zero 40 0 0 1 0 0 0 0 0 0 0 0 0 0
forty one point zero 41 0 0 1 0 0 0 0 0 1 0 0 0 0
forty five point zero 45 0 0 1 0 0 0 1 0 1 0 0 0 0

3.8 Designing an Electronic Thermometer 1 3 3

Temp=>33 k BUSO-3^0

A Ç P 3

Readings

22
. υ
.0

23 .0
24 . 0—24.9
25 . 0 - 2 5 . 9
27 . 0 - 2 7 . 9
28 . 0 - 2 8 . 9
29 .0—29.9
31 .0—31.9
32 .0—32.9

39.0—39.0
41 .0—41.9
45 . 0 - 4 5 . 9

F i v e , S i x , Seven
E i g h t , Nine

Twentν
T h i r t y ,
F o r t y ,

"po in t "

P2 = Acc

A — Ρ 1

Z 3 :
"Zero , O n e . . . N i n e "

"Degrees"

(A ')

F i g u r e 3.18 Flow chart for converting temperature readings in BCD code to vocal
messages.

low 20.9° C, the message contains three words. Furthermore, the readings
that range from 30.0 to 30.9° C and the readings from 40.0 to 40.9° C are
formed with three words; however, in readings varying from 21.0 to 45.0 the
messages are formed with four words, with the exception of the two ranges
just described above. A flowchart will be helpful to understand the routes that
the program must follow in order to announce a temperature reading correctly
(see Figure 3.18).

The microcontroller's routine for reading the temperature in BCD code and
then translating it to a vocal message is shown in Table 3.15. In this case the
Digitalker system is used.

1 3 4 3 . Analog Circuits

T A B L E 3.15
Software Program for the μ€ 8748 Which Makes the Digitalker System to Announce

Temperature Readings Which Are Received in BCD Code

Add Op Code Mnemonics Comments

00 26 00 STAY JTO STAY Wait for TO to go low
02 8A FF ORL P2, #FFH HLDR function of ICL7117 is
04 9A EF ANL P2, #EFH is pulsed low to hold a
06 8A FF ORL P2, #FFH new reading
08 9A BF ANL P2, #BFH 1011 1111, /OC = 0
OA 08 INS A, BUS Load temperature reading
0B A9 MOV Rl, A Register Rl contains units

and tens of the temperature.
OC OA IN A, P2 Acc gets decimal value
OD AA MOV R2, A ;R2 contains the decimal value
OE 8A FF ORL P2, #FFH
10 97 CLR C Carry flag is set to zero.
11 BB 21 MOV R3, #21H Register R3 = #33d
13 37 CPL A Routine to compare if A<R3
14 6B ADD A, R3 If CY is set then A<R3
15 27 CLR A
16 F6 23 JC POINTR Jump to POINTR if CY is one
18 F9 MOV A, Rl Load Acc with temperature
19 53 OF ANL A, #0FH Mask the Acc to test if the
IB 96 48 JNZ FIND units of temp are no zero.
ID F9 POINTR MOV A, Rl Load Acc with temperature
IE 53 OF ANL A, #F0H Acc contains tens of temp.
20 14 3A CALL PULSE1
22 F9 MOV A, Rl Load Acc with temperature
23 53 OF ANL A, #0FH Acc contains units of temp.
25 14 3A CALL PULSE1
27 89 7A ORL PI, #7AH Word "point"
29 14 3C CALL PULSE2
2B 27 CLR A
2C FA DCM MOV A, R2 Decimal value of temperature
2D 53 OF ANL A, #0FH is loaded into Acc
2F C6 JZ ZERO Testing if temp = zero.
30 14 3A CALL PULSE1
32 89 72d CD ORL PI, #72d Word "degree"
34 14 3C CALL PULSE2
36 89 129d ORL PI, #129d Sound "ss"
38 14 3C CALL PULSE2
3A 04 00 JMP START
3B E3 PULSE1 MOVP3 A, Ca

A ; Find the speech data in page3
3C 39 OUTL PI, A Load portl with speech data
3D 80 PULSE2 MOVX (SRO, A /WR of DT1050 is pulsed low
3E 46 3D STAY JNT1, STAY Wait for /INTR to go low
40 99 00 ANL PI, #00H Clear portl
42 83 RET

3.9 Interfacing Displacement Transducers 1 3 5

43 23 ZERO:MOV A, #1FH ; Load Acc with data 1FH
44 39 OUTL PI, A ; Load portl with word "zero"
45 14 3C CALL PULSE2
47 04 32 JMP CD
49 27 FIND:CLR A
4A F9 MOV A, Rl ;Temp<#33d (<21 C)
4B 14 3A CALL PULSE1
4D 89 7A ORL PI, #7AH ; Word "point"
4F 14 3C CALL PULSE2
51 04 2C JMP DCM

;Page three of ROM

300 IF ;"Zero"
301 01 ;"One"
302 02 ;"Two"
303 03 ;"Three"
304 04 ;"Four"
305 05 ;"Five"
306 06 ;"Six"
307 07 ;"Seven"
308 08 ;"Eight"
309 09 ;"Nine"
310 OA ;"Ten"
311 OB ;"Eleven"
312 OC ;"Twelve"
313 OD ;"Thirteen"
314 OE ;"Fourteen"
315 OF ;"Fifteen"
316 10 ;"Sixteen"
317 11 ;"Seventeen"
318 12 ;"Eighteen"
319 13 ;"Nineteen"
320 14 ;"Twenty"
330 15 ;"Thirty"
340 16 ;"Forty"

3·9 Interfacing Displacement Transducers
to Speech Processors

Speech processors can be interfaced to almost any analog or digital system to
indicate the presence or the magnitude of an input signal. Displacement trans­
ducers are not the exception. A displacement transducer is a device capable of
sensing the change in position or displacement of an object. A displacement
transducer must be sensitive enough to avoid affecting the event being mea­
sured. Using the right circuitry, transducers can be interfaced to a speech pro­
cessor. Certainly, there are many applications where a speech processor will

1 3 6 3 . Analog Circuits

result in a better system for monitoring displacements instead of using the
conventional analog or digital indicators.

Strain gages are typical examples of displacement transducers. Most gages
consist of a metal foil or wire bonded to an insulating base, as illustrated in
Figure 3.19. The base is cemented to the surface of the object under test, and
the gage thus experiences the same strain as the surface. The strain " E " is
defined as

where L is the distance between two reference points fixed in the object.
For applications involving small dc signals, a strain gage can be interfaced

to a differential op-amp. Figure 3.19 shows this type of circuitry. The output
voltage Vo must be interfaced to an A/D converter if a high resolution is
needed. You can even use a set of level comparators to detect several steps of
the displacement. Figure 3.20 shows how to interface a strain gage to a micro­
controller via an A/D converter. The microcontroller drives the speech pro­
cessor SP0256-AL2. As you can see in Figure 3.20, the circuit for A/D con­
version with the microcontroller and the speech processor is similar to the one
presented in Section two of this chapter. You will have to make a few modi­
fications to the software program presented in Section two. For example, you
can change the message "volt" to the word "millimeters," representing a dis­
placement. Now we will see how an optical displacement transducer can be
adapted to a speech processor.

Digital Displacement Transducer

A digital displacement transducer is used when relatively large displacements
are to be determined. There are two types of transducers that are easy to im­
plement and use: incremental and absolute. Figure 3.21 shows a basic incre-

E = AL/L

Leads

Metal
'Fo i I

Back ing

Ψ
S t r a i n ax i s

F i g u r e 3.19 Strain gage diagram.

3.9 Interfacin g Displacemen t Transducer s 1 3 7

! 780 5

20 p F

20pF

5V

Gage

j R a
- V v -

Rb

5V
Vin+ BU S INT1 WR

ADCÛ8Û4
|Vref/2 C S I

> J7 |8 110̂ 1
150pF

F i g u r e 3.2 0 Strai n gag e interface d t o a speec h processor .

mental digita l displacemen t transducer . I n thi s typ e o f transducer , th e photo -
detector pick s u p th e pulse s generate d b y th e slide , whic h ca n b e perforate d
(see Figur e 3.21)

On th e opposit e sid e o f th e slide , a ligh t sourc e mus t b e emittin g a ligh t
beam tha t wil l b e interrupte d b y th e movemen t o f th e slide . Eac h interruptio n
which migh t occu r wil l generat e a puls e tha t wil l b e route d t o a binar y
counter. Thi s typ e o f displacemen t transduce r ha s th e disadvantag e o f no t
being capabl e o f detectin g th e directio n o f th e displacement , bu t i t ha s th e

1 3 8 3 . Analog Circuits

D I S P L A C E M E N T
A

^ Photodetector

F i g u r e 3.21 Basic incremental digital displacement transducer.

advantage that the velocity of the movement can be detected; such velocity
can be accomplished by detecting the number of pulses that occur in a certain
period of time. The magnitude of this measurement will be proportional to the
velocity of the displacement.

Figure 3.22 shows a system that contains an absolute digital displacement
transducer. In this case the slide that is attached to the object under movement
is perforated with a BCD code. Four photodetectors have to be used in this
particular form. The advantage of the obtained BCD code is that the code can
be sent directly to a BCD-to-seven-segment decoder or to a controller. Ob­
viously, we will prefer the controller option using the FPC Am29CPL151
interfaced directly to a speech processor. Figure 3.23 shows a block diagram

Photodetectors

F i g u r e 3.22 Absolute digital displacement transducer.

3.10 BCD A / D Converter Interface to SP0256 1 3 9

F i g u r e 3.23 Block diagram for a talking displacement system.

of the system that solves the problem completely. The software program for
the FPC shown in Figure 3.23 is similar to the one presented in Chapter two,
Section 10. In other words, the FPC and the speech processor must be pro­
grammed to work as a talking BCD-code meter, although you can make the
modifications to the software program according to your real needs.

3.10 BCD A / D Converter Interface to
SP0256

The advantage of interfacing a BCD A/D converter to a speech processor is
that you have two ways of representing a digital reading: a digital display and
a voiced reading. In addition, the vocalized reading can be programmed to
indicate to the user the procedure to be followed in order to correct a possible
malfunction. This feature avoids the time the user would spend trying to find
the manual that contains the procedures.

Generally, the use of an A/D converter can be applied to measure analog
variables such as pressure, temperature, resistance, capacitance, inductance,
and others. Certainly, most of these applications will require a circuit capable
of converting these variables to voltage. The input voltage will have to be ap­
plied in the correct scale that the A/D converter is requiring in order to obtain
the proper output reading.

The circuit shown in Figure 3.24 uses the BCD A/D converter TSC8750
manufactured by Teledyne Semiconductor. The TSC8750 is a 3-1/2 digit A/D
converter with parallel BCD output. This converter has a conversion time of
10 ms and contains an input, which can be used to control the data output

1 4 0 3 . Analog Circuits

20pF
?

Ά
6 MHz

NI

± 1 = 3

T3 J\
20pF

l ^1
4

)\
l u F zo

1M
Vin - \

100
0,033uF

+51

100K
50K < < 1 a a -

-5V
1 f

F i g u r e 3.24 Microcontroller-based A / D converter system with speech synthesis for
measuring an input voltage.

when the converter must be interfaced to a microprocessor. The TSC8750 per­
forms the conversion by an incremental charge-balanced technique which has
inherently high accuracy, linearity, and noise immunity. A self-contained am­
plifier integrates the sum of the unknown analog current and pulses of a refer­
ence current. A BCD counter detects the number of pulses needed to maintain
the amplifier summing junction near zero. Once the conversion is performed,
the contents of the counter are latched into the digital outputs in a 3-1/2 digit
parallel BCD format.

Figure 3.24 shows a microcontroller-based A/D converter system that is
interfaced to the speech processor SP0256-AL2. You can add a divider re­
sistor network at the input (pin 14 of TSC8750) in order to make voltage mea­
surements in the scale you desire. The software program for the micro­
controller is similar to the one used for the electronic thermometer, shown in
Section 8 of this chapter, even when the program used for the thermometer is

3.10 BCD A / D Converter Interface to SP0256 1 4 1

used for readings in the range of 5°C to 45°C. In this case you will have to
work, for example, within a range of 00.0 to 10.0 V. A resolution of 0.1 V will
keep the format of the program in the same way it was developed for the ther­
mometer. If your requirement is for a resolution of 0.01 V, the program will
have to be modified so that the microcontroller is able to identify the decimal
and centesimal digits. Please take into account that the routine required for
this conversion is greatly simplified, because we are working in BCD code. In
this way, most of the comparisons required to detect the magnitude of the in­
put voltage are made directly by merely masking the digital reading. Masks
will permit you to have the unit, the decimal, or the centesimal value of the
input voltage.

If you decide to use the Digitalker system for vocalizing the voltage read­
ings, the software program becomes smaller because the words are already
constructed in the speech ROMs and are easier to find, specially when you try
to find numbers.

C H A P T E R 4

Digital Circuits

4.1 4-Bit Magnitude Comparator Calls
Out the Results

Digital comparators use only exclusive OR circuits to compare the respective
pairs of bits in each of the two words presented. The outputs of the com­
parators are routed to a gate that gives a logic one at its output when all the bit
pairs are equal and a logic zero when one or more are not. Additional logic
can indicate which input is larger than the other.

A basic single-bit magnitude comparator is designed by a truth table that
indicates the logic states, as shown in Table 4.1. Here we are comparing the
magnitude of two input words A and B.

There are three possible outputs for the magnitude comparator shown in
Table 4 .1 , which we can define as f(A < B), f(A = B), and f(A > B).
By applying minterms to these three outputs, we get the following three
equations:

f(A < Β) - /A * Β
f(A = Β) = (/A * /Β) + (A * B)
f(A > Β) = A * /B

For comparison of two words that are larger than one bit, for example,
four bits, several of the magnitude comparators available in TTL, CMOS, or
HCMOS technology can be used. A good approach is to use the IC 74HC85, a
4-bit magnitude comparator. The 74HC85 provides three fully decoded out­
puts that indicate which of two 4-bit inputs is larger than the other or if both
inputs are equal. It also includes three cascade inputs that permit two or more

1 4 2

4.1 Four-Bit Magnitude Comparator 1 4 3

T A B L E 4.1
Truth Table for a Basic Single-bit

Magnitude Comparator

A Β : A<B A=B A>B

0 0 ! 0 1 0

0 1 i 1 0 0

1 0 ! 0 0 1

1 1 ! 0 1 0

74HC85s to compare words having eight or more bits. In this case, if two
74HC85s are connected in cascade, the speed of the total comparator is cut to
one-half.

It is important to cite that if the reader has access to a PLD programmer, an
η-bit magnitude comparator can be designed using a programmable array
logic (PAL) chip. This approach is justified when speed is an important factor
in the design. A low-cost universal programmer that I strongly recommend is
the PLD 1100, which is manufactured and distributed by BP Microsystems.

The total number of product terms required for an η-bit comparator is 2 n _ 1 .
Comparators require a large number of product terms; a PAL that offers 16
product terms is the PAL16L4/R4. A magnitude comparator can also be de­
signed using generic array logic (GAL) devices. The GAL22V10 from Lattice
Semiconductor, for example, can be programmed to emulate a 4-bit magni­
tude comparator. For additional information regarding GAL devices, see the
GAL Data Book from Lattice Semiconductor.

We will now examine how to interface the 4-bit magnitude comparator
74HC85 to the speech processor SP0256-AL2 by using the FPC Am29CPL151
(see Figure 4.1). The 74HC85 has a maximum propagation delay from a data
input to any output of 21 ns when the ambient temperature is 25°C.

In the circuit presented in Figure 4 . 1 , the three outputs (P < Q, Ρ — Q,
Ρ > Q) of the 74HC85 provide the answer of the digital comparison that are
sent to inputs TO, T l , and T2 of the FPC Am29CPL151. T4 is used to detect
the transient negative pulse caused when the user presses the TEST switch.
This way, the circuit will be waiting for T4 to go low. When this happens, the
FPC will start reading the logic status of the testable inputs TO, T l , and T2.
When the FPC detects the first input in a logic high, it jumps to the routine
containing the message that corresponds to the status of the magnitude com­
parator. The FPC is programmed to make the speech processor SP0256-AL2
announce the messages "P is less than Q," "P is equal to Q , " and "P is
greater than Q."

1 4 4 4 . Digital Circuits

26

1 KHz
27

<>10K
21

TEST Η

14

CLOCK

PO
P1
P2
P3
P4
P5
P6

Am29CPL 151 p 7

T4 P 8

_ T 3

GND RST

TO T1 T2

PO I

P1 U
P2
P3 1

25

7 6

24

3 17
4 16
5 15
6 14
~! 1 13

11
9 10

10 20

22
8

?9 19

23

5V

P<Q P=Q P>Q

74HC85

16

10
12
13_

To LPF and
% audio

amp I i f i e r
22pF

00
01
02
Q3

/

δ 2 4

F i g u r e 4.1 Circuitry for interfacing a 4-bit magnitude comparator to the speech
processor SPQ256-AL2.

Certainly, this circuit is highly reduced in size, which means less board
space and a reduced cost for building a prototype. Because the FPC contains
an erasable PROM, you can make changes depending on the type of decisions
to be taken and the contents of the messages to be enunciated.

The software program for programming the FPC Am29CPL151 is shown in
Table 4.2.

If the reader does not have access to a universal programmer that accepts
the FPC Am29CPL151, the circuit can be modified by using an EPROM, a
4-bit counter, and a Nand gate. In this particular case an EPROM programmer
will be needed to assert the hex codes that will drive the speech processor

4,1 Four-Bit Magnitude Comparator 1 4 5

SP0256-AL2. Figure 4.2 shows the EPROM-based circuitry required for
building a talking 4-bit magnitude comparator. Table 4.3 shows the hex code
for the EPROM 2716 that contains the speech data.

The configuration shown in the circuitry of Figure 4.2 is a small modifica­
tion of the circuits illustrated in Chapter 2 where such circuits were explained

T A B L E 4.2
Software for Interfacing a Magnitude Comparator

to the Speech Processor SP0256-AL2
by Using the FCP Am29CPL151

DEVICE (CPL151)

DEFAULT = 1;

DEFINE "test inputs"
less = tO
equal = tl
greater = t2
sby = t3
test = t4
"output control bits are given allophone assignments"
"speech data = 59 allophones plus four pauses"
pa2 = 01#h
pa3 = 02#h " /zero- > ! 1 28! - Vcc "
pa4 = 03#h " p0< - : 2 27!< -elk "
pa5 = 04#h " pl< - : 3 261 --cc "
oy = 05#h " p2< - : 4 25 ! < - t o "

ay = 06#h " P 3 < - ! 5 Am29CPL 24 1--tl "
eh = 07#h " p4< - ! 6 151 23 : < -t2 "
kk3 = 08#h " P 5 < - : 7 22!- -t3 "
PP = 09#h " p6< - : 8 21 ! < -t4 "
jh = OA#h p7< - 19 20 !< -t5 "
nnl = OB#h p8< - ! 10 19!- -/reset"
ih = OC#h » P 9 < -ill 18! ->pl5 "
tt2 = OD#h " p!0< - ! 12 17 ! ->pl4 "
rrl = OE#h " pll< - ! 13 16! ->pl3 "
ax = OF#h Gnd - : i4 15 ! ->pl2 "
mm 10#h "
tt1 = ll#h
dhl = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = = lA#h hhl = lB#h
bbl = lC#h th = lD#h uh = lE#h uw2 = lF#h aw = 20#h
dd2 = 21#h gg3 = 22#h w = 23#h ggl = 24#h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h W W = -- 2E#h xr = 2F#h
wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = SBY; "default test condition"

1 4 6 4. Digital Circuits

BEGIN
"wait for test
"l"stay:

input to go low"
if (test) then goto pi (stay);

"2" PP, call pi (read)
"3" iy, call pi (read)
"4" pa5, call pi (read)
"5" iy, call pi (read)
"6" S S , call pi (read)
"7" S S , call pi (read)
"8" pa2, call pi (read)

"p I S

"9"
"10"

, if (less) then goto pi(msgl);
, if (equal) then goto pi(msg2);

"11" , if (greater)
"12"msgl 11, cal 1 pi (read)
"13" eh, ca] 1 Pi (read)
"14" S S , cal 1 Pi (read)
"15" S S , cal 1 pl (read)
"16" pa5, ca] 1 Pl (read)
"17" ,got ο pl (msg4)
"18"msg2 ih, cal 1 pl (read)
"19" kkl, ca] 1 pl (read)
"20" uh, cal 1 pl (read)
"21" ax, cal 1 pl (read)
"22" 11, ca] 1 Pl (read)
"23" pa5, cal 1 Pl (read)
"24" ttl, cal 1 Pl (read)
"25" O W , cal 1 Pl (read)
"26" pa4, ca] 1 Pl (read)
"27" ,got ο pl (msg5)
"28"msg3 ggl, ca] 1 Pl (read)
"29" rr2, cal 1 Pl (read)
"30" ey, cal 1 Pl (read)
"31" pa2, cal 1 Pl (read)
"32" erl, cal 1 Pl (read)
"33" pa5, cal 1 Pl (read)
"34"msg4 dhl, cal 1 Pl (read)
"35" ae, cal 1 Pl (read)
"36" nnl, cal 1 Pl (read)
"37" pa4, cal 1 Pl (read)
"38"msg5 kkl, cal 1 Pl (read)
"39" iy, cal 1 Pl (read)
"40" uh, cal 1 Pl (read)
"41" pa2, cal 1 Pl (read)
"42" , got .o pl (stay)

"43"read ,continue;
"44"styl , if (not sby)
"45" , ret;

"EQUAL TO.

"GREATER"

"Q"

"46"
END.

.org 63#d
,goto pl(stay);

4,1 Four-Bit Magnitude Comparator 1 4 7

To low pass
f i l te r and
audio Amp.

0.1uF

> 4 , 7 K ^ IClb

F i g u r e 4 .2 EPROM-based circuit for the magnitude comparator interfaced to the
speech processor SP0256-AL2.

in great detail. For this circuit, the key relies on how the EPROM selects the
three different messages "P is less than Q," "P is equal to Q," and "P is
greater than Q ." The IC 74HC85 is always comparing the magnitude of the
two 4-bit input words, and the result is sent to the EPROM inputs A4, A5, and
A6. When the TEST switch is pressed, the Nand gate Nl (1/4 CD4093) is
enabled. This action causes a high-to-low transition at the /ALD input of the
speech processor, which starts announcing one of the three messages. Notice
that selection of the message is controlled by the status of the three outputs
coming from the 74HC85. A logic high in the output A < B, for example,
means that the EPROM selects the block of memory that starts in hex address
20H. When the two 4-bit inputs are equal, the EPROM selects the block that
starts at hex address 40H. Accordingly, the binary counter CD4520 keeps

1 4 8 4 . Digital Circuits

T A B L E 4.3
E P R O M Program for the Circuit of Figure 4.2

Hex Hex Hex Hex Hex Hex
Add Data Add Data Add Data

20 09 40 09 80 09
21 13 41 13 81 13
22 04 42 04 82 04
23 13 43 13 84 13
24 37 44 37 85 37
25 37 45 37 86 37
26 02 46 02 87 02
27 2D 47 OC 88 24
28 07 48 2A 89 27
29 37 49 IE 8A 14
2A 37 4A OF 8B 02
2B 04 4B 2D 8C 33
2C 12 4C 04 8D 04
2D 1A 4D 11 8E 12
2E OB 4E 35 8F 1A
2F 03 4F 03 90 0B
30 2A 50 2A 91 03
31 13 51 13 92 2A
32 IE 52 IE 93 13
33 04 53 04 94 IE
34 40 54 40 95 04
Continued Continued 96 40

scanning the lower address bits of the EPROM in order to issue all the speech
data that the speech processor need to announce a message. The end of a mes­
sage is also indicated by the EPROM, which asserts a logic high at output 0 6
in order to clear the flip-flop (1/2 CD4013).

Bear in mind that using the circuit of Figure 4.2, in contrast with the circuit
of Figure 4 .1 , occupies more board space and increases the cost of this system.

4.2 A Talking Hexadecimal
Keyboard Encoder

A talking keyboard encoder can be an important feature that can be added to
most digital control systems. The project presented here will introduce rele­
vant applications in burglar alarms, telephone dialers, motor-speed control­
lers, and stand-alone PROM programmers. In applications requiring precision
(e.g., control of a set of huge ac motors where a small failure or mistake can

4.2 A Talking Hexadecimal Keyboard Encoder 1 4 9

lead to the destruction of equipment or to catastrophic results), the addition of
a talking keyboard encoder can help the user to know precisely if the number
he has pressed is the one he needs for certain operations.

The circuit presented in Figure 4.3 shows a 16-key encoder 74C922 inter­
faced to an FPC Am29CPL152 that makes the speech processor announce the
key that the user has just pressed. The encoder 74C922 contains pull-up re­
sistors that permit switches with up to 50 kilohms on resistance. A self-
contained debounce circuit is enabled by simply adding an external capacitor.
The output DATA AVAILABLE (pin 12) goes to a high level when a valid

/ T N O . 1 u F

F i g u r e 4.3 Circuitry for interfacing a hexadecimal keyboard encoder to the speech
processor SP0256-AL2.

1 5 0 4 . Digital Circuits

T A B L E 4.4
Software Program for the FPC Am29CPL152 to Make the
Speech Processor SP0256-AL2 Announce a Key Pressed

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
data = t4
sby = t5

"allophones and pauses are given name assignments"

pa2 = 01#h »

pa3 = 02#h t6-> ! 1 28!- Vcc "
pa4 = 03#h p0<- ! 2 27!<-clk "
pa5 = 04#h pl<- !3 26!<-ec "
oy = 05#h " p2<- !4 25!<-t0 "
ay = 06#h p3<- ! 5 Am29CPL 24!<-tl "
eh = 07#h 11 p4<- ! 6 152 23i<-t2 "
kk3 = 08#h " p5<- ! 7 22!<-t3 "
PP = 09#h p6<- ! 8 21,'<-t4 "
jh = 0A#h " p7<- ! 9 20!<-t5 "
nnl = 0B#h " p8<- : io 19 ί <-/reset"
ih = 0C#h " p9<- ! 11 18i->pl5 "
tt2 = 0D#h " pl0<- ! 12 17i->pl4 "
rrl = 0E#h " pll<- ! 13 16!->pl3 "
ax 0F#h Gnd- !14 15!->pl2 "
mm 10#h ·-

tt 1 = ll#h
dhl = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = lA#h hhl = lB#h
bbl = lC#h th = lD#h uh = lE#h uw2 = lF#h aw = 20#h
dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24#h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h xr = 2F#h
wh = 30#h yyi = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = SBY; "/STANDBY is the default test condition"

BEGIN
"0" ,goto pi(zero);
"1" ,goto pi(one);
"2" ,goto pi(two);
"3" ,goto pi(thre);
"4" ,goto pi(four);
"5" ,goto pi(five);
"6" , goto pi(six);
"7" , goto pi(svn);
"8" ,goto pi(eit);

4·2 A Talking Hexadecimal Keyboard Encoder 1 5 1

HQ M goto Pl nin) ;
"10" goto pi ltra);
"11" goto Pl ltrb);
"12" goto Pl ltrc);
"13" goto Pl ltrd);
"14" goto Pl ltre);
"15" goto pi ltrf);
"16" zero.ζζ, cal] pi (read);
"17" yr, cal] pl (read);
"18" ow, cal] L p] (read);
"19" pa2, cal] L p] (read);
"20" ,goto p] (stay);
"21" one: WW, cal] pl (read);
"22" ax, cal] l p] (read);
"23" ax, cal; l p] (read);
"24" nnl, cal] l p] (read);
"25" pa2, cal: L p] (read) ;
"26" ,goto p] (stay);
"27" two: tt2, cal; pl (read);
"28" uw2, cal; pi (read);
"29" pa2, cal] L p] (read);
"30" ,goto p] (stay);
"31" thre:th, cal; L p] (read);
"32" rrl, cal] L p] (read);
"33" iy, cal; [p] L(read);
"34" pa2, cal] L p] (read);
"35" , gotc) p] L(stay);
"36" four:ff, cal] L p] (read);
"37" ff, cal] L p] L(read);
"38" or, cal] L p] I(read);
"39" pa2, cal L p] L(read);
"40" , gotc 3 P] L(stay);
"41" five:ff, cal] L p] (read);
"42" ff, cal] L p] L(read);
"43" ay, cal] L p] (read);
"44·· w , cal] L p] L(read);
"45" pa2, cal] L p] L(read);
"46" , gotc 5 PJ L(stay);
"47- six: ss, cal L p] (read);
"48" ss, cal] L p] (read);
"49" ih, cal] L p] (read);
"50" ih, cal] L p] L(read);
"51" pa3, cal] L p] L(read);
"52" kk2, cal] L p] L(read);
"53' ss, cal] L p] L(read);
"54' pa2, cal] L p] L(read);
"55" , gotc 5 p] L(stay);
"56' svn: ss, cal] L p] L(read);
"57' ss, cal-L p. L (read) ;
"58' eh, cal L p. L(read);
"59' eh, cal. L p. L(read)·
"60' w , cal L p. L(read)
"61' eh, cal L P . (read)
"62' nnl, cal L P L(read)

"ZERO"

"ONE"

"TWO"

"FIVE"

"SIX"

"SEVEN"

1 5 2 4 . Digital Circuits

"63" pa2,
"64"
"65"eit:ey,
"66" pa3,
"67" tt2,
"68" pa2,
"69"
"70"nin:nn2,
"71"
"72"
"73"

"75"
"76"
"77"
"78"
"79"
"80"
"81'
"82"
"83'
"84'
"85'
"86·
"87'

"89"
"90"
"91"
"92"
"93"
"94"
"95"
"96"
"97"
"98"
"99"

aa,
ay,
nnl,
pa2,

ltra:ey,
pa2,

ltrb:bb2

pa2,

ltrc:ss,
S S ,

iy,
pa2,

ltrd:dd2
iy,

pa2,

ltre:iy,
pa2,

ltrf: eh,
eh,
ff,
ff,

pa2,

call pl(read) ;
, goto pl (stay);
call pl(read) ;
call pl(read) ;
call pl(read) ;
call pl(read);
, goto pl(stay);
call pl(read) ;
call pl(read);
call pl(read) ;
call pl(read) ;
call pl(read);
, goto pl(stay);
call pl(read) ;
call pl(read) ;

goto pl(stay) ;
call pl(read)
call pl (read)
call pl(read)
goto pl(stay)
call pl(read)
call pl(read)
call pl(read)
call pl(read)
goto pl(stay)
call pl(read)
call pl(read)
goto pl (stay)
call pl(read)
call pl(read)
goto pl (stay)
call pl(read)
call pl(read)
call pl(read)
call pl(read)
call pl(read)
goto pl(stay)

"EIGHT"

"A"

"C"

» wait for data input to go high"
"100"stay: ,if (not data) then goto pl(stay);
"101" , goto tm(001111#b) ; "Go to address: T3,T2,T1,T0"
"subroutine for reading the standby status of the speech processor"
"102"read: ,continue;
"103"styl: ,if (not sby) then goto pl(styl); "reading SBY"
"104" ,ret;

.org 127#d
"105" ,goto pl (stay) ;
END.

4.2 A Talking Hexadecimal Keyboard Encoder Τ 5 3

entry has been made. When the entered key is released, the DATA AVAIL­
ABLE output returns to a low level.

The software program that reads the 16-key pad and makes the speech pro­
cessor say the pressed key is shown in Table 4.4. The routine for this program
must be able to detect when a key has been pressed and then to proceed driv­
ing the speech processor. When the circuit is first turned on, a power-up reset
pulse is applied to the reset input of the FPC (see Figure 4.3); therefore, we
have to apply the same reset pulse in the software program. This pulse is
achieved with the instruction "org 127#d." Once this reset pulse has been
applied, the program jumps to line 105, which contains the instruction "goto
pl(stay)." This instruction makes the program jump to the label "stay" that is
located in line 100.

The instruction located in line 100 4 4if (not data) then goto pl (stay)" keeps
the program reading the logic status of the input presented in T4. As Fig­
ure 4.3 shows, the output DATA AVAILABLE coming from the encoder
(74C922) is routed to the testable input T4. The instruction in line 100 will be
waiting for the data input (T4) to go high; consequently, if the input T4 is
high, the program jumps to the next instruction (line 101). Instruction "goto
tm(001111#b);" located in line 101, makes the program jump to the address
indicated by the four testable inputs TO, Tl , T2, and T3; it means that the hex
code presented in these inputs will make the program jump to the addresses
within the range of zero to fifteen. The instructions located within this range
are used to indicate to the program the location of the set of allophones con­
taining the word that must be vocalized. When the message corresponding to
the pressed key has been issued, the program jumps directly to line 100 in
order to continue monitoring the status of the data input (DA).

To make sure the program of Table 4.4 is performing the instructions cor­
rectly, we will write a short file called "SIMKBD." This file (see Table 4.5)
contains only seven vectors that must be executed by the program SIM14X,
version 5.0 from Advanced Micro Devices. The program SIM14X executes
the simulation by reading the JEDEC file that corresponds to the program pre­
sented in Table 4.4. r

Table 4.6 is the output file generated by the program SIM14X. This file
presents all the logical status of the inputs, outputs, and registers. In this man­
ner, you can check the outputs related to the inputs that you have already pro­
grammed. If a mismatch occurs, it will be indicated by the symbol " ? . " In
this case, this file shows correctly all the outputs, which means that our pro­
gram is working perfectly. You can also augment the size of the test file pre­
sented in Table 4.5 in order to test different points or steps of the program.

With the project presented here, we will be able to add a key pad to the
designs that require a digital input from the user. We will use the program
presented here as a simple subroutine whenever we need it. Remember that
this routine can be added to programs working with the FPC Am29CPL152 or
Am29CPL154.

1 5 4 4 . Digital Circuits

T A B L E 4.5
Test Vector File to Simulate the Operation of the

Software Program Presented in Table 4.5

HEADER (CPL142) "Simulating the keyboard routine"

PIN elk = 27
/reset = 19
t5 = 20 t4 = 21
t3 = 22 t2 = 23
tl = 24 tO = 25
cc = 26 pl5 = 18
pl4 = 17 pl3 = 16
pl2 = 15 pll = 13
plO = 12 p9 = 11
p8 = 10 p7 = 9
p6 = 8 p5 = 7
p4 = 6 p3 = 5
p2 = 4 pl = 3
pO = 2;

VECTORS

IN elk /reset t5 t4 t3 t2 tl tO;
OUT p7 p6 p5 p4 p3 p2 pl pO;

BEGIN
" c / sd"

1 r ba"
" ο e yt"
" c s a"

k e tttttt pppppppp"
543210 76543210

" TEST INSTR FOR FAIL CONDITION

0 c 0 XXXXXX XXXXXXXX "reset pulse"
1 c 1 100000 XXXXXXXX "low to high reset"
2 c 1 100000 LLLLLLLL "goto pl(stay), data=0"
3 c 1 110111 LLLLLLLL "if(not data) then goto pl(stay)"
4 c 1 100111 LLLLLLLL "if(not data) then goto pl(stay)"
5 c 1 100000 LLLLLLLL "PC=101d -goto tm"
6 c 1 100000 LLLLLLLL "PC=07d -goto pl(seven)"
7 c 1 100000 LLHHLHHH "PC=38h -allophone^ ss"
END.

4.2 A Talking Hexadecimal Keyboard Encoder 1 5 5

T A B L E 4.6
Output File Generated by the Simulator SIM14X

voooo INPUT 1 OUTPUT (Expansion disabled)
/ !

r !

Pin c e !

Name: 1 s t t t t t t !
Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ

k e 5 4 3 2 1 0
7 6 5 4 3 2 1 0

R/NR: R R R R R R R

Pin#: 27 19 20 21 22 23 24 25 !
9 8 7 6 5 4 3 2

Veet: C 0 X X X X X X
X X X X X X X X

Comp: !

Χ Χ X X X X X X

CREG = * * * * pc = ****, EQ = *
STK 0] * * * * [H * * * *

Pipeline : ***

Mnemonics: ***

Current PL contents are undefined

V0001 INPUT OUTPUT (Expansion disabled)
/

r :

Pin c e :

Name: 1 s t t t t t t :
Ρ Ρ Ρ Ρ Ρ Ρ Ρ Ρ

k e 5 4 3 2 1 0
7 6 5 4 3 2 1 0

R/NR: R R R R R R R !

Pin#: 27 19 20 21 22 23 24 25 :
9 8 7 6 5 4 3 2

Vect: c 1 1 0 0 0 0 0
X X X X X X X X

Comp: !
X X X X X X X X

CREG — * * * * ; pc — * * * * EQ = *
STK 0] **** [D ****

1 5 6 4. Digital Circuits

Pipeline : ***

Mnemonics: ***

Current PL contents are undefined

V0002 INPUT ! OUTPUT (Expansion disabled)
/ !

r ;

Pin c e

Name: 1 s t t t t t t :
Ρ Ρ Ρ Ρ Ρ Ρ Ρ P

k e 5 4 3 2 1 0
7 6 5 4 3 2 1 0

R/NR: R R R R R R R

Pin#: 27 19 20 21 22 23 24 25
9 8 7 6 5 4 3 2

Vect: c 1 1 0 0 0 0 0 !
L L L L L L L L

Comp: ;

L L L L L L L L

CREG — * * * * PC = 7F#H, EQ = 0

STK f 01 * * * * f H ****

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
1 19#H 0 05#H 64#H 0000000000000000#B

(0000#H)
Mnemonics: GOTOPL, IF (cond) THEN GOTO PL(data)
Condition PASS, TEST t5 = 1, VALUE = 1
Current PL contents loaded from ROM address 127 (07F#H)

V0003 INPUT OUTPUT (Expansion disabled)
/

r

Pin c e

Name: 1 s t t t t t t
Ρ Ρ Ρ Ρ P P P P

k e 5 4 3 2 1 0
7 6 5 4 3 2 1 0

R/NR: R R R R R R R

Pin#: 27 1£) 20 21 22 23 24 25
9 8 7 6 5 4 3 2

Vect: C 1 1 1 0 1 1 1
L L L L L L L L

4.2 A Talking Hexadecimal Keyboard Encoder 1 5 7

Comp : ',
L L L L L L L L

CREG = ****, PC = 64#H, EQ = 0
STK f 01 * * * * r l] * * * *

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
1 19#H 1 04#H 64#H 0000000000000000#B

(0000#H)
Mnemonics: GOTOPL, IF (cond) THEN GOTO PL(data)
Condition PASS, TEST t4 = 0, VALUE = 0
Current PL contents loaded from ROM address 100 (064#H)

OUTPUT (Expansion disabled)

Pin c e

Name: l s t t t t t t !
p p p p p p p p

k e 5 4 3 2 1 0 1 7 6 5 4 3 2 1 0
R/NR: R R R R R R R

Pin#: 27 19 20 21 22 23 24 25 !
9 8 7 6 5 4 3 2

Vect: C 1 1 0 0 1 1 1 !
L L L L L L L L

Comp : ',
L L L L L L L L

CREG = * * * * , PC = 64#H, EQ = 0
STK f 01 **** f 11 ****

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
1 19#H 1 04#H 64#H 0000000000000000#B

(0000#H)
Mnemonics: GOTOPL, IF (cond) THEN GOTO PL(data)
Condition FAIL, TEST t4 = 0, VALUE = 1
Current PL contents loaded from ROM address 100 (064#H)

V0005 INPUT

Pin c e

Name: l s t t t t t t
p p p p p p p p

k e 5 4 3 2 1 0
7 6 5 4 3 2 1 0

R/NR: R R R R R R R

OUTPUT (Expansion disabled)

1 5 8 4 . Digital Circuits

Pin#: 27 19 20 21 22 23 24
9 8 7 6 5 4 3 2

Vect: C 1 1 0 0 0 0
L L L L L L L L

Comp:

CREG = * * * * , PC = 65#H,
STK [0] * * * * [l] * * * *

Pipeline : OE OPCODE

L L L L L L L L

EQ = 0

POL TEST DATA
1 1F#H 0 05#H 0F#H

(0000#H)
Mnemonics: GOTOTM, IF (cond) THEN GOTO TM(data)
Condition PASS, TEST t5 = 1, VALUE = 1, T[6:01 = 27#H, T*M
Current PL contents loaded from ROM address 101 (065#H)

OUTPUTS
0000000000000000#B

07#H

INPUT

Pin c e

Name: l s t t t t t t
p p p p p p p p

k e 5 4 3 2 1 0
7 6 5 4 3 2 1 0

R/NR: R R R R R R R

Pin#: 27 19 20 21 22 23 24 25
9 8 7 6 5 4 3 2

Vect: C 1 1 0 0 0 0 0
L L L L L L L L

Comp :
L L L L L L L L

CREG = ****, PC = 07#H, EQ = 0
STK [0] **** [1] ****

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
1 19#H 0 05#H 38#H 0000000000000000#B

(0000#H)
Mnemonics: GOTOPL, IF (cond) THEN GOTO PL(data)
Condition PASS, TEST t5 = 1, VALUE = 1
Current PL contents loaded from ROM address 7 (007#H)

OUTPUT (Expansion disabled)

V0007 INPUT ! OUTPUT (Expansion disabled)

/

r !

Pin c e !

4.3 Designing α Talking Semaphore 1 5 9

Name: l s t t t t t t !
P P P P P P P P

k e 5 4 3 2 1 0 !
7 6 5 4 3 2 1 0

R/NR: R R R R R R R

Pin#: 27 19 20 21 22 23 24 25 !
9 8 7 6 5 4 3 2

Vect: C 1 1 0 0 0 0 0 i
L L H H L H H H

Comp : ',
L L H H L H H H

CREG = * * * * , PC = 38#H, EQ = 0
STK [0] **** [11 ****

Pipeline : OE OPCODE POL TEST DATA OUTPUTS
1 1C#H 0 05#H 66#H 0000000000110111#B

(0037#H)
Mnemonics: CALPL, IF (cond) THEN CALL PL(data)
Condition PASS, TEST t5 = 1, VALUE = 1
Current PL contents loaded from ROM address 56 (038#H)

Simulation completed 0 simulation error (s) found

4.3 Designing α Talking Semaphore

A traffic controller can be enhanced by integrating a vocal warning system
which can protect pedestrians from accidents caused by an elapsed time.
Some pedestrians perceive the WALK signal but they do not notice when the
WALK signal starts flashing so that they are not in the middle of the street
when the oncoming cars have the green light.

The design presented here will be applied to a simple traffic controller
where two one-way streets are considered for illustrative purposes. Figure 4.4
shows the traffic intersection with two one-way streets: one in direction 1 and
the other in direction 2. Each direction has a set of five light signals consisting
of green, yellow, red, pass, and don't pass. The lights assigned for direction 1
are named GREEN 1, YELLOW1, RED1, PASS1, and DON'T PASS1. In the
same manner, the set of lights assigned for direction 2 are named GREEN2,
YELLOW2, RED2, PASS2, and D O N T PASS2. The signals DON'T PASS1
and DON'T PASS2 are generated by using two external inverters, as shown in
Figure 4.5. Two sensor switches, SW1 and SW2, will be used for detecting a
request made by a pedestrian who desires to cross the street. The selection of
the street that the pedestrian wants to cross is made by pressing only the re­
spective switch SW1 or SW2. Also, each direction has a sensor that provides
an active high signal (SEN1, SEN2) that indicates the presence of a vehicle.

1 6 0 4 . Digital Circuits

S i f f l a S 1 (2)
 Q 1

5 W 2 - { 0 2

5 E N 1 - s Î 4 0 1
3 03-

S E N 2 - S 4 04
" A R I - R 4

To LPF and
^ G u d Î O

amp!ι f ie r

10QK i 5 V

F i g u r e 4 .5 Circuitry for the talking traffic controller.

4.3 Designing α Talking Semaphore 1 6 1

The traffic controller signals will be generated by the FPC Am29CPL152.
Thanks to the 16 output lines of the FPC, it will also be controlling the speech
processor that will give the messages to the pedestrians. In this case, we will
give names to the streets so that the vocal message will be able to indicate the
street that the pedestrian has to cross. For this purpose, the street with direc­
tion 1 will be named "MAIN Street," and the street with direction 2 will be
named "FIRST Street."

The truth table indicating all the functions of this traffic controller, includ­
ing the type of vocal warning messages, is shown in Table 4.7. In normal
operation the traffic controller will give equal periods of green signals. At the
end of each period of green signal, the controller will ask for the status of the
input switches SW1 and SW2, and the vehicle sensors SEN1 and SEN2 in
order to decide the length of time for the next cycle.

The operation of the software program shown in Table 4.8 is as follows.
When the circuit is first turned on, a software reset pulse is applied. Then the
program performs the next instruction "go to pl(dirl)," which makes the pro­
gram to go to the address labeled as "d i r l " that is located in line 16. Lines 16
to 22 contain a routine that activates the output lines named " g r n l " and
"red2." These names, separated by a comma from the instruction, generate a

T A B L E 4.7
Table for Traffic Flow Direction

SWl SW2 SEN1 SEN2 Output

L L L L ! Allow traffic in direction 1 (MAIN St)

L L L H ! Allow traffic in direction 2 (FIRST St)

L L H L ! Allow traffic in direction 1 (MAIN St)

L L H H i Cycle with equal durations in both directions

L H L L ! Allow traffic in direction 2 (FIRST St)

L H L H ! Allow traffic in direction 2 (FIRST St)

L H H L ! Allow traffic in direction 1 (MAIN St)

L H H H Cycle with equal directions in both directions

Η L L L ! Allow traffic in direction 1 (MAIN St)

Η L L H Cycle with equal durations in both directions

Η L H L ι Allow traffic in direction 1 (MAIN St)

Η L H H Cycle with equal durations in both directions

Η H L L Cycle with equal durations in both directions

Η H L H ' Cycle with equal durations in both directions

Η H H L Cycle with equal durations in both directions

Η H H H Cycle with equal durations in both directions

1 6 2 4 . Digital Circuits

T A B L E 4.8
Software Program for the FPC Am29CPL152 to Make the Traffic Controller

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
swl = tO
sw2 = tl
senl = t2
sen2 = t3
sby = t5
equal = eq

"allophones and pauses are given name assignments"

pa2 = 01#h "
pa3 = 02#h t6-> ! 1 28 - Vcc "
pa4 = 03#h p0<- 12 27 <-clk "
pa5 = 04#h " pl<- !3 26 <-cc "
oy = 05#h " p2<- : 4 25 <-t0 "
ay = 06#h p3<- 15 Am29CPL 24 <-tl "
eh = 07#h " p4<- ! 6 152 23 <-t2 "
kk3 = 08#h " p5<- ! 7 22 <-t3 "
pp = 09#h p6<- ! 8 21 <-t4 "
jh = 0A#h " p7<- 19 20 <-t5 "
nnl = OB#h " p8<- ! 10 19 <-/reset"
ih = OC#h p9<- ! 11 18 ->pl5 "
tt2 = OD#h " plu<- ! 12 17 ->pl4 "
rrl = OE#h " pll<- ! 13 16 ->pl3 "
ax = OF#h Gnd- ! 14 15 ->pl2 "
mm = 10#h " "
ttl = ll#h
dhl = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = lA#h hhl = lB#h
bbl = lC#h th = lD#h uh = lE#h uw2 = lF#h aw = 20#h
dd2 = 21#h gg3 = 22#h w = 23#h ggl = 24#h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h W W = 2E#h xr = 2F#h
wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h
grnl = 40#h yell = 80#h redl = 100#h
grn2 = 200#h yel2 = 400#h red2 = 800#h
passl = 1000#h pass2 = 2000#h latch= 4000#h rst = 8000#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = SBY; "/STANDBY is the default test condition"

BEGIN
"0" ,goto pl(dirl);
"1" ,goto pl(dir2);
"2" ,goto pl(dirl);

4.3 Designing α Talking Semaphore 1 6 3

"3" ,goto pl(both)
"4" ,goto pl(dir2)
"5" ,goto pl(dir2)
"6" ,goto pl(dirl)
"7" ,goto pl(both)
"8" ,goto pl(dirl)
"9" ,goto pl(both)
"10" ,goto pl(dirl)
"11" ,goto pl(both)
"12" ,goto pl(both)
"13" ,goto pl(both)
"14" ,goto pl (both)
"15" ,goto pl(both)

"16"dirl:grnl+red2. load pl(100); "20 seconds"
"17"rick:grnl+red2+pa5, call pl(delay);
"18" grnl+red2, while (creg <> 0) loop to pl(rick);
"19" grnl+red2, load tm(0F#h);
"20" grnl+red2, cmp tm(0F#h) to pl(00#h);
"21" grnl+red2, if (equal) then goto pl(dirl);
"22" grnl+red2, goto tm(0F#h);

"23"dir2:yell+red2+rst, load pl(20); "4 seconds"
"24"styl:yell+red2+pa5, call pl(delayl);
"25" yell+red2, while (creg <> 0) loop to pl(styl);
"26" grn2+redl+pass2, call pl(msgl);
"27" grn2+redl+pass2, load pl (100); "20 seconds"
"28"styy:grn2+redl+pass2+pa5, call pl(delay2);
"29" grn2+redl+pass2, while (creg <> 0) loop to pl(styy);
"30" grn2+redl+pass2+ss, call pl(readl); "STOP"
"31" grn2+redl+pass2-l-ss, call pl (readl) ;
"32" grn2+redl+pass2+tt2, call pl(readl);
"33" grn2+redl+pass2+ax, call pl(readl);
"34" grn2+redl+pass2+pp, call pl(readl);
"35" grn2+redl+pass2+pa4, call pl(readl);
"36" grn2+redl+pass2, load pl (25); "5 seconds"
"37"sty2:grn2+redl+pass2+pa5, call pl(delay2);
"38" grn2+redl+pass2, while (creg <> 0) loop to pl(sty2);
"39" yel2+redl, load pl (20); "4 seconds of Yellow2"
"40"sty3:yel2+redl+pa5, call pl(delay3);
"41" yel2+redl, while (creg <> 0) loop to pl(sty3);
"42" yel2+redl, goto pl(dirl); "goto verify sensors"

"43"both:yell+red2+rst, load pl(20); "4 seconds of Yellowl"
"44"sty4:yell+red2+pa5, call pl(delayl);
"45" yell+red2, while (creg <> 0) loop to pl(sty4);
"46" grn2+redl+pass2, call pl(msgl);
"47" grn2+redl+pass2, load pl (125); "25 seconds of Green2"
"48"sty5:grn2+redl+pass2+pa5, call pl(delay2);
"49" grn2+redl+pass2, while (creg <> 0) loop to pl(sty5);
"50" grn2+redl+ss, call pl(delay5); "STOP"
"51" grn2+redl+ss, call pl(delay5);
"52" grn2+redl+tt2, call pl(delay5);
"53" grn2+redl+ax, call pl(delay5);

1 6 4 4 . Digital Circuits

"54" grn2+redl+pp,
"55" grn2+redl+pa4,
"56" yel2+redl,
"57"sty6:yel2+redl+pa5,
"58" yel2+redl,
"59" grnl+red2+passl,
"60" grnl+red2+passl,
"61"sty7:grnl+red2+passl+pa5,
"62" grnl+red2+passl,
"63" grnl+red2,

cal1 pl(delay5);
call pl(delay5);
load pl(20);
call pl(delay3);
while (creg <>
call pl(msg2);
load pl (125) ;
call pl(delay4;
while (creg <>
goto tm(0F#h);

"4 seconds"

0) loop to pl(sty6)

"25 seconds"

0) loop to pl(sty7)

"64"delay:grnl+red2,
"65"styz: grnl+red2,
"66" grnl+red2,

continue;
if (not sby) then goto pl(styz)
ret;

"subroutine for reading the standby status of the speech processor"
"67"readl:grn2+redl+pass2, continue;
"68"paty: grn2+redl+pass2, if (not sby) then goto pl(paty);
"69" grn2+redl+pass2, ret;

"subroutine for reading the standby status of the speech processor"
"70"read2:grnl+red2+passl, continue;
"71"styb: grnl+red2+passl, if (not sby) then goto pl(styb);
"72" grnl+red2+passl, ret;

"73"delayl:yell+red2,
"74"stye: yell+red2,
"75" yell+red2,

continue;
if (not sby) then goto pl(styd)
ret;

"76"delay2:grn2+redl+pass2,
"77"styd:grn2+redl+pass2,
"78" grn2+redl+pass2,

continue;
if (not sby) then goto pl(styd);
ret;

"79"delay3:yel2+redl,
"80"stye:yel2+redl,
"81" yel2+redl,

continue;
if (not sby) then goto pl(stye)
ret;

"82"delay4:grnl+red2+passl,
"83"styf:grnl+red2+passl,
"84" grnl+red2+passl,

continue;
if (not sby) then goto pl(styf)
ret;

"85"delay5:grn2+redl+ss,
"86"styg :grn2+redl+ss,
"87" grn2+redl+ss,

continue;
if (not sby) then goto pl(styg)
ret;

»******* SUBROUTINE FOR THE MESSAGE: PASS THE MAIN STREET"
"88"msgl:grn2+redl+pass2+pp,
"89" grn2+redl+pass2+ax,
"90" grn2+redl+pass2+ss,
"91" grn2+redl+pass2+ss,
"92" grn2+redl+pass2+pa4,
"93" grn2+redl+pass2+dhl,

call pl(readl);
call pl(readl);
call pl(readl);
call pl(readl);
call pl(readl);
call pl(readl);

4.3 Designing α Talking Semaphore 1 6 5

"94" grn2+redl+pass2+ax, c a l l p l (r e a d l) ;

" 9 5 " grn2+redl+pass2+pa4, c a l l p l (r e a d l) ;

" 96 " grn2+redl+pass2+mm, c a l l p l (r e a d l) ;

" 97 " grn2+red l+pass2+ey, c a l l p l (r e a d l) ;

"98 " g rn2+red l+pass2+nn l , c a l l p l (r e a d l) ;

"99 " grn2+redl+pass2+pa4, c a l l p l (r e a d l) ;

"100" g rn2+red l+pass2+ss, c a l l p l (r e a d l) ;

" 1 0 1 " g r n 2 + r e d l + p a s s 2 + t t l , c a l l p l (r e a d l) ;

" 102 " g rn2+ red l+pass2+ r r1 , c a l l p l (r e a d l) ;

"103" g rn2+red l+pass2+ ih , c a l l p l (r e a d l) ;

"104" g rn2+red l+pass2+ t t2 , c a l l p l (r e a d l) ;

" 105 " grn2+redl+pass2+pa4, c a l l p l (r e a d l) ;

"106" g rn2+red l+pass2 , r e t ;

"******* SUBROUTINE FOR THE MESSAGE : PASS THE
"107"msg2:grn l+red2+pass l+pp, c a l] L p l (r e a d 2)
"108" g rn l+ red2+pass l+ax , c a l l L p l (r e a d 2)

"109" g rn l+ red2+pass l+ss , c a l] L p l (r e a d 2)

"110" g rn l+ red2+pass l+ss , c a l] L p l (r e a d 2)

" 1 1 1 " g rn l+ red2+pass l+pa4 , c a l . L p l (r e a d 2)

" 112 " g rn l+ red2+pass l+dh l , c a l . L p l (r e a d 2)

"113 " g r n l + r ed2+pass 1-f-ax, c a l L p l (r e a d 2)

"110" g rn l+ red2+pass l+pa4, c a l L p l (r e a d 2)

" 1 1 1 " g rn l+ red2+pass l+ f f , c a l L p l (r e a d 2)

" 112 " g rn l+ red2+pass l+e r2 , c a l L p l (r e a d 2)

"113" g rn l+ red2+pass l+ss , c a l L p l (r e a d 2)

"114" g r n l + r e d 2 + p a s s l + t t 2 , c a l L p l (read2)

"115 " g rn l+ red2+pass l+pa4 , c a l L p l (read2)

"116" g rn l+ red2+pass l+ss , c a l L p l (read2)

"117" g r n l + r e d 2 + p a s s l + t t l , c a l L p l (r e a d 2)

"118" g r n l + r e d 2 + p a s s l + r r 1 , c a l L p l (r e a d 2)

"119" g rn l+ red2+pass l+ i h , c a l L p l (r e a d 2)

"120" g r n l + r e d 2 + p a s s l + t t 2 , c a l L p l (r e a d 2)

" 1 2 1 " g rn l+ red2+pass l+pa4, c a l L p l (r e a d 2)

"122 " g r n l + r e d 2 + p a s s l , r e t

. o r g 127#d
"122" , g o t o p l (d i r l) ;
END.

logic high to the outputs that activate the signals GREEN 1 and RED2. The
instruction "load pl(100)" in line 16 loads the counter register (CREG) with
the decimal value "100." The next instruction "call pl(delay)" then proceeds
to call subroutine "delay" in order to load the speech processor with pause
pa5. Pause pa5 is used to perform 200 ms silence pauses. Also, subroutine
"delay" waits for the speech processor until it finishes executing the 200 ms
pause. When the 200 ms pause ends, the program performs a return to line 18
where the instruction "while (creg < > 0) loop to pl(styl)" is executed. The

1 6 6 4 . Digital Circuits

instruction in line 18 decrements the counter (CREG) and tests its contents
against zero. If the contents differ from zero, the program loops to the instruc­
tion labeled "rick," and the process of calling the subroutine "delay" and
decrementing the counter CREG is repeated until the CREG is equal to zero.
Consequently, the three instructions in lines 16 to 18 cause a 20 s delay be­
cause the loop of 200 ms is executed 100 times. Notice that by using the long­
est pause contained in the speech processor, a long timing interval can be gen­
erated. But consider that the highest possible value that the counter CREG can
handle is 127.

Lines 19 to 22 are used to detect if any of the four input sensors has been
activated. These sensors are activated by comparing the value of the four input
lines T 0 - T 3 against zero. If any of these lines differs from zero, the program
jumps to one of the instructions located in lines 0 to 15. It is the value of the
four inputs TO to T3 that indicates the exact location of the jump. In this man­
ner, lines 0 to 15 contain the label where the program has to jump in order to
execute the timing routines that will control the output signals. In fact, lines 0
to 16 are used as a selector for the different types of inputs presented when the
sensors are activated. According to Table 4.6, there are two timing routines
that the program must execute: "dir2" and "both."

For example, if sensor2 is activated, the program will detect its activation
when the instructions 19 to 22 are executed. This will cause a jump to line 1,
which in turn makes the program jump to the routine named "dir2." Now,
routine "di r2" will start turning on the lamps named YELLOW 1 and RED2
and also will cause a reset pulse to the four external flip-flops. The timing
interval for the lamps YELLOW 1 and RED2 will be 4 s. The next step is to
perform the instruction in line 26, which calls subroutine " m s g l " in order to
issue the first vocal message to the pedestrian(s). The first message issued is
"Pass Main Street." This message is used to indicate to the pedestrian(s) that
now he(they) is(are) allowed to pass Main Street. Also, output signal "PASS2"
will be activated for 20 s. Thus, the pedestrian(s) will have two modes of an­
nouncement: visual and audible. Five seconds before the PASS2 signal goes
off, the speech processor will announce the following message: "STOP."
After the message "STOP" has been issued, signal GREEN2 will remain acti­
vated five more seconds to give the pedestrian(s) time to reach the other side
of Main Street. There is still another interval of security given by lamp
YELLOW2, because this lamp will be activated for 4 s. The last instruction
of routine "dir2" makes the program jump to routine " d i d " which is the nor­
mal state of this traffic controller; that is, lamps GREEN 1 and RED2 are
turned on.

Routine "both" makes essentially the same process of routine "dir2." The
only difference is that it allows traffic to flow in both directions. When routine
"both" ends, the program will jump to the routine indicated by the four test­
able inputs T0-T3.

4.4 How to Design α Talking Clock 1 6 7

As can be seen, the timing intervals can be changed by augmenting or re­
peating the set of instructions that perform the respective delay. In the same
manner, if more outputs are needed for controlling a larger number of lamps,
a second FPC can be added in parallel, which will share the same clock input
as the first FPC.

4.4 How to Design α Talking Clock

A talking clock can offer different applications, depending upon the area of
installation. For example, in a waiting room, it can be programmed to an­
nounce the time every 30 minutes. In a factory, a talking clock can be used
to report entrance and exit times of the workers. Talking clocks are useful
for people with visual handicaps. The talking clock presented here is pro­
grammed to show the time in hours and minutes in an LED display and to tell
the time every hour. To report the time every hour, Table 4.9 presents the
complete set of required messages. Notice that all the hours within the range
of 12:00 PM to 12:00 AM are reported.

The digital clock will be built around the chip MM5387 manufactured by
National Semiconductor. This chip is capable of driving four LED digits: Ml ,
M10, HI , and H10. The seven-segment outputs are compatible with common-
anode LED displays. Figure 4.6 shows the complete circuit for the talking

T A B L E 4.9
Messages for Programming the Talking Clock

Hour Message

12 00 It is twelve o'clock AM/PM

1 00 It is one o'clock AM/PM

2 00 It is two o'clock AM/PM

3 00 It is three o'clock AM/PM

4 00 It is four o'clock AM/PM

5 00 It is five o'clock AM/PM

6 00 It is six o'clock AM/PM

7 00 It is seven o'clock AM/PM

8 00 It is eight o'clock AM/PM

9 00 It is nine o'clock AM/PM

10 00 It is ten o'clock AM/PM

11 00 It is eleven o'clock AM/PM

12 00 It is twelve o'clock AM/PM

1 6 8 4 . Digital Circuits

F i g u r e 4.6 Talking clock circuit.

clock. As can be seen, the digital clock MM5387 is clocked by a 60 Hz fre­
quency generated by the crystal oscillator and divider MM5369AA/N. The
time of the clock is adjusted with two external, normally open switches, SI
and S2. SI is the switch for Fast Set, and S2 is the switch for Slow Set.

To send the digit that represents the hours (HI) to the FPC Am29CPL154,
the seven output lines from digit HI are routed to a seven-segment-to-BCD
encoder 74C915 before reaching the FPC. The 74C915 converts the seven
segments of the digit HI to a BCD format. Then the four outputs of the

4.4 How to Design α Talking Clock 1 6 9

74C915 (A, B, C, and D) are converted from a 10 V logic level to a 5 V logic
level with four voltage followers contained in the IC CD4050. The testable
inputs TO to T3 receive the BCD data that correspond to the hour units HI.
The FPC also needs to know three more factors: (1) the digit that represents
the tens of hours (H10), (2) the bit that indicates if the hour is AM or PM , and
(3) the bit that states when the hour has just changed in order to start the vocal
message announcing a different hour. To send even more information to the
FPC about the three last factors, the testable input T4 is used for detecting line
Η10. When line Η10 goes to a logic one, the tens of hour digit is activated.
Also, the testable input T5 receives the bit AM . If the bit AM is in a logic one,
the hour reading is within the range of 12:00 AM to 11:59 AM . Notice that T4
and T5 receive their input signals in a 5 V logic, thanks to the two voltage
followers contained in the IC CD4050. The FPC also needs to know when the
hour reading contains exactly zero minutes. For example, when the hour
changes from 7:59 to 8:00, the FPC will detect this change by reading its test­
able input T7; therefore, we need a circuit that detects when the digits repre­
senting the minutes (M10 and Ml) change from the number 59 to 00.

Figure 4.7 shows the circuit that detects when digits M10 and Ml change
from the number 59 to 00. To detect when digit Ml changes from nine to zero,
we will need a seven-input AND gate performing the product

Ml = a * b * c * d * e * f * / g

Notice that input " g " is inverted because the digital number " 0 " is formed

To input T7

F i g u r e 4.7 Circuit for detecting when digits M10 and M l are zero.

1 7 0 4 . Digital Circuits

with all the segments activated, except " g . " On the other hand, to detect
when digit M10 changes from 5 to zero, a two-input AND gate is needed. The
following truth table (Table 4.10) shows the six logical states of digit M10.

As Table 4.10 shows, we are using only six logical states for digit M10.
Thus, to detect when digit M10 is zero, we only require the following equation:

M10 = e2 * f2

The product e * f is sufficient to detect the zero state in digit M10 because no
other logical state presents the same combination. Now, we need to join the
two equations to detect when both digits M10 and Ml are zero. In this manner,
we get the following equation that detects when M10 and Ml are in state 00.

ZERO = a * b * c * d * e * f * / g * e 2 * f 2

To perform the above logic equation we need a PAL that accepts a minimum
of nine inputs and nine product terms. The PAL16C1 is suitable to perform the
equation ZERO. Figure 4.7 shows the PAL16C1 which must be programmed
with the preceding equation ZERO.

The software program required to perform the complete task of reading the
hour and giving the vocalized messages is shown in Table 4.11. The main rou­
tine is more or less similar to the one presented previously. That is, the pro­
gram first needs to detect if the time presented is exactly a determined hour
with zero minutes. The output bit of the PAL16C1 is the one that indicates to
the FPC if digits M10 and Ml are in the numbers 00. In this way, the FPC
must stay in a loop waiting for the input T7 to go to a logic high. When the
input T7 is high, the program will have to determine the type of message to be
announced by reading the time presented in the inputs TO to T5. The inputs TO
to T5 will indicate to the program the location where the required message has
been stored.

T A B L E 4.10
Truth Table for Digit M l 0

Number a 2 b 2 C 2 d 2 e 2 f 2 g 2

0 1 1 1 1 1 1 0

1 0 1 1 0 0 0 0

2 1 1 0 1 1 0 1

3 1 1 1 1 0 0 1

4 0 1 1 0 0 1 1

5 1 0 1 1 0 1 1

4.4 How to Design α Talking Clock 1 7 1

T A B L E 4.11
Software Program for the FPC Am29CPL154 to Perform

the Control of the Talking Clock

DEVICE (CPL154)

DEFAULT = 1;

DEFINE "test inputs"
hlO = t4
am = t5
sby = t6
mints = t7
equal = eq

"allophones and pauses are given name assignments"

pa2 = 01#h "
pa3 = 02#h t6->!l 28 - Vcc "
pa4 = 03#h p0<- ! 2 27 <-clk "
pa5 = 04#h " pl<- 13 26 <-t7 "
oy = 05#h p2<- ! 4 25 <-to "
ay = 06#h p3<- ! 5 \m29CPL 24 <-tl "
eh = 07#h " p4<- : 6 154 23 <-t2 "
kk3 = 08#h " p5<- ! 7 22 <-t3 "
PP = 09#h p6<- ! 8 21 <-t4 "
jh = OA#h " p7<- !9 20 <-t5 "
nnl = OB#h p8<- ! 10 19 <-/reset"
ih = OC#h p9<- ! 11 18 ->pl5 "
tt2 = OD#h " plu<- ! 12 17 ->pl4 "
rrl = OE#h " pll<- ! 13 16 ->pl3 "
ax = OF#h Gnd- ! 14 15 ->pl2 "
mm 10#h " "
tt 1 = ll#h
dhl = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = lA#h hhl = lB#h
bbl = lC#h th = lD#h uh = lE#h uw2 = lF#h aw = 20#h
dd2 = 21#h gg3 = 22#h vv 23#h ggl = 24#h sh = 25#h
zh = 26#h rr2 = 27#h f Γ = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h W W = 2E#h xr = 2F#h
wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg< I - 3D#h el = 3E#h
bb2 = 3F#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = SBY; "/STANDBY is the default test condition

BEGIN
"1" , goto pl(one);
"2" , goto pl(two);
"3" , goto pl(three
••4» , goto pl(four)
"5" , goto pl(five)
"6" , goto pl(six);
"7" , goto pl(seven

file:///m29CPL

1 7 2 4 . Digital Circuits

8" goto pl(eight);
9" goto pl(nine);
10" goto pl(ten);
11" goto pl(eleven)
12" goto pl(twelve)
13" one: W W , cal. pl(read);
14" ax, cal L pl(read);
15" ax, cal L pl(read);
16" nnl, cal L pl(read);
17" pa2, cal . pl(read);
18" ,got(3 pl(msg2);
19" two: tt2, cal L pl(read);
20" uw2, cal L pl(read);
21" pa2, cal L pl(read);
22" , got(3 pl(msg2);
23" three:th, cal L pl(read);
24" rrl, cal L pl(read);
25" cal L pl(read);
26" pa2, cal L pl(read);
27" ,gOt(3 pl(msg2);
28" four:ff, cal L pl(read);
29" ff, cal L pl(read);
30" or, cal L pl(read);
31" pa2, cal L pl(read);
32" ,got 3 pl(msg2);
33" five:ff, cal . pl(read);
34" ff, cal L pl(read);
35" ay, cal L pl(read);
36" w , cal L pl(read);
37' pa2, cal L pl(read);
38' ,got 3 pl(msg2);
39' six ss, cal L pl(read);
40* ss, cal I pl(read);
41* ih, cal [pl(read);
42' ih, cal L pl(read);
43' pa3, cal L pl(read);
44' kk2, cal 1 pl(read);
45' ss, cal 1 pl(read);
46' pa2, cal 1 pl(read);
• 47- , got ο pl(msg2);
•48' seven:ss, cal 1 pl(read);
'49' ss, cal 1 pl(read);
'50' eh, cal 1 pl(read);
'51' eh, cal 1 pl(read);
'52' w , cal 1 pl(read);
'53' eh, cal 1 pl(read);
'54· nnl, cal 1 pl(read);
•55' pa2, cal 1 pl(read);
•56' ,got ο pl(msg2);
•57' eight:ey, cal 1 pl(read);
'58' pa3, cal 1 pl(read)
•59· tt2, cal 1 pl(read)

Ό Ν Ε "

'TWO"

"THREE"

"FOUR"

"FIVE"

"SIX"

"SEVEN"

"EIGHT"

4,4 How to Design α Talking Clock 1 7 3

"60" pa2, call pl(read);
"61" , goto pl(msg2);
"62"nine:nn2, call pl(read);
"63" aa, call pl(read);
"64" ay, call pl(read);
"65" nnl, call pl(read);
"66" pa2, call pl(read);
"67" , goto pl(msg2);
"68"ten tt2, call pl(read);
"69" eh, call pl(read);
"70" eh, call pl(read);
"71" nnl, call pl(read);
"72" pa5, call pl(read);
"73" , goto pl(msg2);
"74"eleven:ih,call pl(read);
"75" 1 1 , call pl(read);
"76" eh, call pl(read);
"77" eh, call pl(read);
"78" w , call pl(read);
"79" eh, call pl(read);
"80" nnl, call pl(read);
"81" pa4, call pl (read);
"82" , goto pl(msg2);
"83"twelve:tt2, cal L pl(read)
"84" wh, cal L pl(read)
"85" eh, cal L pl(read)
"86" eh, cal L pl(read)
"87" 1 1 , got(3 pl(stay)
"88" w , cal L pl(read)
"89" pa4, cal L pl(read)
"90" ,got(3 pl(msg2)
"91"msg2: ow, cal L pl(read)
"92" pa2, cal L pl(read)
"93" kkl, cal L pl(read)
"94" 1 1 , cal . pl(read)
"95" aa, cal L pl(read)
"96" aa, cal. L pl(read)
"97" pa3, cal L pl(read)
"98" kk2, cal L pl(read)
"99" pa5, cal J pl(read)
"100" ey, if (not am) tl
"101" eh, cal] L pl(read)
"102" eh, cal] L pl(read)
"103" mm, cal] L pl(read)
"104" pa5, cal J L pl(read)
"105" , gotc) pl(delay
"106"pm: PP, cal] L pl(read)
"107" iy, cal] L pl(read)
"108" pa2, cal] L pl(read)
"109" eh, cal] L pl(read)
"110" eh, cal] L pl(read)
"111" mm, cal] L pl(read)

"ELEVEN"

"TWELVE"

"0' CLOCK"

"pm"

1 7 4 4. Digital Circuits

"112" pa5, call pl (read);
"113"delay: ,load pl(255); "70 seconds delay to avoid reading.."
"114" pa5, call pl(read); " the mints input again"
"115" ,while (creg <> 0) loop to pl(delay);
"116" ,load pl(50);
"117"del2:pa5, call pl(read);
"118" ,while (creg <> 0) loop to pl(del2);
*********** wait for data input to go high *********"
"119"stay: , if (not mints) then goto pl(stay); "Wait for M10=M1=00"
"120"msgl ih, call pl (read) " IT IS
"121" ttl, call pl (read)
"122" pa2, call pl (read)
"123" ih, call pl (read)
"124" ss, call pl (read)
"125" ss, call pl(read)
"126" pa5, call pl (read)
"127" , goto tm(0011111#b) ; "Go
"subroutine for reading the standby status of the speech processor"
"128"read: ,continue;
"129"styl: ,if (not sby) then goto pl(styl); "reading SBY"
"130" ,ret;

.org 255#d
"131" , goto pl(stay);
END.

4.5 Designing α Speaking Coin Detector

A coin detector is a widely used commercial device for most vending ma­
chines now in use in the market. Vending machines have mechanisms that are
usually difficult to operate because the process for obtaining a product is dif­
ferent in each type of device. Moreover, most vending machines do not have a
display that indicates the sum of money that has been deposited. With these
drawbacks in mind, we will design a general-purpose coin detector that gives
spoken instructions to users. This coin detector can be installed in conven­
tional machines to enhance their versatility. Even a child who cannot read
printed instructions will easily understand the spoken directions for obtaining
the chosen product.

Figure 4.8 presents the circuit for a talking coin detector that uses the
microcontroller μϋ 8748 as the main processing unit. The μC 8748 receives
three input signals, indicating the type of coin that has been deposited. The
three input signals are assigned for each type of coin, that is, nickels, dimes,
and quarters. Three D-type flip-flops detect the kind of coin by receiving a
transient pulse in their inputs "SET" coming from the coin-detecting mecha­
nism. The three outputs Ql , Q2, and Q3 of the flip-flops are routed to the
inputs P2.0 to P2.3 of the μϋ 8748. The output P2.3 of the μΟ 8748 is used

4.5 Designing α Speaking Coin Detector 1 7 5

for clearing the flip-flops when the dropping of a coin has already been de­
tected. Outputs P2 .3 to P2.7 of the μΟ will be available for the user to enable
the output circuits that control the products of the vending machine.

In this case, the coin detector will be programmmed to detect a total
amount of 50 cents. When the user starts inserting the coins, he will hear short
messages that indicate the partial sum of money that he is depositing. When
the machine receives the amount of 50 cents, it will say the message "fifty
cents" and will ask the user to select the product he wants. When the system

7805 '+9V

20pF

-3h
40 26 40

X
6 MHz CZ3

-Π3
|20pF

1uF 20

P 1 . 0
P1

RST

GND
uC8748 WR

T1

27 15
28 14
29 13
3D 12
31 11
32 10

9
S

10 4

g— 6

SW1
SW2
SW3
SW4
SW5
SW6
SW7
5W8

WR

OUT
39 ,

To LPF end

audio

amp M f i e r

22pF

f — f - i ; ^
^54104

Ί . 5 Κ 22pF -4=-

MHz

F i g u r e 4.8 Circuitry for the talking coin detector.

1 7 6 4 , Digital Circuits

detects the selection that the user has made, it will activate the output signal
that corresponds to the desired product.

From the microcontroller, eight address lines (P1.0-P1.7) and two control
signals (Tl and /WR) are utilized to drive the Digitalker DT1050. Two speech
ROMs (SSR1 and SSR2) contain, in compressed form, the data required for
the 144 addressable words. The 16-key encoder 74C922 is used to let the
operator select the product he wants when he has deposited a total amount of
fifty cents. In this case, the Digitalker will issue the message ''Please, mark
the number." When the user presses the number in the keypad, the μC 8748
sends the respective data to the four most significant bits in port two. Notice
that a 4-to-16 decoder can be added in order to control the external mechanism
that will bring the products out. The software program for the is shown in
Table 4.12.

T A B L E 4.12
Software for /LLC 8748 to Control a Talking Coin Detector

Add Op Code Mnemonics Comments

00 05 EN I Enables Interrupt
01 04 05 JMP START
03 04 F2 JMP CANCEL Cancel operation and return money.
05 8A 00 START ANL P2, #00H
07 54 08 ORL P2, #08H Reset D-type flip flops
09 9A 00 ANL P2, #00H /CS1=0, /WR=
OB 99 00 ANL Pl, #00H
OC 27 CLR A Acc =00H
OE 97 CLR C Clear carry flag
OF A9 MOV Rl, A Clear registers R0-R7
IB AA MOV R2, A
11 AB MOV R3, A
12 AC MOV R4, A
13 AD MOV R5, A
14 AE MOV R6, A
15 AF MOV R7, A
16 OA READ INA P2 Load P2 contents to accumulator
17 A9 MOV Rl, A Store reading in register Rl
18 53 01 ANL A, #01H Mask the Acc to test the 5c bit
1A 96 26 JNZ FIVEC Go to add five cents
IC F9 49 MOV A, Rl Move reading to Acc
ID 53 02 ANL A, #02H Mask the Acc to test the 10c bit
IF 96 2A JNZ TENC Go to add ten cents
21 F9 MOV A, Rl Move reading to Acc
22 53 04 ANL A, #04H Mak the Acc to test the 25c bit
24 96 2E JNZ TFIVE Go to add twentyfive cents
26 6A 05 FIVEC ADD R2, #05H Add five cents to register R2
28 04 30 JMP COMPARE

4.5 Designing α Speaking Coin Detector 1 7 7

2A
2C
2E

30
32
33

35
37
38
3A
3C

41
42
44
46
47
49
4B
4C
4E
50
51
53
55
56
58
5A
5B
5D
5F
60
62

6A
04
6A

23
D9
C6

23
DA
C6
23
DA

3D C6
3F 23

DA
C6
23
DA
C6
23
DA
C6
23
DA
C6
23
DA
C6
23
DA
C6
23
DA
C6
04

OA TENC : ADD R2, #0AH
30 JMP COMPARE
19 TFIVEC :ADD R3, #19H

32 COMPARE:MOV A, #32H
XRL A, Rl
JZ MSG50

05

64
OA

6C
OF

74
14

7C
19

84
IE

90
23

98
28

A4
2D

AC
B8

AMOUNT:MOV A, #05H
XRL A, R2
JZ MSG5
MOV A, #0AH
XRL A, R2
JZ MSG10
MOV A, #0FH
XRL A, R2
JZ MSG15
MOV A, #14H
XRL A, R2
JZ MSG20
MOV A, #19H
XRL A, R2
JZ MSG25
MOV A, #1EH
XRL A, R2
JZ MSG30
MOV A, #23H
XRL A, R2
JZ MSG35
MOV A, #28H
XRL A, R2
JZ MSG40
MOV A, #2DH
XRL A, R2
JZ MSG45
JMP MSG50

Add ten cents to register R2

Add 25 cents to register R2

Load Acc with number 50d
Compare the amount against 50d
If amount=50c goto MSG50

Load Acc with constant 5c
Compare
If amount= 5 cents goto MSG5
Load Acc with constant 10c
Compare
If amount= 10 cents goto MSG10
Load Acc with constant 15c
Compare
If amount= 15 cents goto MSG15
Load Acc with constant 20c
Compare
If amount= 20 cents goto MSG20
Load Acc with constant 25c
Compare
If amount= 25 cents goto MSG25
Load Acc with constant 30c
Compare
If amount= 30 cents goto MSG30
Load Acc with constant 35c
Compare
If amount= 35 cents goto MSG35
Load Acc with constant 40c
Compare
If amount= 40 cents goto MSG40
Load Acc with constant 45c
Compare
If amount= 45 cents goto MSG45
amount = 50 cents

64 BD 05 MSG5 MOV R5, #05 ;"Five"
66 14 EA CALL VOCAL
68 14 E0 CALL CENTS
6A 04 16 JMP READ
6C BD OA MSG10 MOV R5, #0A ;"Ten"
6E 14 EA CALL VOCAL
70 14 E0 CALL CENTS
72 04 16 JMP READ
74 BD OF MSG15 MOV R5, #0FH ;"Fifteen
76 14 EA CALL VOCAL
78 14 E0 CALL CENTS
7A 04 16 JMP READ
7C BD 14 MSG20 MOV R5, #14H ;"Twenty"
7E 14 EA CALL READ
80 14 E0 CALL CENTS
82 04 16 JMP READ

1 7 8 4 . Digital Circuits

84 BD 14 MSG25 MOV R5, #14H ;"Twenty five"
86 14 EA CALL VOCAL
88 BD 05 MOV R5, #05H
8A 14 EA CALL VOCAL
8C 14 EO CALL CENTS
8E 04 16 JMP READ
90 BD 15 MSG30 MOV R5, #15H ;"Thirty"
92 14 EA CALL VOCAL
94 14 EO CALL CENTS
96 04 16 JMP READ
98 BD 15 MSG35 MOV R5, #15H ;"Thirty five"
9A 14 EA CALL VOCAL
9C BD 05 MOV R5, #05H
9E 14 EA CALL VOCAL
AO 14 EO CALL CENTS
A2 04 16 JMP READ
A4 BD 16 MSG40 MOV R5, #16H ;"Forty"
A6 14 EA CALL VOCAL
A8 14 EO CALL CENTS
AA 04 16 JMP READ
AC BD 16 MSG45 MOV R5, #16H ;"Forty five"
AE 14 EA CALL VOCAL
BO BD 05 MOV R5, #05H
B2 14 EA CALL VOCAL
B4 14 EO CALL CENTS
B6 04 16 JMP READ
B8 BD 17 MSG50 MOV R5, #17H ;"Fifty"
BA 14 EA CALL VOCAL
BC 14 EO CALL CENTS
BE BD 78 MOV R5, #78H ;"PLease"
CO 14 EA CALL VOCAL
C2 BD 69 MOV R5, #69H ;"Mark"
C4 14 EA CALL VOCAL
C6 BD 8A MOV R5, #8A ;"The"
C8 14 EA CALL VOCAL
CA BD 70 MOV R5, #70H ;"Number"
CC 14 EA CALL VOCAL
CE 26 CE DATA JNTO DATA ;Wait for DA to go high
DO 08 INS A, BUS ;Read the pressed number
Dl 3A OUTL P2, A ;Turn on the product mechanism
D2 B8 OF MOV RO, #0FH ;five seconds
D4 B9 FF T4 MOV Rl, #FFH
D6 BA FF T3 MOV R2, #FFH
D8 EA D8 T2 DJNZ R2, T2
DA E9 D6 DJNZ Rl, T3
DC E8 D4 DJNZ RO, T4
DE 04 05 JMP START

Routine for the word "Cents"

EO BD 40 CENTS:MOV R5, #40H
E2 14 EA CALL VOCAL
E4 BD 81 MOV R5, #81H

"Cent..

4.6 A Talking Coffee Machine Controller 1 7 9

E6 14 EA
E8 83

CALL VOCAL
RET

Routine to control the DT1050

EA FD
EC 39
ED 90
EE 00
EF 46 EF
Fl 83

VOCAL:MOV A, R5
OUTL Pl, A
MOVX A, Ca RO
NOP

WAIT:JNT1 WAIT
RET

Routine to cancel the operation

F2 23 80 CANCEL:MOV A, # 80H
F4 3A OUTL P2, A
F6 B8 T5:M0V RO, #FFH
F8 EB DJNZ RO, T5
FA 04 05 JMP START

4.6 Designing α Talking Coffee
Machine Controller

The coffee machine controller presented here will use part of the software pro­
gram for the coin detector in Section 4.5. The process of designing a control­
ler for a coffee vending machine now will be applied to the allophone-based
speech processor SP0256-AL2. Certainly, with this speech processor we will
be allowed to create any type of word for indicating to the user the choices he
might have.

The coffee machine controller will be built around the microcontroller
8748. The following possible varieties of coffee will be available for the
consumer:

1. Coffee black
2. Coffee with sugar
3. Coffee with cream
4. Coffee with cream and sugar
5. Extra sugar
6. Extra cream

The variations of coffee are indicated in numbers one to four. Numbers five
and six are available in order to let the user add extra sugar or extra cream to
the type of coffee he has already selected. In this way, a keypad will be in­
stalled with options one to six. Also, number seven in the keypad will be la­
beled "coin return" to permit the user to cancel the operation and to make the
machine return the coins he has deposited. The system will be programmed to
accept the "coin return" request when the consumer is still inserting coins or
before he has selected a type of coffee. This feature stops the vending machine

1 8 0 4. Digital Circuits

from serving a coffee and then returning the coins to the user if he presses the
"coin return" key. In this manner, the interrupt input of the μC 8748 will be
used for "coin return" and will be disabled when the machine starts preparing
the coffee.

The program of the μC 8748 will first detect if the total amount of 50 cents
has been deposited before starting to prepare the coffee. To detect if the
amount of 50 cents has been deposited, the program will take part of the soft­
ware presented in Section 4.5. Some minor changes to that software program
will take place now because our μC 8748 will be controlling the speech pro­
cessor SP0256-AL2.

The output control signals that need to be generated from the μ-C 8748 are:

1. Cup drop
2. Water on
3. Coffee on
4. Cream on
5. Sugar on
6. Coin return

The routine that the software program has to perform is as follows:

1. The program will execute nothing until a coin is detected.
2. Upon coin detection the speech processor will announce the amount the

operator has deposited until he reaches a total amount of 50 cents.
3. The speech processor will indicate that the user should select his op­

tions with the message "Please select your options."
4. If coin return is detected, the machine returns coins, gives the message

"Pick up your coins please," and waits for the next coin insertion to be
deposited.

5. The cup has 2.0 s to get into place.
6. Depending on selection, powders will be released for different intervals

as follows:
coffee 2.0 s
coffee with sugar coffee 2.0 s, sugar 2.0 s
coffee with cream coffee 2.0 s, cream 2.0 s
coffee with cream and sugar coffee 2.0 s, sugar 2.0 s,

cream 2.0 s
7. Check to see if extra sugar and/or extra cream are selected. If yes, extra

cream 2.0 s, extra sugar 2.0 s.
8. Water on for 10.0 s.

As can be seen, there are four possible types of coffee and two extra op­
tions for extra sugar and/or extra cream. The software program will make the
speech processor speak the options the user is selecting. In this manner, the
user will be quite sure that the options he is selecting are being accepted by

4.6 A Talking Coffee Machine Controller 1 8 1

To LPF and
124 χ audio

amp i s fier

28 <**

13.12 MHz

IQOK

' W

7^0 .1 uF

KEYPAD CODE :
0 = COFFEE
1 = COFFEE + SUGAR
2 = COFFEE + CREAM
3 = COFFEE + CREAM τ SUGAR
4 = EXTRA SUGAR
5 = EXTRA CREAM

F i g u r e 4.9 Circuitry for the talking coffee vending machine.

the coffee vending machine. Figure 4.9 shows the hardware required by the
controller.

The μC 8748 uses three inputs of the BUS to detect the type of coins that
are being inserted. Also, the inputs BUS4 to BUS7 are used for detecting the
options of coffee that the operator has selected. Port two is used for control­
ling the following variables: (1) cup drop, (2) water on, (3) coffee on,
(4) cream on, (5) sugar on, and (6) coin return.

The software program for the microcontroller μϋ 8748 is shown in
Table 4.13.

1 8 2 4 . Digital Circuits

T A B L E 4.13
Software for μ€ 8748 to Control a Talking Coffee Vending Machine

Add Op Code Mnemonics Comments

00 05 EN I Enables Interrupt
01 04 05 JMP START
03 04 F2 JMP CANCEL Cancel operation and return money.
05 8A 00 START ANL P2, #00H
07 54 08 ORL P2, #8OH Reset D-type flip flops
09 9A 00 ANL P2, #00H
0B 99 00 ANL Pl, #00H
0D 97 CLR C Clear carry flag
0E A9 MOV Rl, A Clear registers R0-R7
OE AA MOV R2, A
OF AB MOV R3, A
10 AC MOV R4, A
11 AD MOV R5, A
12 AE MOV R6, A
13 AF MOV R7, A
14 27 READ CLR A Acc =00H
15 54 80 ORL P2, #80H Clear D-type flip flops
17 08 INS A, BUS Load BUS contents to accumulator
19 A9 MOV Rl, A Store reading in register Rl
1A 53 01 ANL A, #01H Mask the Acc to test the 5c bit
1C 96 28 JNZ FIVEC Go to add five cents
IE F9 49 MOV A, Rl Move reading to Acc
IF 53 02 ANL A, #02H Mask the Acc to test the 10c bit
21 96 2C JNZ TENC Go to add ten cents
23 F9 MOV A, Rl Move reading to Acc
24 53 04 ANL A, #04H Mak the Acc to test the 25c bit
26 96 30 JNZ TFIVE Go to add twentyfive cents
28 6A 05 FIVEC ADD R2, #05H Add five cents to register R2
2A 04 32 JMP COMPARE
2C 6A OA TENC ADD R2, #0AH Add ten cents to register R2
2E 04 32 JMP COMPARE
30 6A 19 TFIVEC ADD R2, #19H Add 25 cents to register R2
32 23 05 COMPARE MOV A, #05H Load Acc with constant 5c
34 DA XRL A, R2 Compare
35 C6 61 JZ MSG5 If amount= 5 cents goto MSG5
37 23 OA MOV A, #0AH Load Acc with constant 10c
39 DA XRL A, R2 Compare
3A C6 67 JZ MSG10 If amount^ 10 cents goto MSG10
3C 23 OF MOV A, #0FH Load Acc with constant 15c
3E DA XRL A, R2 Compare
3F C6 6D JZ MSG15 If amount= 15 cents goto MSG15
41 23 14 MOV A, #14H Load Acc with constant 20c
43 DA XRL A, R2 Compare
44 C6 73 JZ MSG20 If amount= 20 cents goto MSG20
46 23 19 MOV A, #19H Load Acc with constant 25c
48 DA XRL A, R2 Compare

4.6 A Talking Coffee Machine Controller 1 8 3

49 C6 79 JZ MSG25 If amount= 25 cents goto MSG25
4B 23 IE MOV A, #1EH Load Acc with constant 30c
4D DA XRL A, R2 Compare
4E C6 82 JZ MSG30 If amount= 30 cents goto MSG30
50 23 23 MOV A, #23H Load Acc with constant 35c
52 DA XRL A, R2 Compare
53 C6 88 JZ MSG35 If amount= 35 cents goto MSG35
55 23 28 MOV A, #28H Load Acc with constant 40c
57 DA XRL A, R2 Compare
58 C6 92 JZ MSG40 If amount= 40 cents goto MSG40
5A 23 2D MOV A, #2DH Load Acc with constant 45c
5C DA XRL A, R2 Compare
5D C6 98 JZ MSG45 If amount= 45 cents goto MSG45
5F 04 A2 JMP MSG50 amount = 50 cents

61 BD 05 MSG5 MOV A, #1EH ;"Five"
63 34 65 CALL FIND
65 04 14 JMP READ
67 BD OA MSG10 MOV A, #23H ;"Ten"
69 34 65 CALL FIND
6B 04 14 JMP READ
6D BD OF MSG15 MOV A, #28H ;"Fifteen"
6F 34 65 CALL FIND
71 04 14 JMP READ
73 BD 14 MSG20 MOV R5, #2FH ;"Twenty"
75 34 65 CALL FIND
77 04 14 JMP READ
79 23 2F MSG25 MOV A, #2FH ;"Twenty five
7A 34 65 CALL FIND
7C BD IE MOV A, #1EH
7E 34 65 CALL FIND
80 04 14 JMP READ
82 23 38 MSG30 MOV A, #38H ;"Thirty"
84 34 65 CALL FIND
86 04 14 JMP READ
88 23 38 MSG35 MOV A, #38H ;"Thirty five
8A 34 65 CALL FIND
8C 23 IE MOV A, #1EH
8E 34 65 CALL FIND
90 04 14 JMP READ
92 23 3D MSG40 MOV A, #3DH ;"Forty"
94 34 65 CALL FIND
96 04 14 JMP READ
98 23 3D MSG45 MOV A, #3DH ;"Forty five"
9A 34 65 CALL FIND
9C 23 IE MOV A, #1EH
9E 34 65 CALL FIND
AO 04 14 JMP READ
A2 23 43 MSG50 MOV A, #43H ;"Fifty"
A4 34 65 CALL FIND
A6 23 93 MOV A, #93H
A8 34 65 CALL FIND ;"Cents"

4. Digital Circuits

AA 23 77 MOV A, #77H ;"Select your options"
AC 34 65 CALL FIND
AE 23 8D MOV A, #8DH ;"Please"
BO 34 65 CALL FIND
B2 26 B2 DATA JNTO DATA ;Wait for DA to go high
B4 15 DIS I ; Disable the "return coin" key
B5 08 INS A, BUS ; Read the pressed number
B6 AD MOV R5, A ; Store selection in register R5
B7 9A 00 ANL P2, #00H
B9 8A 01 ORL P2, #01H ; Cup drop
BB 34 38 CALL DEL2 ;Wait cup drop for 2 seconds
BD 23 50 MOV A, #50H
BF DD XRL A, R5 ; Extra cream?
CO 96 CE JNZ XTSGR ; Jump if not extra cream to XTSGR
C2 8A 08 ORL P2, #08H ;Add extra cream
C4 34 38 CALL DEL2
C6 23 63 MOV A, #63H ;"Extra Cream"
C8 34 65 CALL FIND
CA 23 5D MOV A, #5DH
CC 34 65 CALL FIND
CE 23 40 XTSGR MOV A, #4OH
DO DD XRL A, R5 ; Extra sugar?
Dl 96 DF JNZ CFWS ; Jump if not extra sugar to CFWS
D3 8A 10 ORL P2, #10H ; Add extra sugar
D5 34 38 CALL DEL2
D7 23 63 MOV A, #63H ;"Extra sugar"
D9 34 65 CALL FIND
DB 23 57 MOV A, #57
DD 34 65 CALL FIND
DF 23 10 CFWS MOV A, #10H
El DD XRL A, R5 ; Coffee with sugar?
E2 96 F6 JNZ CFWC ; Jump to Coffee/Cream
E4 8A 14 ORL P2, #14H ; Add coffee with sugar
46 34 38 CALL DEL2
E8 23 4B MOV A, #4BH ;"Coffee"
EA 34 65 CALL FIND
EC 23 52 MOV A, #52H ;"With"
EE 34 65 CALL FIND
FO 23 57 MOV A, #57H ;"Sugar"
F2 34 65 CALL FIND
F4 24 32 JMP WATER
F6 23 20 CFWC MOV A, #2OH
F8 DD XRL A, R5 ; Coffee with cream?
F9 24 OC JNZ CWCS ; Jump to Coffee/Cream/Sugar
FB 8A OC ORL P2, #0CH ; Add coffee with cream
FD 34 38 CALL DEL2
FF 23 4B MOV A, #4B ;"Coffee"
100 34 65 CALL FIND
102 23 52 MOV A, #52H ;"With"
104 34 65 CALL FIND
106 23 5D MOV A, #5DH ;"Cream"
108 34 65 CALL FIND

4.6 A Talking Coffee Machine Controller 1 8 5

10A 24 32 JMP WATER ;
IOC 23 30 CWCS: MOV A, #30H ;
10E DD XRL A, R5 ; Coffee with cream and sugar?
10F 96 2A JNZ CBLACK ; Go to prepare coffee black
111 8A 1C ORL P2, #1CH ; Add coffee + cream + sugar
112 34 38 CALL DEL2 ;
114 23 4B MOV A, #4BH ; "Coffee"
116 34 65 CALL FIND
118 23 52 MOV A, #52H ; "With"
11A 34 65 CALL FIND
11C 23 5D MOV A, #5DH "Cream
H E 34 65 CALL FIND
120 23 52 MOV A, #52H "With"
122 34 65 CALL FIND
124 23 57 MOV A, #57H "Sugar"
126 34 65 CALL FIND
128 24 32 JMP WATER
12A 23 4B CBLACK MOV A, #4BH "Coffee"
12C 34 65 CALL FIND
12E 8A 1C ORL P2, #04H Release coffee only
130 34 38 CALL DEL2
132 8A 20 WATER:ORL P2 , #2OH Release water for 10 seconds
134 34 47 CALL DEL10
136 04 05 JMP START

Routine for 2 seconds delay

138 B8 05 DEL2 MOV RO, #05H 2 SECONDS
13A B9 FF T4 MOV Rl, #FFH
13C BA FF T3 MOV R2, #FFH
13E EA 3E T2 DJNZ R2, T2
140 E9 3C DJNZ Rl, T3
142 E8 3A DJNZ RO, T4
144 9A 00 ANL P2, #00H
146 83 RET

Routine for 10 seconds delay

147 B8 IE DEL 10 MOV RO, #1EH 10 seconds
149 B9 FF T4 MOV Rl, #FFH
14B BA FF T3 MOV R2, #FFH
14D EA 4D T2 DJNZ R2, T2
14F E9 4B DJNZ Rl, T3
151 E8 49 DJNZ RO, T4
153 9A 00 ANL P2, #00H
155 83 RET

.Routine for coin return

156 23 20 CANCEL MOV A, #20H
158 3A OUTL P2, A Output "return coin" is acti 1

159 34 38 CALL DEL2 for two seconds
15A 23 6A MOV A, #6AH
15C 3A OUTL P2, A "Pick up your coins"
15D 23 65 CALL FIND

1 8 6 4 . Digital Circuits

15F 23 91 MOV A, #91H ;"Please"
161 23 65 CALL FIND ;

163 04 05 JMP START ;
; Subroutine to find and isssue a word

165 BD 00 FIND MOV R5, #00H
167 AD MOV R5, A Pointer for page three
168 E3 MO VP 3 A, (« A Acc = # of allophones
169 AC MOV R4, A R4 = #n; for η allophones
16A 27 CLR A
16B ID RICK INC R5 Increment R5 to get next allophone
16C FD MOV A, R5
16D E3 MO VP 3 A, (a A
16E 39 OUTL Pl, A
16F 80 MOVX A, (àRO /WR is pulsed low for 5 uS
170 46 70 SBY JNT1 SBY Wait for /SBY input to go high
172 EC 6B DJNZ R4, RICK
174 83 RET

Add Data Comments

300 OA Five
301 0E Ten
302 09 Fifteen
303 13 Twenty
304 1A Thirty
305 IE Forty
306 23 Fifty
307 2A Coffee
308 32 With
309 36 Sugar
30A 03 Cream
30B 2B Extra
30C 2C Pick up your coins
30D 35 Select your options
30E 04 Please
30F 39 Cents
310 04 4 allophones
311 28
312 28
313 06 2 allophones
314 23 TWO
315 IF
316 03 3 allophones
317 10 THREE
318 0E
319 13
31A 03 3 allophones
31B 28 FOUR
31C 28
31D 3A
31E 04 4 allophones

4.6 A Talking Coffee Machine Controller 1 8 7

31F 28 ;FIVE
320 28 ;
321 06
322 23 ;
323 04 ; 6 ALLOPHONES
324 OD ; TEN
325 07 ;
326 07 ;
327 0B ;
328 07 ;7 allophones
329 OC ; FIFTEEN
32A 28 ;
32B 02
32C OD ;
32D 13 ;
32E OB ;
32F 08 ;8 allophones
330 OD ; TWENTY
331 30 ;
332 07
333 07 ;
334 OB ;
335 02 ;
336 OD ;
337 13 ;
338 04 ;4 allophones
339 ID ; THIRTY
33A 34
33B 2D ;
33C 13 ;
33D 05 ;5 allophones
33E 28 ; FORTY
33F 3A ;
340 02 ;
341 OD ;
342 13 ;
343 07 ;7 allophones
344 28 ; FIFTY
345 28 ;
346 OC ;
347 28 ;
348 02 ;
349 OD
34A 13 ;
34B 06 ;5 allophones plus one pause
34C 08 ; COFFEE
34D AA ;
34E 28 ;
34F 28 ;
350 13 ;
351 04 ;

1 8 8 4 . Digital Circuits

352 03 ;3 allophones plus one pause
353 2E ;WITH
354 13 ;
355 11 ;
356 04 ;
357 04 ;4 allophones plus one pause
358 32 ; SUGAR
359 IE ;
35A 24 ;
35B 3B ;
35C 04 ;
35D 04 ;4 allophones plus one pause
35E 2A ; CREAM
35F 27 ;
360 0C ;
361 10 ;
362 04 ;
363 05 ;5 allophones
364 07 ; EXTRA
365 2A ;
366 37 ;
367 0D ;
368 27 ;
369 18 ;
36A 11 ; 16 allophones
36B 09 ;PICK UP YOUR COINS
36C OC ;
36D OC ;
36E 29
36F 03 ;
370 OF ;
371 09 ;
372 03 ;
373 19 ;
374 35 ;
375 33 ;
376 03 ;
377 2A ;
378 05 ;
379 OB ;
37A 37 ;
37B 15 ;21 allophones
37C 37 ; SELECT YOUR OPTIONS
37D 37 ;
37E 07 ;
37F 07 ;
380 2D ;
381 07 ;
382 02 ;
383 29 ;
384 11 ;
385 04 ;

4.7 A Talking Random-Number Generator 1 8 9

386 19
387 35
388 33
389 04
38A 17
38B 09
38C 25
38D 35
38E OB
38F 37
390 37
391 06
392 09
393 2D
394 OC
395 37
396 37
397 04
398 08
399 37
39A 07
39B 07
39C OB
39D 11
39E 37
39F 37
340 04

6 allophones
PLEASE

7 allophones and 1 pause.
CENTS

4.7 Designing α Talking Random
Number Generator

Random numbers are used to compute statistical problems and in games such
as spinners. Special software has been created to process random numbers for
many games and statistical estimations. A technique to produce random num­
bers electronically is to apply a burst of high-frequency clock pulses to a
counter as shown in Figure 4.10. This figure shows a complete working ver­
sion of a pseudorandom-number generator that tells the selected number by
means of the speech processor SP0256-AL2.

Figure 4.10 shows a timer 7555 configured as a free-running oscillator. The
timer 7555 oscillates at a frequency of approximately 1000 Hz, given by the
equation:

fo = 1 4 4

° (Rl +2R2)C

The 47 μ¥ capacitor, located in the RC timing network of the timer, per­
mits the addition of a gradual slowdown feature for the frequency (fo) gener­
ated. When switch SI is closed momentarily by the operator, the timer will be

1 9 0 4 . Digital Circuits

To LPF and
x. audio
^ amplifier

47 uF

J j 3 | 9 j t 0 l l 5 \T

F i g u r e 4,10 Schematic diagram for a random generator circuit.

oscillating at its maximum frequency and the 47 μ¥ capacitor will be charged
up to 5 V. When the operator's finger is lifted from the switch, resistors Rl
and R2 begin to discharge the 47 μ¥ capacitor (C2), and the decreasing volt­
age across C2 decreases the oscillation frequency of the 7555. When CI is
completely discharged, the clock stops, and the BCD counter remains with a
random BCD number. Then the main controller (Am29CPL152) starts the se­
quence for announcing the random number.

The software program has been designed to let the operator press switch S1
for a maximum of 5 s. That is because the FPC detects a logic high at the
testable input T4 when switch SI is pressed. This action causes the FPC to
make a 15 s delay in order to wait for the timer to stop pulsing counter
CD4518. When the time delay has elapsed, the FPC proceeds to read the deci­
mal random number generated by the counter CD4518. The instruction lo­
cated in line 86 of the software program presented in Table 4.14 makes the

4.7 A Talking Random-Number Generator 1 9 1

T A B L E 4.14
Software Program for the Pseudo-random Number Generator

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
sby = t5
si = t4
equal = eq

"allophones and pauses are given name assignments"

pa2 = 01#h " "
pa3 = 02#h t6-> ! 1 28 - Vcc "
pa4 = 03#h p0<- !2 27 <-clk "
pa5 = 04#h pl<- 13 26 <- "
oy = 05#h p2<- 14 25 <-t0 "
ay = 06#h p3<- ! 5 Am29CPL 24 <-tl "
eh = 07#h " p4<- ! 6 152 23 <-t2 "
kk3 = 08#h " p5<- : 7 22 <-t3 "
PP = 09#h p6<- ! 8 21 <-t4 "
jh = OA#h » p7<- 19 20 <-t5 "
nnl = OB#h " p8<- ! 10 19 <-/reset"
ih = OC#h " p9<- : il 18 ->pl5 "
tt2 = OD#h " plO<- ! 12 17 ->pl4 "
rrl = OE#h " pll<- ! 13 16 ->pl3 "
ax = OF#h Gnd- ! 14 15 ->pl2 "
mm 10#h "
tt 1 = ll#h
dhl = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = = 19#h ae = lA#h hhl = lB#h
bbl = lC#h th = lD#h uh = lE#h uw2 = lF#h aw = 20#h
dd2 = 21#h gg3 = 22#h w = 23#h ggl = 24#h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h W W = 2E#h xr = 2F#h
wh = 30#h yyi = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = SBY; "/STANDBY is the default test condition

BEGIN
"0" ,goto pl(zero);
"1" , goto pl(one);
"2" , goto pl(two);
"3" ,goto pl(three)
"4« ,goto pl(four);
"5" ,goto pl(five);
"6" ,goto pl(six);
"7" ,goto pl(seven)
"8" ,goto pl(eight)
"9" ,goto pl(nine);

1 9 2 4. Digital Circuits

"10"zero:zz,
"11" yr,
"12" ow,
"13" pa2,
"14"
"15"one:ww,
"16" ax,
"17" ax,
"18" nnl,
"19" pa2,
"20"
"21"two:tt2,
"22" uw2,
"23" pa2,
"24"
"25"three:th
"26" rrl,
"27" iy,
"28" pa2,
"29"
"30"four:ff,
"31" ff,
"32" or,
"33" pa2
"34"
"35"five:ff,
"36" ff,
"37" ay,
"38" w ,
"39" pa2
"40"
"41" six:ss,
"42" ss,
"43" ih,
"44" ih,
"45" pa3,
"46" kk2,
"47" ss,
"48" pa2,
"49"
"50" seven:ss
"51" ss,
"52" eh,
"53" eh,
"54" w ,
"55" eh,
"56" nnl,
"57" pa2,
"58"
"59"eight:ey
"60" pa3,

cal J L pl (read)
cal. L pl (read)
cal L pl (read)
cal L pl (read)
, gotc 3 pl (stay)
cal J L pl (read)
cal. L pl (read)
cal L pl (read)
cal J L pl (read)
cal. L pl (read)

,got(5 pl (stay)
cal] L pl (read)
cal, L pl (read)
cal J L pl (read)
,gOt(3 pl (stay)
cal] L pl (read)
cal] L pl (read)
cal J L pl (read)
cal] L pl (read)
,gOt(5 pl (stay)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
,gotc 5 pl (stay)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
,gotc) pl (stay)
cal] L pl (read)
cal] L pl (read)
cal] [pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
,gotc) pl (stay)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
cal] L pl (read)
, gotc) pl (stay)
cal] L pl (read)
cal] L pl (read)

"ZERO"

"ONE

"TWO"

THREE

FOUR'

'FIVE

SIX'

SEVEN"

4.7 A Talking Random-Number Generator 1 9 3

"61" tt2, call Pl (read)
"62" pa2, call Pl (read)
"63" , goto Pl (stay)
"64"nine:nn2, call Pl (read) "NINE"
"65" aa, call Pl (read)
"66" ay, call Pl (read)
"67" nnl, call Pl (read)
"68" pa2, call Pl (read)
"69" , goto Pl (stay)
"70"ten:tt2, call Pl (read) "TEN"
"71" eh, call Pl (read)
"72" eh, call Pl (read)
"73" nnl, call Pl (read)
"74" pa2, call Pl (read)
"75"stay: , if (not si) then goto pl(stay);"Wait for SI to go high
"76"msgl: ih, call Pl (read) " IT IS...."
"77" ttl, call Pl (read)
"78" pa2, call Pl (read)
"79" ih, call Pl (read)
"80" ss, call Pl (read)
"81" ss, call Pl (read)
"82" pa5, call Pl (read)
"83" ,load pl (80) ; "15 seconds delay to avoid reading.."
"84"delay: pa5, call Pl (read) "a wrong pseudorandom number"
"85" , whil e (creg < > 0) loop to pl(delay);
"86" , goto tm (0001111#b); "Go to address specified by mask"
"subroutine for reading the standby status of the speech processor"
"87"read: ,continue;
"88"styl: ,if (not sby) then goto pl(styl); "reading SBY"
"89" ,ret;

.org 127#d
"90" ,goto pl(stay);
END.

program jump to lines zero to nine. Lines zero to nine of the program make
the program jump to the exact location where the message is recorded. Then
the recorded message is announced by the speech processor SP0256-AL2.
Once the speech processor ends saying the decimal number, the program
jumps to the address named 4 'stay." The instruction in the address "stay" will
keep the program waiting for switch SI to be pressed again by the operator.

After the read-out, the random number generator can again be started by
giving a 0 starting signal to the input TO of the Am29CPL152.

If a sequence of random numbers with " 2 " decimal digits has to be gener­
ated, another BCD counter is required. This second BCD counter can be ob­
tained from the same IC CD4518 and must be connected in cascade with the
first BCD counter.

1 9 4 4 . Digital Circuits

(4)M0C3G10
TIC216D

270 L
Ohms S

/777 °-1uF

400V

To LPF and

F i g u r e 4.11 Complete schematic diagram of the ac motor-speed controller.

4.8 Designing an Alternating Current
Motor-Speed Controller with
Artificial Voice

The Figure 4.11 circuit is a motor-speed controller that sets the speed of a
series-wound universal 1.5 A ac motor. This circuit controls the speed of ac
motor M by changing the conduction angle of the triac TIC216D from Texas
Instruments, which regulates the current to the motor. The conduction angle
of the triac TIC216D is controlled by four optocouplers MOC3010 from
Motorola that select the resistive network made up of resistors R, R/2, R/4,

4.8 An Alternating Current Motor-Speed Controller 1 9 5

and R/8. This resistive network controls the magnitude of the current that
passes through diac D30. The LEDs that are self-contained in the opto-
couplers are activated by the 4-bit latch CD4042. The four inputs (D1-D4)
and the clock signal of the latch CD4042 are directly controlled by the FPC
Am29CPL152, which also controls a speech processor.

When the circuit is first turned on, the R1C1 network resets the FPC
Am29CPL152 and the speech processor SP0256-AL2. Under these condi­
tions, the motor will not run because the LEDs inside the four opto-
couplers are not turned on. This state is achieved by programming the FPC
Am29CPL152 with the software program shown in Table 4.15. The software
program for the FPC Am29CPL152 makes the program jump to line 1 (la­
beled as stay) after the power-up reset pulse has occurred. The instruction in
line 1 "If (si) then go to pl(stay)" is used to maintain the FPC reading the
status of the normally open switch S1. When the operator wishes to start run­
ning the motor, he will momentarily press switch SI and the program will
jump automatically to line 2. Line 2 of the program "call pl(del5)" then will
proceed to call subroutine "de l5" that causes a 5 s delay. This delay is in­
serted to allow the operator to quit the program before it starts running the
motor. If the operator decides to continue the program, he will have to wait
only 5 s after he has pressed switch SI for the first time. When the 5 s delay
has elapsed, the program goes to line 3, where the instruction "call pl(msgl)"
is executed; therefore, this instruction makes the speech processor announce
the word "speed." When the program returns from subroutine " m s g l , " the
program will start performing sequentially the set of instructions located
within lines 4 to 8 which make the speech processor say the word "one ." In
this manner, the operator will hear the complete message "speed one."

When the SP0256-AL2 ends saying the words "speed one," the program
jumps to line 9, where the instruction "if (SI) then goto pl(stay)" is located.
Notice that this instruction contains the outputs named "speed 1 + latch,"
which starts running the motor M in the first speed. This first speed is
achieved because the FPC issues the logical output 100#h, which is equiva­
lent to having the outputs P11-P8 with the binary output 0001#b. This binary
output causes a logic one at the output P8 of the FPC which turns on the LED
contained inside the optocoupler that selects resistor R. Also, the output Ρ12
of the FPC goes to a logic one, causing the CD4042 to latch the 4-bit output
coming from P8 to P l l . Notice that the output speed 1 is also specified one line
prior to the output "latch." That is because latch CD4042 must first receive
the data input and then the clock pulse in order to latch the 4-bit input.

Because the program stays in the same loop while executing the instruction
in line 9, the FPC will keep giving speedl for the motor M; therefore, resistor
R is enabled to transmit the voltage across capacitor C6, which increases as
the source Vac passes through zero on each alternation. When Vc reaches
30 V, the diac breakover voltage, the diac turns on and discharges C6 across
the TIC216D and G leads of the triac, thus triggering it. The triac, therefore,

1 9 6 4 . Digital Circuits

T A B L E 4.15
Software Program for the Motor-speed Controller

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
sby = tl
si = tO
cancel = t2

"allophones and pauses are given name assignments"

pa2 = 01#h " "
pa3 = 02#h t6- >! 1 28! - Vcc "
pa4 = 03#h p0< - ! 2 27 ! < -elk "
pa5 = 04#h pl< - !3 26 !< -cc/sdi"
oy = 05#h p2< - !4 25 ! < - t o "

ay = 06#h " p3< - ! 5 Am29CPL 24 !< -tl "
eh = 07#h " p4< - ! 6 152 23 ! < -t2 "
kk3 = 08#h " p5< - : 7 22 !< -t3 "
pp = 09#h " p6< - ! 8 21 ! < -t4 "
jh = OA#h " p7< - !9 20 !< -t5 "
nnl = OB#h p8< - ! 10 19 : < -/reset"
ih = OC#h p9< - : li 18 ! ->pl5 "
tt2 = OD#h " plO< - ! 12 17 ! ->pl4 "
rrl = OE#h " pll< - ! 13 16! ->pl3 "
ax = OF#h Gnd - ! 14 15 i ->pl2 "
mm = 10#h "
ttl = ll#h
dhl = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = lA#h hhl = lB#h
bbl = lC#h th = lD#h uh = lE#h uw2 = lF#h aw = 20#h
dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24#h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h W W = 2E#h xr = 2F#h
wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h y r = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h latch = 1000#h
speedO = 000#h speedl = 100#h speed2 = 200#h speed3 = 300#h
speed4 = 400#h speed5 = 500#h speed6 = 600#h speed7 = 700#h
speed8 = 800#h speed9 = 900#h speedlO = A00#h speedll = B00#h
speedl2 = C00#h speedl3 = D00#h speedl4 = E00#h speedl5 = F00#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = SBY; "/STANDBY is the default test condition"

BEGIN
"l"stay: ,if (si) then goto pl(stay);
"2" ,call pl(del5); "delay to allow user to stop the motor"
"3" , call pl(msgl); "message 1 is --speed--"
"4" ww, call pl(read); "ONE"
"5" ax, call pl (read);
"6" ax, call pl(read);

4.8 An Alternating Current Motor-Speed Controller

nnl, call pl(read);
pa2, call pl(read);

speedl, continue;
if (si) then goto pl(stya);

call pl(msgl)
call pl(read); "TWO"
call pl(read) ;
call pl(read) ;
continue;

if (si) then goto pl(styb)
,call pl(del5);
,call pl(msgl) ;
call pl(read); "THREE"
call pl(read) ;
call pl(read) ;
call pl(read);
continue;
if (si) then goto pl (stye)

,call pl(del5);
,call pl(msgl);
call pl(read); "FOUR"
call pl(read);
call pl(read);
call pl(read);

, continue;
if (si) then goto pl(styd)

,call pl(del5);
, call pl(msgl);
call pl(read); "FIVE"
call pl(read);
cal1 pl(read);
call pl(read);
call pl(read);

, continue;
if (si) then goto pl(stye)
,call pl(del5);
,call pl(msgl);
call pl(read); "SIX"
call pl(read);
call pl(read);
call pl(read) ;
call pl(read) ;
call pl(read) ;
cal1 pl(read) ;
call pl(read) ;
continue;
if (si) then goto pl(styf)

,call pl(del5);
,call pl(msgl);
call pl(read); "SEVEN"
cal1 pl(read);
call pl(read) ;

"10"stya speedl+latch ,
"11"
"12"
"13" tt2,
"14" uw2,
"15" pa2,
"16" speed2,
"15"styb speed2+latch,
"16"
"17"
"18" th,
"19" rrl,
"20" iy,
"21" pa2,
"22" speed3,
"23"styc speed3+latch,
"24"
"25"
"26" ff,
"27" ff,
"28" or,
"29" pa2,
"30" speed4
"31"styd speed4+latch,
"32"
"33"
"34" ff,
"35" ff,
"36" ay,
"37" w ,
"38" pa2,
"39" speed5
"40"stye speed5+latch,
"41"
"42"
"43" ss,
-44" ss,
"45" ih,
"46" ih,
"47- pa3,
"48" kk2,
"49" ss,
"50" pa2,
"51" speed6,
"52"styf speed6+latch,
"53"
"54"
"55" ss,
"56" ss,
"57" eh,

1 9 8 4 Digital Circuits

"58" eh, call pl(read)
"59" w , call pl(read)
"60" eh, call pl(read)
"61" nnl, call pl(read)
"62" pa2, call pl(read)
"63" speedî, continue;
"64"styg:speed7+latch,
"65"
"66"
"67" ey,
"68" pa3,
"69" tt2,
"70" pa2,
"71" speed8
"72"styh:speed8+latch,
"73"
"74"
"75" nn2,
"76" aa,
"77" ay,
"78" nnl,
"79" pa2,
"80" speed9
"81" speed9+latch,
"82"msgl: ss,

if (si) then goto pl(styg);
, call pl(del5)
, call pl(msgl)
call pl(read); "EIGHT"
call pl(read);
call pl(read) ;
call pl(read)
continue;
if (si) then goto pl(styh)

, call pl(del5)
, call pl(msgl) ;
call pl(read); "NINE"
call pl(read) ;
call pl(read)
call pl(read)
call pl(read)
continue;
if (not si) then goto pl(stopm)

" SPEED.."
else wait;

pa2,
PP,
ih,
dd2,
pa5,

"83"
"84"
"85"
"86"
"87"
"88"
"89"del5:
"90"delay: pa5,
"91"
"92"
"93"

call pl(read)
call pl(read)
call pl(read)
call pl(read)
call pl(read)
call pl(read)
, ret;
,load pl(24); "5 S delay to let the user. .
call pl(read); "stop the motor immediatly"
,if (cancel) goto pl(stopm);
,while (creg <> 0) loop to pl(delay);
, ret;

"subroutine for reading the standby status of the speech processor"
"94"read: ,continue;
"95"styl: ,if (not sby) then goto pl(styl); "reading SBY"
"96" ,if (not cancel) then ret;
"97"stopm: ss, call pl(read2); "STOP"
"98" latch+ss, call pl(read2)
"99" ttl, call pl(read2)
"100" aa, call pl(read2)
"101" pp, call pl(read2)
"102" pa5, call pl (read2)
"103" ,goto pl(stay);
"104"read2: .continue;
"105"sty2: ,if (not sby) then goto pl(sty2); "reading SBY"
"106" ,ret;

.org 127#d
"107" ,goto pl(stay);
END.

4.8 An Alternating Current Motor-Speed Controller 1 9 9

becomes conductive after the source Vac reaches 30 V The result is that the
motor will run at the lowest speed (speedl).

If the operator wants to increase the speed of the motor from speedl to
speed2, he will have to press switch SI again. After the operator presses
switch SI, he will again have to wait for 5 s. During this time, the operator
may decide to stop the motor. If so, he only has to press the "cancel" switch
for at least 1 s. This action will stop the motor and the program will proceed to
jump to line 1 again in order to wait for a new starting. The 4-bit latch CD4042
serves to maintain the selected speed of the motor while the FPC is running
the routines that make the SP0256-AL2 tell the speed selected by the opera­
tor. In this case, a maximum of 9 speeds were programmed in the FPC
Am29CPL152 even when the set of four resistors controlling the diac D30 can
give a maximum of 15 speeds. The number of speeds to the motor can be
augmented by inserting more optocouplers controlling more resistors. For ex­
ample, if 31 speeds are needed for the motor, just add another optocoupler
below the MOC3010 controlling the resistor R/8. In this case, the new opto­
coupler will be controlling a new resistor named R/16. Bear in mind that if the
number of speeds for the motor is augmented, the speech routines for the
SP0256-AL2 must also be included. Schmitt-trigger inverters Ε and F make
up a 10 kHz oscillator that drives the FPC Am29CPL152.

The choice of the triac will depend upon the amount of current required by
the motor. In this case, a triac TIC216D was used because the motor demand
was only 1.5 A. A good starting value for the parallel resistor network is
R = 10K, while R l l is adjusted to 250K.

As can be seen, the versatility of the speech processor SP0256-AL2 is im­
mense, considering all the areas of control where it can be applied. It will be
shown in Chapter 5 that a speech processor in conjunction with a program­
mable controller allows the designer to implement a speech-based system ca­
pable of handling most tasks assigned to a system designer in the field of test
and measurement.

C H A P T E R 5

Test and Measurement Circuits

5.1 Designing α Talking Autorange
Frequency Counter

A very interesting application for speech processors is a talking frequency
counter that voices the input frequency under measurement. If the frequency
counter features autorange, the operator will be able to take frequency mea­
surements without looking at a digital display or having to adjust the scale of
the frequency counter. The frequency meter presented in this section monitors
an input frequency automatically and enunciates the result, freeing an opera­
tor for other tasks.

The circuit shown in Figure 5.1 measures frequencies from dc to 10 MHz
with an automatic floating point. Notice that the talking autorange frequency
counter does not contain a digital display, because the speech processor will
be enunciating the frequency readings and the scales in hertz, kilohertz, and
megahertz.

The input frequency is selected by IC4 (74HC4051) configured as a four-
to-one channel selector. ICI, IC2, and IC3 are three high-speed Johnson
counters used as dividers by 10 each, connected in cascade to obtain three
different input frequencies: fi/10, fi/100, and fi/1000, respectively. When the
circuit is first turned on, for example, a reset pulse is applied to counter IC5.
IC5 selects the direct input frequency "fi ." Consequently, BCD counters IC8a
to IC8d will count from 0 to 9999 Hz. IC8a to IC8d are connected in cascade
to form a 16-bit BCD counter. The BCD format of these counters was chosen
because it reduces the size and development of the software program used by
the FPC Am29CPL154, designated as IC10 in Figure 5.1.

The time base section is formed by IC7. The oscillator/divider MM5369EST

2 0 0

5.1 Talkin g Frequenc y Counte r 2 0 1

(IC7) use s a 3.5 7 MH z crysta l i n orde r t o giv e a stabl e 10 0 H z outpu t fre ­
quency, whic h clock s th e FP C Am29CPL15 4 (IC10) . Th e FP C i s programme d
to contro l th e rese t input s "reset2 " o f BC D counte r IC 5 an d " reset l " o f th e
16-bit counte r (IC8 a t o IC8d) . Th e FP C i s als o use d t o enabl e th e inpu t fre ­
quency unde r measuremen t receive d b y th e 16-bi t counte r (IC8 a t o IC8d) . T o
perform a frequenc y reading , th e FP C ha s t o determin e i f a n overflo w ha s
occurred i n orde r t o selec t th e nex t highe r scale . I f a ne w scal e i s selected , th e

input J 4
f i n "

V R i
iC8û A1

1/2 B1
C I 4518
B1
C I
D1

ν R 2

IC8b A2

1/2
4518

B2
C2
D2

IC8c

1/2
4518

V R.4
!C8d A4

1/2
4518

B4
C4
D4

over flow

F i g u r e 5.1 Schematic diagram of the circuit for making up the autorange frequency
counter with artificial voice.

2 0 2 5 . Test and Measurement Circuits

FPC proceeds again to determine if a new overflow has occurred. If no over­
flow occurs in the new selected scale, the FPC reads the measured frequency
through the four testable inputs TO to T3. This way, the FPC starts the routine
to drive the speech processor Digitalker (MM54104). The Digitalker kit was
selected for this application because it contains a vocabulary with numbers
and words that are used for frequency measurements. Notice that the Digi­
talker and the two PROM memories are not included in the schematic because
the FPC needs to control only three functions of the Digitalker:

1. Address bus (input lines SW1 to SW8)
2. Write input (/WR)
3. Interrupt output (/INTR)

We will now examine the operation of the complete circuit of Figure 5.1 in
more detail. When the circuit is first turned on, the FPC Am29CPL154 resets
the BCD counter IC5 via output P9. IC5 is the counter that registers the over
range that may occur when the selected input frequency causes an overflow in
the dual BCD counters IC8a to IC8d. Then the FPC clears the dual BCD
counters (IC8a to IC8d) by sending a positive transient pulse via output P15.
In this manner, the FPC resets counters IC8a to IC8d prior to starting a
new frequency reading. Now, the FPC enables the input frequency "fin" to
counters IC8a to IC8d for 1.00 s in order to determine its magnitude. When
counters IC8a to IC8d finish counting the input frequency for 1.00 s, the FPC
checks to see if an overflow has occurred by reading the outputs A and Β of
counter IC5. If A or Β are in a logic high, the FPC clears counters IC8a to
IC8d, and the FPC starts a new counting cycle by enabling the input "enable"
of the top counter IC8a. Now counters IC8a to IC8d will be receiving the in­
put frequency "fi/10." If no overflow occurs, the FPC will proceed to read the
measured frequency through the four testable inputs TO to T3. Here the FPC
will perform the routine for vocalizing the frequency reading.

Table 5.1 shows the cases that might occur when the input signal under
measurement contains a frequency that ranges from 0 to 10 MHz.

T A B L E 5.1
Input Frequencies for the Autorange Frequency Counter

Frequency Input Node Display IC5 Units
Range Frequency Selected Reading Β A

0-10 KHz 9999 Hz f i 9 9 9 9 0 0 Hz
10-100 KHz 10,000 Hz f i/10 1 0 0 0 0 1 KHz
100 KHz-1 MHz 100,000 Hz fi/100 1 0 0. 0 1 0 KHz
1- 10 MHz 1,000,000 Hz fi/1000 1 0 0 0 1 1 MHz

5.1 Talking Frequency Counter 2 0 3

Table 5.1 shows four cases representing all possible ranges for the input
frequency under measurement. In the first row, the frequency counter accepts
up to 9999 hertz via the node named "fi ." Bear in mind that counter IC5
makes IC4 select "fi" with outputs A and Β equal to a logic zero. If the first
overflow occurs, counter IC5 will then select the input frequency "fi/10."
With "fi/10" selected, the FPC will start a new counting cycle to get the new
reading in the scale of kilohertz. The FPC will detect the change of scale by
reading the outputs A and Β of IC6 using the testable inputs T4 and T5. If a
second overflow occurs, IC5 will change the input node from "fi/10" to
"fi/100." With "n7100" selected, the frequency counter will be capable of
performing frequency readings within the range of 100 to 999.9 kHz. If the
input frequency under measurement, for instance, is equal to or higher than
1 MHz, counter IC5 will select the node "fi/1000"; the FPC will then start a
new frequency reading in order to obtain the correct value. The logical values
of outputs A and Β of IC5 will serve to indicate the scale of the reading to the
FPC (IC10). This way, the speech processor will enunciate a frequency read­
ing in hertz, kilohertz or megahertz.

Table 5.2 shows the microcode program for the FPC Am29CPL154. As
shown in Figure 5.1, the FPC is clocked by a 100 Hz frequency that is gener­
ated by IC7 and associated components. This means that the FPC will perform
each instruction in 10 ms (10,000 μ$); therefore, the FPC will issue output
pulses with 10 ms of duration. The output pulses are named "reset l ," "re-
set2," "enable," and "GL. " Thanks to the stable, low frequency of 100 Hz,
the output "enable" (P10 of IC10) is generated by merely loading the CREG
counter of the FPC with the number 99. Because the FPC Am29CPL154 con­
tains an 8-bit CREG counter, the number 99 is loaded in one step, and then
counter CREG is decremented and tested against zero. Notice that while the
CREG counter is being decremented, the output named "enable" permits
counters IC8a to IC8d to count the incoming pulses received at the input CLK
(pin l o f IC8a).

Table 5.2 presents the software program for the FPC Am29CPL154. The
section for "comments" in the software program explains in detail the steps
that are being followed by the FPC in order to drive the speech processor cor­
rectly. In this case, the FPC Am29CPL154 is capable of reading the input fre­
quency of four BCD counters (IC8a, IC8b, IC8c, and IC8d) by driving a
3-to-8 decoder 74HC137 (IC6). IC6 is an active low decoder that selects the
BCD output of each counter by applying a logic zero at the input /OC of
the selected 4-bit latch (74HC173). Because the ICs 74HC173 (IC9a to
IC9d) contain tri-state outputs, bus conflicts are avoided; therefore, the four
74HC173s share the same bus that provides the frequency measurement to the
FPC Am29CPL154. The FPC drives the 74HC137 by asserting a 3-bit data via
the outputs P12, P13, and P14.

The next step consists of driving the GL input of IC6 to a logic high while
the outputs Ρ12 to Ρ14 maintain the data. It is necessary to keep the input GL

2 0 4 5 . Test and Measurement Circuits

T A B L E 5.2
Software Program for the FPC Am29CPL154

DEVICE (CPL154)

DEFAULT = 1;

DEFINE "test inputs"
intr t6 equal = eq

"Output control bits are given name assginments"
zero = lF#h
four = 04#h
eight = 08#h

one = 01#h two = 02#h three = 03*h
five = 05#h six = 06#h seven = 07#h
nine = 09#h ten = 0A#h eleven = 0B#h

twelve = 0C#h thirteen = 0D#h fourteen = 0E#h fifteen = 0F#h
sixteen = 10#h seventeen = ll#h eighteen = 12#h nineteen = 13#h
twenty = 14#h thirty = 15#h forty = 16#h fifty = 17#h sixty
= 18#h
seventy = 19#h eighty = lA#h ninety = lB#h hundred = lC#h
thousand = lD#h million = lE#h pulses = 9C#h kilo = 62#h
point = 9A#h digl = 1000#h wr = 5000#h and = 3C#h
resetl = 100#h dig2 = 2000#h
reset2 = 200#h dig3 = 3000#h
cken = 400#h dig4 = 4000#h GL = 0800#h;

DEFAULT—OUTPUT = 0000#h;

0UT_P0LARITY = F7FF#h;

TEST-CONDITION = INTR; "Default test condition"

BEGIN
"0" zero, goto pl(n0)
"1" one, goto pl(nl)
"2" two, goto pl(n2)
"3" three, goto pl(n3)
-4" four, goto pl(n4)
"5" five, goto pl(n5)
"6" six, goto pl(n6)
"7" seven, goto pl(n7)
"8" eight, goto pl(n8)
"9" nine, goto pl(n9)

MAIN PROCESS

"10"start:reset2, call pl(count);
"11" ,cmp tm (30#h) to pl (00#h) ;
"12" ,if (equal) then goto pl(SPHZ);
"13" reset2, call pl(count);
"14" ,cmp tm (30#h) to pl (10#h);
"15" ,if (equal) then goto pl(SPKHZ);
"16" reset2, call pl(count);
"17" ,cmp tm (30#h) to pl (20#h);
"18" ,if (equal) then goto pl(SPKH2);
"19" reset2, call pl(count);
"20" ,goto pl(SPMHZ);

"testing overflow 1

testing overflow 1

testing overflow'

5.1 Talking Frequency Counter 2 0 5

DISPLAY FORMAT: 0000 Scale: Hz D4 D3 D2 Dl
"21"SPHZ:dig4, continue;
"22" dig4+GL, continue; " Digit 4 is selected by IC 74HC137"
"23" ,cmp tm(0F#h) to pl(00#h); "D4 = 0?"
"24" dig3, if (not equal) then goto pl(spkD4);
"25" dig3+GL, continue;
"26" ,cmp tm(0F#h) to pl(00#h); "D3 = 0? "
"27" dig2, if (not equal) then goto pl(spkD3);
"28" dig2+GL, continue;
"29" ,cmp tm(0F#h) to pl(00#h); "D2 = 0?"
"30" ,if (not equal) then goto pl(ptyc);
"31"spkdl:digl, continue;
"32" digl+GL, call pl(announ); "Announce Dl "
"33"hrtz: , call pl(HZ); "Hertz"
"34" ,goto pl(start) ;
"35"spkd4:dig4, continue;
"36" dig4+GL, call pl(announ); "Announce D4"
"37" thousand, continue;
"38"thousand+wr, continue; "Thousand. . . "
"39"same:dig3, if (not intr) then goto pl(same);
"40" dig3+GL, continue;
"41" ,cmp tm(0F#h) to pl(00#h); "D3 = 0?"
"42" ,if (not equal) then goto pl(spkD3);
"43" dig2, continue;
"44" dig2+GL, continue;
"45" ,cmp tm(0F#h) to pl(00#h); "D2 = 0?"
"46" ,if (not equal) then goto pl(ptyand);
"47"spkand:and, continue;
"48" and+wr, continue; "And..."
"49"same2: ,if (not intr) then goto pl(same2);
"50" ,goto pl(spkdl);
"51"spkd3:dig3, continue;
"52" dig3+GL, call pl(announ); "Announce D3"
"53" hundred, continue;
"54" hundred+wr,continue; "Hundred..."
"55"same3:dig2, if (not intr) then goto pl(same3);
"56" dig2+GL, continue;
"57" ,cmp tm(0F#h) to pl(00#h); "D2 = 0?"
"58" ,if (not equal) then goto pl(ptyand);
"59" digl, continue;
"60" digl+GL, continue;
"61" ,cmp tm(0F#h) to pl(00#h); "Dl = 0?"
"62" ,if (not equal) then goto pl(spkand);
"63" ,goto pl(hrtz) ;
"64"ptyand:and, continue;
"65" and+wr, continue;
"66"same4:dig2, if (not intr) then goto pl(same4);
"67"ptyc:dig2+GL,continue;
"68" ,cmp tm(0F#h) to pl(01#h); "D2 = 1?"
"69" ,if (not equal) then goto pl(ptyb);
"70" digl, continue;
"71" digl+GL, call pl(BCD4); "Announce Dl"
"72" ,goto pl(hrtz) ;
"73"ptyb:dig2, continue; "Announce D2"

2 0 6 5 . Test and Measurement Circuits

"74" dig2+GL, call pl(BCD3b);
"75" digl, continue;
"76" digl+GL, continue;
"77" ,cmp tm(0F#h) to pl(00#h); "Dl = 0?"
"78" ,if (equal) then goto pl(hrtz) ;
"79" ,call pl(announ); "Announce Dl"

"80" ,goto pl(hrtz) ;

" DISPLAY FORMAT: 10.00 Scale: KHz D4 D3.D2 Dl"
"81"SPKHZ:dig4, continue; "D4 is necesarily not zero"
"82" dig4+GL, continue; "D4 is latched"
"83" ,cmp tm(0F#h) to pl(00#h); "D4=0?
"84" ,if (not equal) then goto pl(rick5);
"85"sayd3: dig3, continue; "say D3 because D4=0"
"86" dig3+GL, call pl(announ); "D3 is latched"
"87"pnt: point, continue; "Point.."
"88" point+wr, continue;
"89"idle: ,if (not intr) then goto pl(idle);
"90" dig2, continue;
"91" dig2+GL, continue;
"92" ,cmp tm(0F#h) to pl(00#h); "D2=0? "
"93" ,if (not equal) then goto pl(rick2);
"94" ,continue;
"95" ,call pl(announ); "announce D2"
"96"pat: digl, continue;
"97" digl+GL, call pl(announ); "announce Dl"
"98"paty: ,call pl(KHZ); "announce KiloHertz"
"99" ,goto pl(start) ;
"100"rick2: digl, continue;
"101" digl+GL, continue;
"102" ,cmp tm(0F#h) to pl(00#h);
"103" ,if (not equal) then goto pl(rick3);
"104" dig2, continue;
"105" dig2+GL, call pl (BCD3);
"106" ,goto pl(paty) ;
"107"rick3: dig2, continue;
"108" dig2+GL, continue;
"109" ,cmp tm(0F#h) to pl(01#h);
"110" ,if (not equal) then goto pl(rick4);
"111" ,call pl(BCD4) ;
"112" ,goto pl(paty);
"113"rick4: dig2, continue;
"114" dig2+GL, call pl (BCD3b) ;
"115" ,goto pl (pat);
"116"rick5: dig4, continue;
"117" dig4+GL, continue;
"118" ,cmp tm(0F#h) to pl(01#h); "D4=l? "
"119" ,if (not equal) then goto pl(rick6);
"120" dig3, continue;
"121" dig3+GL, call pl(BCD4); "Announce D3"
"122" ,goto pl(pnt) ;
"123"rick6: dig4, continue;

5.1 Talking Frequency Counter 2 0 7

"124" dig4+GL, call pl(BCD3b); "Announce D4"
"125" dig3, continue;
"126" dig3+GL, continue;
"127" ,cmp tm(0F#h) to pl(00#h); "D3 = 0?
"128" ,if (not equal) then goto pl(sayd3);
"129" ,goto pl(pnt);

DISPLAY FORMAT: 100.0 Scale:KHz D4 D3 D2.D1
"130"SPKH2:dig4, continue; "D4 is not zero"
"131" dig4+GL, call pl(announ); "D4 is latched"
"132" hundred, continue; "Hundred..."
"133" hundred+wr, continue;
"134"sty5: ,if (not intr) then goto pl(sty5);
"135" and, continue;
"136" and+wr, continue; "And...."
"137"sty6: ,if (not intr) then goto pl(sty6);
"138" dig3, continue;
"139" dig3+GL, continue;
"140" ,cmp tm(0F#h) to pl(00#h); "D3=0? "
"141" ,if (not equal) then goto pl(lug3);
"142"lug4: dig2, continue;
"143" dig2+GL, call pl(announ); "D2 is announced"
"144"lug5: point, continue;
"145" point+wr, continue;
"146"sty20: ,if(not intr) then goto pl(sty20);
"147" digl, continue;
"148" digl+GL, call pl(announ); "Dl is announced"
"149" ,call pl(KHZ);
"150" ,goto pl(start) ;
"151"lug3: dig3, continue;
"152" dig3+GL, continue;
"153" ,cmp tm(0f#h) to pl(01#h); "D3=l?"
"154" ,if (equal) then goto pl(lug6);
"155" ,call pl(BCD3b);
"156" dig2, continue;
"157" dig2+GL, continue;
"158" ,cmp tm(0F#h) to pl(00#h); "D2=0?"
"159" ,if (not equal) then goto pl(lug4);
"160" ,goto pl(lug5);
"161"lug6: dig2, continue;
"162" dig2+GL, call pl(BCD4);
"163" ,goto pl(lug5);

DISPLAY FORMAT: 1.000 Scale: MHz
"164"SPMHZ:dig4, continue;
"165" dig4+GL, call pl(announ);"D4 is latched"
"166" point, continue;
"167" point+wr, continue; "Point"
"168"sty8: ,if (not intr) then goto pl(sty8);
"169" dig3, continue;
"170" dig3+GL, call pl(announ);"D3 is latched"
"171" dig2, continue;

2 0 8 5 . Test and Measurement Circuits

"172" dig2+GL, call pl(announ);"D2 is selected"
"173" digl, continue;
"174" digl+GL, call pl(announ);"Dl is selected"
"175" ,call pl(MHZ);
"176" ,goto pl (start);

•ι ***** Routine for enabling counters IC8-IC9 for 1 second *****
'177"count:resetl, load pl (99);
*178"stay:cken, while (creg <> 0) loop to pl(stay);
Ί 7 9 " ,ret;

ROUTINES BCD3 AND BCD3b

"180
"181
"182
"183
"184
"185
"186
"187
"188
"189
"190
"191
"192
"193
"194
"195
"196
"197
"198
"199
"200
"201
"202
"203
"204
"205
"206
"207

'BCD3 :
ten+GL,

'BCD3b :
' twenty+GL,

' thirty+GL,

• forty+GL,

' fifty+GL,

' sixty+GL,

'seventy+GL,

1 eighty+GL,
' ninety+GL,
'nlO:ten+wr,
'n20:twenty+wr,
'n30:thirty+wr,
'n40:forty+wr,
'n50:fifty+wr,
'n60:sixty+wr,
'n70:seventy+wr
'n80:eighty+wr,
'n90:ninety+wr,
•xb:

cmp tm(0F#h) to
if (equal) then
cmp tm(0F#h) to
if (equal) then
cmp tm(0F#h) to
if (equal) then
cmp tm(0F#h) to
if (equal) then
cmp tm(0F#h) to
if (equal) then
cmp tm(0F#h) to
if (equal) then
cmp tm(0F#h) to
if (equal) then
cmp tm(0F#h) to
if (equal) then
goto pl(n90);

goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl (xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
if (not intr)
ret;

pl(01#h);
goto pl(nlO)
pl(02#h);
goto pl(n20)
pl (03#h);
goto pl(n30)
pl (04#h);
goto pl(n40)
pl (05#h);
goto pl(n50)
pl (06#h) ;
goto pl(n60)
pl (07#h);
goto pl(n70)
pl (08#h) ;
goto pl(n80)

then goto pl(xb)

ROUTINE BCD4

"208"
"209"
"210"
"211"
"212"
"213"
"214"

BCD4 :
ten+GL,

eleven+GL,

twelve+GL,

, cmp tm(0F#h) to pl(00#h);
if (equal) then goto pl(nlO)

, cmp tm(0F#h) to pl(01#h);
if (equal) then goto pl(nil)

, cmp tm(0F#h) to pl(02#h);
if (equal) then goto pl(nl2)

, cmp tm(0F#h) to pl(03#h);

5.1 Talking Frequency Counter 2 0 9

"215"thirteen+GL,
"216"
" 217"fourteen+GL,
"218"
"219"fifteen+GL,
"220"
"221"sixteen+GL,
"222"

if (equal) then goto pl(nl3)
cmp tm(0F#h) to pl(04#h);
if (equal) then goto pl(nl4)
cmp tm(0F#h) to pl(05#h);
if (equal) then goto pl(nl5)
cmp tm(0F#h) to pl (06#h);
if (equal) then goto pl(nl6)
cmp tm(0F#h) to pl(07#h);

"223"seventeen+GL,if (equal) then goto pl(nl7)
"224" ,cmp tm(0F#h) to pl(08#h);
"225"eighteen+GL, if (equal) then goto pl(nl8)
"226"nineteen+GL, goto pl(nl9);
"227"nil:eleven+wr,
"228"nl2:twelve+wr,
"229"nl3:thirteen+wr,
"230"nl4:fourteen+wr,
"231"nl5:fifteen+wr,
"232"nl6:sixteen+wr,
"233"nl7:seventeen+wr,
"234"nl8:eighteen+wr,
"235"nl9:nineteen+wr,

goto pl(finish)
goto pl(f inish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)

"236 'announ: , goto tm(0F#h);
"237 'nO zero+wr, goto pl(f inish)
"238 •nl one+wr, goto pl(finish)
"239 •n2 two+wr, goto pl(finish)
"240 'n3 three+wr, goto pl(finish)
"241 •n4 four+wr, goto pl(finish)
"242"n5 five+wr, goto pl(finish)
"243 'n6 six+wr, goto pl(f inish)
"244 'n7 seven+wr, goto pl(finish)
"245 •n8 eight+wr, goto pl(finish)
"246 •n9 nine+wr, goto pl(finish)

"247"finish:
"248"

, if (not intr)
, ret;

then goto pl(finish);

"249"HZ:pulses,
"250" pulses+wr
"251"
"252"KHZ:kilo,
"253" kilo+wr,
"254"
"255"MHZ:million,
"256"
"257"
"258"stop:wr

continue ;
continue,
if (intr) then goto pl(stop) else wait;
continue;
continue;
if (intr) then goto pl(HZ) else wait;
continue;

million+wr, continue;
,if (intr) then goto pl(HZ) else wait;
ret;

"259"
END.

. org 511#d
, goto pl(start);

2 1 0 5 . Test and Measurement Circuits

of the 74HC137 in a logic high in order to maintain the selection of one of the
four 74HC173 latches. This feature permits the FPC to perform several tasks
of comparison with the selected BCD digit. In this manner, the FPC selects
one of the four BCD digits to execute the subroutine of comparisons in order
to determine the decimal value of the selected digit. The 74HC137 (IC6) is
also used to assert a logic low to the /WR input of the Digitalker via output
Y5. When the 74HC137 is not working, the output Y0 (not shown) stays in a
logic low while the rest of the outputs remain in a logic high.

Table 5.2 shows that the main process of the program is in lines 10 to 20 of
the microcode program. The routines "SPHZ," "SPKHZ," and "SPKHZ2"
required by the FPC Am29CPL154 to determine the magnitude and the scale
of a frequency reading are shown in Figures 5.2, 5.3, and 5.4, respectively.
The routine "SPMHz" is used for input frequencies within the range of 1.000
to 9.999 MHz. Figures 5.5 and 5.6 show the comparison subroutines that very
often are used to determine the decimal value of the digit under measurement.

Announce Dl

F i g u r e 5.2 Flowchart for subroutine " S P H Z . "

5.1 Talking Frequency Counter 2 1 1

F i g u r e 5.3 Flowchart for subroutine "SPKHZ. '

To perform a complete reading with the circuitry of Figure 5.1, the process
shown in Table 5.2 must take place. When the circuit is first turned on, a soft­
ware reset pulse is applied with the instruction ".org 511#d" that makes the
program jump to the next instruction, located in line 257. Because the default
test condition is the output /INTR of the Digitalker, the instruction in line 257
makes the program jump to the instruction labeled "start," which is located in
line 10. As we have seen in previous chapters, the /INTR output of the Digi­
talker gives a logic one when it is ready to be triggered to start saying a deter­
mined word. Output lines PO to P7 of the FPC are used for loading the 8-bit
binary address that the Digitalker requires to announce a word (see Fig­
ure 5.1.) The instruction "call pl(count)" in line 10 of Table 5.2 calls the rou­
tine named "count" located in line 177 and resets counter IC5.

2 1 2 5 . Test and Measurement Circuits

S P K H Z O

__Star t_J;>

F i g u r e 5.4 Flowchart for subroutine "SPKHZ2. '

The first step that the routine "count" performs is loading the CREG
counter contained in the FPC with the decimal number 99. The instruction
"load pl(99)" in line 177 also clears the dual BCD counters (IC8a to IC8d)
prior to starting the counting sequence. Line 178 contains the instruction
"while (creg < > 0),"which keeps decrementing counter CREG of the FPC
while output P10 named "enable" remains at a logic high. Output P10 enables
counters IC8a to IC8d to start counting the input frequency "fi" for a period
of one second. When counter CREG is zero, the program jumps to the instruc­
tion "ret" in line 179, which performs a return to line 11. The instruction
"cmp tm(30#h) to p l (00#h)" is used to test if one or more overflows have
occurred. The bits " A " and " B " of IC5 are routed to the testable inputs T4
and T5 of the FPC; therefore, the test mask 30#h must be used to read the
binary value of T4 and T5. Inputs T4 and T5 are compared against zero in line
12. If T4 and T5 are equal to zero, the program jumps to the routine named

5.1 Talking Frequency Counter 2 1 3

"SPHZ." If T4 and T5 are not zero, the program jumps to the next instruction
in line 13. The set of instructions located in lines 13 to 20 are also used to
determine if more overflows occur, so the program can jump to the routine
that corresponds to the scale of the frequency under measurement.

The routine "SPHZ" is used for measuring frequencies within the range of
0 to 9999 hertz. The flowchart used for developing the microcode is shown in
Figure 5.2. The following two examples may be helpful in understanding the
flowchart.

Suppose we are measuring a low input frequency of 8 hertz; that is, 0008
Hz. In this case, the least significant digit Dl is the only one that contains the
magnitude of the reading. Routine "SPHz" starts by comparing digit D4
against zero. Since digit D4 is equal to zero, it then compares digit D3 and
then digit D2. Because D3 and D2 are both equal to zero, the program reaches
the box named "Announce D l . " Announcing the value of digit Dl is per­
formed by calling the routine "announ" in line 234. The instruction "goto
tm(0F#h)" in line 234 uses the inputs TO to T3 to jump to the lines within the
range of zero to nine, depending upon the value of the digit Dl . As can be
seen in lines zero to nine of Table 5.2, the instructions in that range contain a
"goto pl(nX)" command that makes the program jump to the exact location
where the speech word for the decimal number is located. In this case, digit
Dl makes the program branch to label " n 8 " located in line 243 where the
word "eight" is stored. Notice that line 8 of the program also contains the
word "eight" in order to issue the speech data to the address bus of the Digi­
talker. In addition, when the program jumps to line 243, the word "eight" is
still present while the /WR input of the Digitalker is pulsed low for 10 ms.
This causes the Digitalker to issue the word "eight," and the program will
jump to line 245 in order to wait for the /INTR input to go high. When the
Digitalker has finished saying the word "eight," its /INTR output goes to a
logic high, making the FPC return to line 33. The instruction in line 33 now
calls subroutine " H Z , " which is used to deliver the word "hertz" to the Digi­
talker. Because the word "hertz" is not contained in the ROM vocabulary of
the Digitalker, the word "pulses" was selected. When the program returns
from routine " H Z , " it then goes to label "start" in order to initiate a new
frequency measurement.

As a second example, assume that our frequency under measurement is
1500 hertz. The flowchart of Figure 5.2 will determine that D4 is not zero and
that digit D4 must be announced; consequently, digit D4 is enunciated by call­
ing subroutine "announ." In this case, the operator will hear the word "one ."
The next step is to issue the word "thousand" since digit D4 represents the
thousands of hertz under measurement. The left upper corner of the flowchart
(see Figure 5.2) shows that the program now has to determine if digit D3 is
equal to zero. In this case, digit D3 is not zero, so the program proceeds
to announce the value of digit D3, which is "five" followed by the word

2 1 4 5 . Test and Measurement Circuits

"hundred. " The flowchart now indicates that the next step is to determine if D2
and Dl are equal to zero. Since D2 and Dl are both equal to zero, the program
will issue the word "pulses." Thus the operator will hear the phrase "one
thousand five hundred pulses" that corresponds to the input frequency under
measurement. The reader can try several values within the range of 0 to 9999
Hz with the routine "SPHZ"; it performs all possible measurements correctly.

In the same way, routine "SPKHZ" performs all possible frequency mea­
surements within the range of 10.00 to 99.99 kHz. Notice that the decimal
point between D3 and D2 is also considered in the flowchart presented in Fig­
ure 5.3. Routine "SPKHZ2" shown in Figure 5.4 gives the measurements for
input frequencies within the range of 100.0 to 999.0 kHz. The routine
"SPMHz" located in line 164 gives the frequency readings within the range of
1.000 to 9.999 MHz. It is a small routine because it only scans and issues the

^ R E T U R N ^

F i g u r e 5.5 Flowchart for subroutine " B C D 3 . "

5.1 Talking Frequency Counter 2 1 5

F i g u r e 5.6 Flowchart for subroutine BCD4.

decimal value of the four digits from left to right and adds the words "point"
and "megahertz" (see lines 167 and 175, respectively).

Subroutines BCD3 and BCD4, shown in Figures 5.5 and 5.6, respectively,
are frequently used by the program to solve the cases of decimal numbers
formed by two numbers. For example, "twenty four" or numbers less than
20, as in the number "seventeen."

The routine presented in this section is extremely useful for measuring
variables that have to be represented in digital format. With a few variations to
the section "DEFINE," the routine shown in Table 5.2 can be easily adapted
for controlling another type of speech processor for any specific application.

2 1 6 5 , Test and Measurement Circuits

F i g u r e 5.7 Circuitry for the talking direct current voltage meter that calls out mea­
surements in English.

5.2 Designing a Talking Voltmeter
Using SP0256-AL2

The Figure 5.7 circuit is a low-cost dc voltmeter that measures a positive 0 to
25.5 V input and then voices the result in English. The meter can monitor a dc
voltage automatically, thereby freeing a user for other tasks. Its resolution is
+ / - 0.1 V.

Resistors Rl and R2 (see Figure 5.7) are used to attenuate the input volt­
age, and an 8-bit A/D converter (IC4) converts the result to a binary equiva­
lent at the outputs DB0-DB6. This 8-bit word drives the EPROM's upper
address lines A5-A12, selecting a block of memory within the EPROM.
Counter IC3 then scans those memory locations in sequence by driving the
lower address bits AO-A4. As a result, the EPROM delivers a preprogram­
med sequence of instructions to the speech processing chip (IC6).

Timer IC2 is configured as a one-shoot monostable. When the test switch

Ricardo Jimenez-G., San Diego State University, Calexico, California and Francisco Meza
and Jose J. Lara, Technological Institute of Mexicali, Mexicali, Baja California, Mexico. Re­
printed and adapted with permission. Copyright EDN 1986. Cahners Publications 8/7/86.

5.3 A Direct Current Voltmeter 2 1 7

SI is depressed, the monostable generates a 1.1 ms pulse that sets the Q output
of flip-flop IC7 high. The resulting negative transition at the speech processor
chip's /ALD input (pin 20) loads the current EPROM output and causes the
processor to assert a low logic level at the /SBY output (pin 8). This action
changes the IC8b output to a logic one, causing the processor to hold /SBY
low for an interval appropriate to that particular allophone. Note that you
must connect an audio amplifier and speaker or headphone to the output as
indicated.

The processor initiates the next allophone cycle by driving /SBY high.
Each audible report requires 3 to 25 allophones, which you can get from the
dictionary located in Section 2 of Chapter 2. In essence, you must program
the EPROM in 250 blocks of 3 to 25 bytes each.

An input of A12-A5=00000001 (corresponding to 0.1 V input), for ex­
ample, produces the word "zero point one" from the audio amplifier. The al­
lophones representing these words are stored in the EPROM as shown in Table
5.3. Table 5.3 shows that, after each report, the hex data instructions 4 and 44
internally reset the speech processor and, via the EPROM's 0 6 output, they
reset the counter and the flip-flop as well. Table 5.3 represents only a part of
the whole set of data within the ranges of 0.0 to 3.0 V and 24.9 to 25.0 V.

5.3 Designing α Direct Current Voltmeter1

with the Digitalker Kit DTI050

The circuit presented in Figure 5.8 converts inputs of 0 to 25.5 V into a plain-
English output with a resolution of 0.1 V. The voltmeter uses an MM54104
Digitalker chip from National Semiconductor as the speech synthesizer (IC5).
Two ROMs (IC6 and IC7) contain in compressed form the frequency and am­
plitude data required for spoken expressions at 144 addressable locations. Fig­
ure 5.8 shows the external filter, audio amplifier, and the external speaker that
the system requires to enunciate the voltage measurements.

Resistors Rl and R2 divide the input voltage to be measured by 10. Press­
ing the test switch to take a reading sends a 4 ms negative pulse to the A/D
converter from the Nand gate IClc, configured as a half-monostable. The
ADC0804 A/D converter generates an 8-bit binary-coded output word, DB0
to DB7, the digital equivalent of the voltage input. These eight bits serve as
the address input to pins A4 to Al l of the 27C64 EPROM (IC4). Half of a
4520 dual counter (IC2a) scans those memory locations in sequence by driv­
ing the lower address bits AO to A3 of the EPROM. As a result, the EPROM
delivers a preprogrammed sequence of five instructions to the Digitalker.
After each report, Nand gates ICla and IClb reset both ICla and IC2b binary
counters.

'Reprinted and adapted with permission from Electronic Design, (Vol. 36 No. 24) 10/27/88.
Copyright 1987 Penton Publishing.

2 1 8 5 . Test and Measurement Circuits

T A B L E 5.3
E P R O M Program that Contains All the Speech Data for the dc Talking Voltmeter

Input Hex Hex
voltage data data

0.0 volts 00 2B,3C,35,2,23,35,2D,11,37,4,44
0. 1 20 2B,3C,35,2,9,5,B,11,2,2E,F,F,B,4,44
0. 2 40 2B, 3C, 35, 2, 9, 5, B, 11, 2, D, IF, 4, 44
0. 3 60 2B, 3C, 35, 2, 9, 5, B, 11, 2, 10, E, 13, 4, 44
0. 4 80 2B,3C,35,2,9,5,B,11,2,28,28,3A,4,44
0. 5 AO 2B, 3C, 35, 2, 9, 5, B, 11, 2, 28, 28, 6, 23, 4, 44
0. 6 CO 2B, 3C, 35, 2, 9, 5, B, 11, 2, 37, 37, C, 2, 27, 37, 4, 44
0. 7 EO 2B,3C,35,2,9,5,B,11,2,37,37,7,7,23,C,B,4,44
0. 8 100 2B,3C,35,2,9,5,B,11,2,14,2,D,4,44
0. 9 120 2B,3C,35,2,9,5,B,11,2,38,18,6,B,4,44
1. 0 140 2E,F,F,B,2,23,35,2D,11,4,44
1. 1 160 2E,F,F,B,2,9,5,B,11,2,39,F,F,B,4,44
1. 2 180 2E,F,F,B,2,9,5,B,11,2,D,1F,4,44
1.3 1A0 2E,F,F,B,2,9,5,B,11,2,10,E,13,4,44
1. 4 ICO 2E,F,F,B,2,9,5,B,11,2,28,28,3A,4,44
1.5 1E0 2E, F, F,B, 2, 9, 5, B, 11, 2, 28, 28, 6, 23, 4, 44
1. 6 200 2E,F,F,B,2,9,5,B,11,2,37,37,C,2,29,37,4,44
1. 7 220 2E,F,F,B,2,9,5,B,11,2,37,37,7,7,23,C,B,4,44
1. 8 240 2E,F,F,B,2,9,5,B,11,2,14,2D,4,44
1.9 260 2E,F,F,B,2,9,5,B,11,2,38,18,6,B,4,44
2. 0 280 D, IF, 2, 23, 35,2D,11,37,4,44
2. 1 2A0 D, 1F,2,9,5,B,11,2,39,F,F,F,B,4,44
2. 2 2C0 D, IF, 2, 9, 5, B, 11, 2, D, IF, 4, 44
2. 3 2E0 D, IF, 2, 9, 5, B, 11, 2, 10, E, 13, 4, 44
2. 4 300 D, IF, 2, 9, 5, B, 11, 2, 28, 28, 3A, 4, 44
2. 5 320 D, IF, 2, 9, 5, B, 11, 2, 28, 28, 6, 23, 4, 44
2. 6 340 D, IF, 2, 9, 5, B, 11, 2, 37, 37, C, 2, 29, 37, 4, 44
2. 7 360 D,IF,2,9,5,B,11,2,37,37,7,7,23,C,B,4,44
2. 8 380 D, IF, 2, 9, 5, B, 11, 2, 14, 2D, 4, 44
2. 9 3A0 D, IF, 2, 9, 5, B, 11, 2, 38, 18, 6, B, 4, 44
3. 0 3C0 10, E, 13, 2, 23, 35, 2D,11,37,4,44

24. 9 1F20 D, 30, 7, 7, B, 2, D, 13, 2, 28, 28, 3A, 2, 9, 5, B, 11, 38, 18, 6,
B, 4,44

25. 0 D, 30, 7, 7, B, 2, D, 13, 2, 28, 28, 6, 23, 2, 23, 35, 2D, 11,
37,4,44

25. 1
D, 30,7,7,B,2,D,13,2,28,28,6,23,2,9,5,B,11,2E,F,F,

B, 4,44
25. 2 D, 30, 7, 7, B, 2, D, 13, 2, 28, 28, 6, 23, 2, 9, 5, B, 11, D, IF,

4, 44
25. 3 D, 30, 7, 7, B, 2, D, 13, 2, 28, 28, 6, 23, 2, 9, 5, B, 11, 10, E,

13,4,44
25. 4 D, 30, 7, 7, B, 2, D, 13, 2, 28, 28, 6, 23, 2, 9, 5, B, 11, 28, 28,

3A,4,44
25. 5 D, 30, 7, 7, B, 2, D, 13, 2, 28, 28, 6, 23, 2, 9, 5, B, 11, 28, 28,

6, 23,4,44

5.3 A Direct Current Voltmeter 2 1 9

F i g u r e 5.8 Schematic for the direct current voltmeter that converts inputs of 0 to
25.5 V into a plain-English output with a resolution of 0.1 V.

Each audible report can contain up to five words or sounds (obtained from
the dictionary of the Digitalker presented in Chapter 1, Section 8). For ex­
ample, the voltmeter's speaker will say the words "one point five volts" for
the binary input 00001111, or OF in hexadecimal code (the equivalent of 1.5 V
input) to addresses A4 to A l l of the EPROM. Accordingly, programming
each of the 255 blocks of the EPROM requires five bytes of coded data for
each voltage value (see Table 5.4). Due to the long EPROM program re­
quired, Table 5.4 presents only part of the hex data.

A reading response starts when the operator presses the test button. A pulse
generated by that action starts the A/D conversion process and the interrupt
(/INTR) output goes high. The conversion process takes 100 ^ s . When it
ends, the A/D converter's /INTR output returns to a logic low, and counter
IC2b's QA output latches high, causing a negative transition at the Nand gate
(ICld) output. Applied to the speech processor's write input (WR), this transi­
tion loads the current EPROM output O0 to 0 7 into the Digitalker and causes
the processor to assert a low logic level at its /INTR output (pin 6). This action
returns the ICld's output to a high logic level.

The processor chip holds its /INTR output low for an interval appropriate
to that particular word. When the Digitalker's /INTR signal returns to high, it
triggers counter IC2a to deliver the second word in the five-word cycle and

2 2 0 5 . Test and Measurement Circuits

T A B L E 5.4
E P R O M Program for the 255 Blocks of IC4

Hex Hex
add data Message

0 IF,7A,IF,8E,81 zero point zero volts
10 IF, 7A, 1, 8E, 81 zero point one volts
20 IF,7A,2,8E,81 zero point two volts
30 IF, 7A, 3, 8E, 81 zero point three volts
40 IF,7A,4,8E,81 zero point four volts
50 IF,7A,5,8E,81 zero point five volts
60 IF, 7A,6,8E,81 zero point six volts
70 IF,7A,7,8E,81 zero point seven volts
80 IF,7A,8,8E,81 zero point eight volts
90 IF,7A,9,8E,81 zero point nine volts
AO 1, 7A, IF, 8E, 81 one point zero volts
BO 1, 7A, 1, 8E, 81 one point one volts
CO 1, 7A, 2, 8E, 81 one point two volts
DO 1, 7A, 3, 8E, 81 one point three volts
EO 1, 7A, 4, 8E, 81 one point four volts
FO 1, 7A, 5, 8E, 81 one point five volts

100 1, 7A, 6, 8E, 81 one point six volts
110 1, 7A, 7, 8E, 81 one point seven volts
120 1, 7A, 8, 8E, 81 one point eight volts
130 1, 7A, 9, 8E, 81 one point nine volts
140 2, 7A, IF, 8E, 81 two point zero volts

FAO 19, 5, 7A, IF, 8E twenty five point zero volts
FBO 19, 5, 7A, 1, 8E twenty five point one volts
FCO 19, 5, 7A, 2, 8E twenty five point two volts
FDO 19, 5, 7A, 3, 8E twenty five point three volts
FEO 19, 5, 7A, 4, 8E twenty five point four volts
FFO 19, 5, 7A, 5, 8E twenty five point five volts

also enables Nand gate ICld to load that word into the Digitalker. This cycling
continues until ICla and IClb reset both IC2 counter halves, preparing the
circuit for another reading.

5·4 Using α Field Programmable
Controller to Design a Compact
Autorange Direct Current Voltmeter

The circuit shown in Figure 5.9 measures a dc input voltage within the range
of 0 to 1.999 V. An automatic floating point can be added by controlling a
switching network for the input voltage that also indicates the scale to the FPC
Am29CPL154. Notice that the talking dc voltmeter does not contain a digital

5,4 A Compact Direct Current Voltmeter 2 2 1

display because the speech processor will be speaking the readings and the
scales in volts.

As shown, the input voltage is received by ICI (TSC8750). When the cir­
cuit presented in Figure 5.9 is first turned on, for example, a reset pulse is
applied to the FPC Am29CPL154. IC5 selects the input voltage Vin. The
BCD format of the A/D converter TSC8750 was chosen because it reduces the
size and development of the software program used by FPC Am29CPL154
(IC10). The PAL20R4 performs the equation Ql: = / (x l * x 2 * x 3 * x 4 *
X 5 * X 6 * X 7) .

From
TSC8750

24 .
1 -
4 -
5 -
8 -
9 -
12 -

2 —fi

X2 PAL20R4
Q1 OVER

RANGE

5V

~~5lOOK

^ 0 . 1

To WR

F i g u r e 5.9 Schematic diagram of the circuit that makes up the talking autorange
direct current voltage meter.

2 2 2 5 . Test and Measurement Circuits

The time base section is formed by IC7. The oscillator/divider MM5369EST
(IC7) uses a 3.57 MHz crystal in order to give a stable 100 Hz output fre­
quency, which feeds the FPC Am29CPL154 (IC10). The FPC (IC10) is pro­
grammed to control the "initiate conversion" input of A/D TSC8750. The
FPC is also used to enable the input voltage under measurement received by
the TSC8750 (see Figure 5.9). To perform a voltage reading, the FPC has to
know if an overflow has occurred in order to select the next higher scale. If a
new scale is selected, the FPC announces the voltage in the scale of 0 to
20 V. If no overflow occurs in the new selected scale, the FPC reads the mea­
sured voltage through the testable inputs TO to T3. This way, the FPC starts
the routine for driving the speech processor Digitalker (MM54104). The Digi­
talker kit was selected for this application because it contains a vocabulary
with numbers and words that are used for voltage measurements.

We will now examine the operation of the entire circuit of Figure 5.9 in
more detail. When the circuit is first turned on, the FPC Am29CPL154 resets
PAL20R4, which is the chip that registers the overflows that may occur when
the selected input voltage causes an overflow. The FPC then proceeds to clear
the PAL20R4 by sending a positive transient pulse via output P15. In this man­
ner, the FPC resets the PAL prior to starting a voltage reading. Now, the FPC
enables the input Vin to the ADC TSC8750 in order to determine its magni­
tude. When the ADC TSC8750 ends the conversion process in 10 ms, the FPC
checks if an overflow has occurred by reading output Ζ of the PAL16R4.

If the testable input T4 is in a logic high, the FPC selects the next higher
scale and starts a new voltage measurement by enabling the input that contains
the 200K resistor. Now the TSC8750 will be measuring voltages within the
range of 0 to 19.99 V. This scale is selected by the FPC by sending a logic
high to the analog selector CD4051. If no overflow occurs in this scale, the
FPC will proceed to read the measured voltage through the inputs TO to T3.
Then the FPC will perform the routine for vocalizing the voltage reading.

Table 5.5 shows the three cases that might occur when the input signal
under measurement contains a magnitude that ranges from 0 to 20 V.

Table 5.5 shows three cases that represent all possible ranges for the input

T A B L E 5.5
Input Voltages for the Autorange DC Voltmeter

Voltage Input Resistor Display
range voltage selected reading P8 P9 P10

0-199.9 mV 100.1 mV 20 Κ 1 0 0.1 1 0 0
0-1.999 V 1.125 V 200K 1 . 1 2 5 0 1 0
0-19.99 V 5. 150 V 2 M 5 . 1 5 0 0 0 1

5.4 A Compact Direct Current Voltmeter 2 2 3

voltage under measurement. In the first row, the dc voltmeter accepts up to
199.9 mV via the 20K resistor. Notice that the FPC selects the input voltage
"Vin" with outputs P8, P9, and P10 equal to 100, respectively. If the first
overflow occurs, the FPC will select the second resistor of 200K. With the
200K resistor selected, the FPC will start a new conversion process in order to
get the new reading in the voltage scale. The FPC will detect the change of
scale by reading the input T4. If a second overflow occurs, the FPC will
change the input node from 200K to 2M. Once the 2M resistor is selected, the
ADC TSC8750 will be capable of performing voltage readings within the
range of 0 to 19.99 V. If the input voltage under measurement, for example, is
equal to or higher than 19.99 V, the FPC will make the speech processor an­
nounce the word "over range." After that message, the FPC will start a new
voltage reading. The logical values of the output " Z " of the PAL will serve to
indicate to the FPC (IC10) the scale of the reading. This way, the speech pro­
cessor can speak a voltage reading in millivolts or volts.

Table 5.6 shows the microcode program for the FPC Am29CPL154. As
shown in Figure 5.9, the FPC is clocked by a 100 Hz frequency that is gener­
ated by IC7 and associated components. This means that the FPC will perform
each instruction in 10 ms (10,000 ^s) ; therefore, the FPC will issue out­
put pulses with 10 ms of duration. The output pulses are named "convers"
and " G L . "

Table 5.6 presents the software program for the FPC Am29CPL154. The
"comments" section in the software program explains in detail the steps fol­
lowed by the FPC in order to drive the speech processor correctly. In this case,
the FPC Am29CPL154 is capable of reading the input voltage of the 3.5 digits
parallel BCD converter by driving a 3-to-8 decoder 74HC137 (IC6). IC6 is an
active low decoder that selects the BCD output of each counter by applying a
logic zero at the input /OC of the selected 4-bit latch (74HC173). Because the
ICs 74HC173 contain tri-state outputs, bus conflicts are avoided; therefore,
the four 74HC173s share the same bus that provides the digital voltage reading
to the FPC Am29CPL154. The FPC drives the 74HC137 by asserting a 3-bit
data via outputs Ρ12, P13, and Ρ14. The next step consists of driving the GL
input to a logic high while the outputs P12 to P14 maintain the data. It is nec­
essary to keep the input GL of the 74HC137 in a logic high in order to main­
tain the selection of one of the four latches 74HC173. This feature permits the
FPC to perform several comparisons with the selected BCD digit. In this man­
ner, the FPC selects one of the four BCD digits to execute the subroutine
of comparisons to determine the decimal value of the selected digit. The
74HC137 (IC6) is also used to assert a logic low to the /WR input of the Digi­
talker via output Y5. When the 74HC137 is not working, the output Y0 stays
in a logic low while the rest of the outputs remain in a logic high.

Table 5.6 shows that the main process of the program is in lines 10
to 20 of the microcode program. The routines "SPMV," "SPVOLT," and

2 2 4 5 . Test and Measurement Circuits

T A B L E 5.6
Software Program for the FPC Am29CPL154

DEVICE (CPL154)

DEFAULT = 1;

DEFINE
hrange

"test inputs"
t4 busy = t7 intr t6 equal = eq

"Output control bits are given name assginments"
two
six
ten

02#h
06#h
OA#h

three = 03#h
seven = 07#h

eleven = OB#h

one = 01#h
five = 05#h
nine = 09#h

thirteen = OD#h fourteen = OE#h fifteen = OF#h
seventeen = ll#h eighteen = 12#h nineteen = 13#h

thirty = 15#h forty = 16#h fifty = 17#h sixty

zero = lF#h
four = 04#h
eight = 08#h
twelve = OC#h
sixteen = 10#h
twenty = 14#h
= 18#h
seventy = 19#h eighty = lA#h ninety = lB#h hundred
thousand = lD#h mi H i = 6C#h volt = 8E#h ss = 81#h
over = 75#h point = 9A#h wr = 5000#h and = 3C#h
rstPAL = 8000#h "P15" digl = 1000#h "P12" convrs = 400#h
scalel = 0000#h dig2 = 2000#h "P13"
scale2 = 0100#h "P8" dig3 = 3000#h "P12+P13" GL = 0800#h
scale3 = 0300#h dig4 = 4000#h;"P14"

lC#h
kilo = 62#h

DEFAULT_OUTPUT
0UT_P0LARITY =

TEST_C0NDITI0N

BEGIN

= 0000#h;
1111011111111111#b;"GL is high when not specified"

= INTR; "Default test condition"

' 0 " zero, goto pl(nO)
•1" one, goto pl(nl)
-2" two, goto pl(n2)
•3" three, goto pl(n3)
-4" four, goto pl(n4)
'5" f ive, goto pl(n5)
'6" six, goto pl(n6)
'7" seven, goto pl(n7)
'8" eight, goto pl(n8)
'9" nine, goto pl(n9)

MAIN PROCESS

"10"start:rstPAL+scalel, call pl(voltage)
"11" ,if (not hrange) then goto pl(SPmV); "over range?"
"12" rstPAL, continue;
"13" ,call pl(voltage2);
"14" ,if (not hrange) then goto pl(SPVOLT1);"over range?
"15" rstPAL, continue;
"16" ,call pl(voltage3);
"17" rstPAL, continue;
"18" ,if (not hrange) then goto pl(SPV0LT2);"over range?
"19" ,call pl(msgerr);

5.4 A Compact Direct Current Voltmeter 2 2 5

" DISPLAY FORMAT: 10.00 Scale: Volts (0-20V) D4 D3.D2 Dl"
"21"SPVOLT2: dig4, continue; "D4 is necesarily not zero
"22" dig4+GL, continue; "D4 is latched"
"23" ,cmp tm(0F#h) to pl(00#h); "D4=
"24" ,if (not equal) then goto pl(rick5);
"25"sayd3: dig3, continue; "say D3 because D4
"26" dig3+GL, call pl(announ); "D3 is latched"
"27"pnt: point, continue; "Point.."
"28" point+wr, continue;
"29"idle: ,if (not intr) then goto pl(idle);
"30" dig2, continue;
"31" dig2+GL, continue;
"32" ,cmp tm(0F#h) to pl(00#h); "D2=0? "
"33" ,if (not equal) then goto pl(rick2);
"34" ,continue;
"35" ,call pl(announ); "announce D2"
"36"pat: digl, continue;
"37" digl+GL, call pl(announ); "announce Dl"
"38"paty: ,call pl(HZ); "Volts"
"39" ,goto pl(start);
"40"rick2: digl, continue;
"41" digl+GL, continue;
"42" ,cmp tm(0F#h) to pl(00#h);
"43" ,if (not equal) then goto pl(rick3);
"44" dig2, continue;
"45" dig2+GL, call pl(BCD3);
"46" ,goto pl (paty);
"47"rick3: dig2, continue;
"48" dig2+GL, continue;
"49" ,cmp tm(0F#h) to pl(01#h);
"50" ,if (not equal) then goto pl(rick4);
"51" ,call pl(BCD4);
"52" ,goto pl(paty);
"53"rick4: dig2, continue;
"54" dig2+GL, call pl(BCD3b);
"55" ,goto pl(pat);
"56"rick5: dig4, continue;
"57" dig4+GL, continue ;
"58" ,cmp tm(0F#h) to pl(01#h); "D4=l? "
"59" ,if (not equal) then goto pl(rick6);
"60" dig3, continue;
"61" dig3+GL, call pl(BCD4); "Announce D3"
"62" ,goto pl(pnt);
"63"rick6: dig4, continue ;
"64" dig4+GL, call pl(BCD3b); "Announce D4"
"65" dig3, continue;
"66" dig3+GL, continue;
"67" ,cmp tm(0F#h) to pl(00#h); "D3 = 0? "
"68" ,if (not equal) then goto pl(sayd3);
"69" ,goto pl(pnt);

"20" ,goto pl(start);

2 2 6 5 . Test and Measurement Circuits

" DISPLAY FORMAT: 000.0 - 199.9 Scale: mV (0-200 mV) D4 D3 D2.D1
"70"SPmV:dig4, continue; "D4 is not zero"
"71" dig4+GL, call pl(announ); "D4 is latched"
"72" hundred, continue; "Hundred..."
"73" hundred+wr, continue;
"74"sty5: ,if (not intr) then goto pl(sty5);
"75" and, continue;
"76" and+wr, continue; "And...."
"77"sty6: ,if (not intr) then goto pl(sty6);
"78" dig3, continue;
"79" dig3+GL, continue;
"80" ,cmp tm(0F#h) to pl(00#h); "D3=0? "
"81" ,if (not equal) then goto pl(lug3);
"82"lug4: dig2, continue;
"83" dig2+GL, call pl(announ); "D2 is announced"
"84"lug5: point, continue;
"85" point+wr, continue;
"86"sty20 ,if(not intr) then goto pl (sty20);
"87" digl, continue;
"88" digl+GL, call pl(announ); "Dl is announced"
"89" ,call pl(KHZ); "Millivolts"
"90" ,goto pl(start);
"91"lug3: dig3, continue;
"92" dig3+GL, continue;
"93" ,cmp tm(0f#h) to pl(01#h); "D3
"94" ,if (equal) then goto pl(lug6);
"95" ,call pl(BCD3b);
"96" dig2, continue;
"97" dig2+GL, continue;
"98" ,cmp tm(0F#h) to pl(00#h); "D2=0?"
"99" ,if (not equal) then goto pl(lug4);
"100" ,goto pl(lug5);
"101"lug6 dig2, continue;
"102" dig2+GL, call pl(BCD4);
"103" ,goto pl(lug5);

" DISPLAY FORMAT: 1.000 -- 1.999 Scale: Volts (0-2V) D4.D3D2I
"104"SPVOLT1:dig4, continue;
"105" dig4+GL, call pl(announ);"D4 is latched"
"106" point, continue;
"107" point+wr, continue; "Point"
"108"sty8 ,if (not intr) then goto pl(sty8);
"109" dig3, continue;
"110" dig3+GL, call pl(announ);"D3 is latched"
"111" dig2, continue;
"112" dig2+GL, call pl(announ);"D2 is selected"
"113" digl, continue;
"114" digl+GL, call pl(announ);"Dl is selected"
"115" ,call pl(HZ);
"116" ,goto pl(start);

5.4 A Compact Direct Current Voltmeter 2 2 7

***** Routine to initiate conversion process in scalel

"117"voltage:convrs+scalel,
"118"stay: scalel,
"119"

continue;
if (busy) then goto pl(stay)

, ret;

ROUTINES BCD3 AND BCD3b

thirty+GL,

forty+GL,

fifty+GL,

sixty+GL,

'120"BCD3:
"121" ten+GL,
'122"BCD3b:
•123" twenty+GL,
•124"
Ί 2 5 "
"126"
"127"
"128"
"129"
"130"
"131"
"132"
"133"seventy+GL,
"134"
"135" eighty+GL,
"136" ninety+GL,
"137"nlO:ten+wr,
"138"n20:twenty+wr,
"139"n30:thirty+wr,
"140"n40:forty+wr,
"141"n50:fifty+wr,
"142"n60:sixty+wr,
"143"n70:seventy+wr
"144"n80:eighty+wr,
"145"n90:ninety+wr,
"146"xb:
"147"

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then
goto pl(n90) ;

goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
if (not intr)
ret;

pl(01#h);
goto pl(nlO) ;
pl(02#h);
goto pl(n20);
pl (03#h);
goto pl(n30) ;
pl(04#h);
goto pl(n40);
pl (05#h);
goto pl(n50);
pl(06#h);
goto pl(n60);
pl(07#h);
goto pl(n70) ;
pl(08#h);
goto pl(n80);

then goto pl(xb)

ROUTINE BCD4

"148" BCD4:
"149" ten+GL,
"150"
"151" eleven+GL,
"152"
"153" twelve+GL,
"154"
" 155"thirteen+GL,
"156"
"157"fourteen+GL,
"158"

, cmp tm(0F#h) to
if (equal) then
, cmp tm(0F#h) to
if (equal) then
, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then
, cmp tm(0F#h) to
if (equal) then
, cmp tm(0F#h) to

pl(00#h);
goto pl(nlO)
pl(01#h);
goto pl(nil)
pl(02#h);
goto pl(nl2)
pl(03#h);
goto pl(nl3)
pl(04#h);
goto pl(nl4)
pl(05#h);

2 2 8 5 . Test and Measurement Circuits

"159'
"160'
"161»
"162'
"163*
"164'
"165'
"166'
"167'
"168'
"169'
"170'
"171'
"172'
"173'
"174'
"175'

"176'
"177'
"178*
"179'
"180'
"181'
"182'
"183·
"184'
"185'
"186'

'fifteen+GL, if (equal) then goto pl(nl5);
,cmp tm(0F#h) to pl(06#h);

'sixteen+GL, if (equal) then goto pl(nl6);
' ,cmp tm(0F#h) to pl(07#h);
'seventeen+GL,if (equal) then goto pl(nl7);

,cmp tm(0F#h) to pl(08#h);
'eighteen+GL, if (equal) then goto pl(nl8);
'nineteen+GL, goto pl(nl9);
'nil:eleven+wr,
nl2:twelve+wr,
'nl3:thirteen+wr,
'nl4:fourteen+wr,
'nl5:fifteen+wr,
'nl6:sixteen+wr,
'nl7:seventeen+wr,
'nl8:eighteen+wr,
'nl9:nineteen+wr,
1 announ:
'nO:zero+wr,
'nl:one+wr,
' n2:two+wr,
n3:three+wr,
'n4:four+wr,
'n5:five+wr,
'n6:six+wr,
'n7:seven+wr,
n8:eight+wr,
n9:nine+wr,

goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl (finish)

, goto tm(0F#h) ;
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl (finish)
goto pl(finish)

"187"finish: ,if (not intr) then goto pl(finish);
"188" , ret;

"189"HZ:volt, continue;
"190" volt+wr, continue; "VOLT. . . "
"191" if (intr) then goto pl(ssa) else wait;
"192"ssa:ss, continue; "S..."
"193" ss+wr, continue;
"194" if (intr) then goto pl (stop) else wait;
"195"KHZ:milli, continue;
"196" milli+wr, continue;
"197" if (intr) then goto pl(HZ) else wait;
"198"stop:wr, ret ;
"199"msgerr:over, continue; "OVER..."
"200" over+wr, continue;
"201" if (intr) then goto pl(HZ) else wait;

π ***** Routine to initiate conversion process in scale2

"202"voltage2:convrs+scale2, continue;
"203"accnt: scale2, if (busy) then goto pl(accnt)
"204" , ret;

5.4 A Compact Direct Current Voltmeter 2 2 9

***** Routine to initiate conversion process in scale3 "
205"voltage3:convrs+scale3, continue;
206"accnt3: scale3, if (busy) then goto pl(accnt3);
207" ,ret;

.org 511#d
"208" ,goto pl(start);
END.

"SPVOLTS2" are used by the FPC Am29CPL154 to determine the magnitude
and the scale of a frequency reading. Routine "SPMV" is used for an input
voltage within the range of 0.000 to 199.9 mV.

To perform a complete voltage reading with the circuitry of Figure 5.9, the
process shown in Table 5.6 must take place. When the circuit is first turned
on, a software reset pulse is applied with the instruction ".org 511#d," which
makes the program jump to the next instruction, located in line 257. Because
the default test condition is the output /INTR of the Digitalker, the instruction
in line 257 makes the program jump to the instruction labeled "start," located
in line 10. As we have seen in previous chapters, the /INTR output of the Digi­
talker gives a logic one when it is ready to be triggered in order to start saying
a determined word. Output lines P0 to P7 of the FPC are used for loading the
8-bit binary address that the Digitalker requires to announce a word (see Fig­
ure 5.9). The instruction "call pl(voltage)" in line 10 of Table 5.6 calls the
routine "voltage" located in line 177 and resets the PAL16R4. The first step
that this routine performs is asserting a logic high pulse via the output Ρ15 to
the "initiate conversion" input of the ADC TSC8750. The instruction "if
(busy) then goto pl(stay)" in line 177 waits for the output "BUSY" (line 22 of
ICI)" to go high prior to starting a new voltage reading.

The instruction "ret" in line 179 performs a return to line 11. The instruc­
tion "cmp tm(30#h) to pl (00#h)" is used to test if one or more overflows
have occurred. The bit named " A " of IC2 is routed to the testable input T4 of
the FPC; therefore, the test mask 10#h must be used to read the binary value
of T4. Input T4 is compared against one in line 12; if T4 is equal to zero, the
program jumps to the routine "SPHZ." On the other hand, if T4 is different
from zero the program jumps to the next instruction, located in line 13. The
set of instructions located in lines 13 to 20 are also used to determine if more
overflows occur in order to send the program to the routine that corresponds to
the scale of the input voltage under measurement.

In the same way, the routine "SPmV" solves all the possible voltage mea­
surements within the range of 0 to 199.9 mV. Notice that the decimal point
between D3 and D2 is considered in that routine. Routine "SPVOLT1" shown

2 3 0 5 . Test and Measurement Circuits

in Table 5.6 gives the measurements for input voltages within the range 0 to
1.999 V. Routine "SPVOLT2" located in line 164 gives the digital voltage
readings within the range of 0 to 19.99 V. It is a small routine because it only
scans and issues the decimal value of the four digits from left to right and adds
the words "point" and "volts" (see lines 167 and 175, respectively).

Subroutines BCD3 and BCD4 are frequently used by the complete program
for decimal numbers that are formed by two numbers—for example "twenty
four"—or that are less than 20, as in the number "seventeen."

5.5 Designing α Circuit to Announce2

Alternating Current Line Voltage

With a few passive components for monitoring ac voltages and a speech pro­
cessing chip, a circuit can announce the measured voltage of ac lines. The
range of the ac-voltage monitor presented in this section is 100 to 140 Vac,
with a resolution of 1 V. The speech processor (SP0256-AL2) interprets an
8-bit binary input code from an A/D converter. The processor's pulse-code
modulated output then passes through a filter and amplifier before driving the
circuit's speaker to vocalize the corresponding number (see Figure 5.10).

In this application, the allophone-based speech processor requires 20 to 31
allophones for each audible report. Each time switch SI is pressed, the speech
processor program enunciates the monitored voltage readings from 100 to 140
Vac, depending on the code at the input of a 27C64 EPROM (see Table 5.7).
For an input voltage of 120 Vac, for example, the speaker announces "one
hundred and twenty volts."

The voltage-monitoring circuit consists of a bridge rectifier, filter capaci­
tors, and a 10K load resistor. A divider, Ra and Rb, limits the input voltage to
a maximum 2.55 V The A/D converter, IC4, then sends the voltage reading to
the 27C64 EPROM (IC5).

Pressing SI sends a negative transient pulse to the (/WR) input of the A/D
converter, IC4, which has a 100 μ$ conversion process and generates an inter­
rupt (/INTR) high output during the process. The resulting binary-coded read­
ing then, latched in the A/D converter, supplies the EPROM's current upper-
address inputs A5 through A12, which select a block of memory within the
EPROM. Next, a CD4520 counter (IC3) scans those memory locations in se­
quence by driving the lower address bits AO through A4.

As a result, the EPROM delivers a preprogrammed sequence of instruc­
tions to the speech processor. Hexadecimal data instructions, 4H and 44H, at
the end of each program line supply a reset signal from the EPROM output 0 6

2Reprinted and adapted with permission from Electronic Design, (Vol. 37 No. 2) January 26,
1989. Copyright 1989 Penton Publishing.

5.5 AC Line Voltage Circuit 2 3 1

33k 33k

o.oi _L o.oi -L I

50k i
22 pF

H h
114 J _

MHz-

27
22 pF

I I I 1 * 11 '

2 + 5V<£ =

ICS

LM386^T

J5

— i s > s

F i g u r e 5.10 A SP0256-AL2 chip, using a stored program to synthesize speech, an­
nounces monitored alternating current voltage readings between 100 and 140 Vac.

T A B L E 5.7
E P R O M Program for the AC-Voltmeter

Hex Hex
address data

C20 2E, F, F, B, 39, F, F, B, 21,27,C,C, 15,23,35,2D,D,37,4,44
C40 2E,F, F, B, 39, F, F, B,21,27,C,C, 15,2E,F,F,23,35,2D,37,4,44
C60 2E,F, F, B, 39, F, F, B, 21,27,C,C, 15, D, 1F, 23, 35, 2D, 37, 4, 44
C80 2E, F, F, B, 39, F, F, B, 21, 27, C,C, 15,1D,E,13,23,35,2D,D,37,4,44
CAO 2E, F, F, B, 39, F, F, B, 21, 27,C,C, 15,1D,E,13,23,35,2D,D,37,4,44
ceo 2E,F, F, B, 39,F, F, B, 21,27,C,C, 15,28,28,3A,33,35,2D,D,37,4,44
CEO 2E, F, F,B, 39,F, F, B, 21,27,C,C, 15,28,28,3A,33,35,2D,D,37,4,44
DOO 2E,F, F, B, 39,F, F, B,21,27,C,C, 15, 28, 28, 6,23,23,35,2D,37,4,44
D20 2E,F, F, B, 39,F, F, B, 21, 27,C,C, 15, 37, 37, C, 2, 29,37,23,35,2D,D,37,

4, 44
D40 2E,F, F, B, 39,F, F, B, 21, 27,C,C, 15,37,37,C,2,29,37,23,35,2D,D,37,

4, 44
D60 2E,F, F,B, 39,F, F, B, 21, 27,C,C, 15, 37, 37, 7, 7,23,C,B,23,35,2D, D,

37, 4, 44
D80 2E,F, F, B, 39,F, F, B,21,27,C,C, 15, 37, 37, 7, 7,23,C,B,23,35,2D,D,

37, 4, 44

2 3 2 5 . Test and Measurement Circuits

DAO 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 14, 2, D, 23, 35, 2D, D, 37, 4, 44
DCO 2E,F,F,B,39,F,F,B,21,27 ,C ,C ,15,14,2,D,23,35,2D,D,37,4,44,
DEO 2E,F,F,B,39,F,F,B,21,27,C,C,15,38,18,6,23,35,2D,D,37,4,44
EOO 2E,F,F,B,39,F,F,B,21,27,C,C,15,D,7,7,B,23,35,2D,D,37,4,44
E20 2E,F,F,B,39,F,F,B,21,27,C , C ,15,C ,2D,7,7,23 , C,B,23,35,2D,D,37,

4, 44
E40 2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,2D,23,23,35,2D,D,37,

4, 44
E60 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, D, 30, 7, 7, 2D, 23, 23, 35, 2D, D, 37,

4, 44
E80 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, D, 13, 47, D, 13, B, 23, 35, 2D, D, 37,

4, 44
EAO 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 28, 28, 3A, D, 13, B, 23, 35, 2D, D, 37,

4, 44
ECO 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 28, C, 28, D, 13, B, 23, 35, 2D, D, 37,

4, 44
EEO 2E,F,F,B,39,F,F,B,21,27,C,C,15,37,37,C,29,37,D,13,B,23,35,2D,

D,37,4,44
FOO 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 37, 37, C, 29, 37, D, 13, B, 23, 35, 2D,

D,37,4,44
F20 2E,F,F,B,39,F,F,B,21,27,C,C,15,37,37,7,23,C,B,D,13,B,23,35,

2D,D,37,4,44
F40 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 14, 2, D, 13, B, 23, 35, 2D, D, 37, 4, 44
F60 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 14, 2, D, 13, B, 23 , 35, 2D, D, 37, 4, 44
F80 2E,F,F,B,39,F,F,B,21,27,C,C,15,B,6,B,D,13,B,23,35,2D,D,37,

4, 44
FAO 2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,23,35,2D,D,37,

4, 44
FCO 2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,2E,F,F,B,23,

35,2D,D,37,4,44
FEO 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, D, 30, 7, 7, B, D, 13, D, IF, 23, 35, 2D,

D,37,4,44
1000 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, D, 30, 7, 7, B, D, 13, D, IF, 23, 35, 2D,

D,37,4,44
1020 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, D, 30, 7, 7, B, D, 13, ID, E, 13, 23, 35,

2D,D,37,4,44
1040 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, D, 30, 7, 7, B, D, 13, ID, E, 13, 23, 35,

2D,D,37, 4, 44
1060 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, D, 30, 7, 7, B, D, 13, 28, 28, 3A, 23,

35,2D,D,37,4,44
1080 2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,28,28,6,23,

4, 44
10A0 2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,37,37,C,29,37,

23,35,2D,D,37,4,44
10C0 2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,37,37,C,29,37,

23,35,21,D,37,4,44
10E0 2E, F,F, B, 39, F, F, B, 21, 27, C, C, 15, D, 30, 7, 7,B, D, 13, 37, 37, 7, 7, 23,

C. B, 4,44
1100 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, D, 30, 7, 7, B, D, 13, 14, 2, D, 23, 35,

2D, D,37,4,44
1120 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, D, 30, 7, 7, B, D, 13, 38, 18, 6, B, 23,

35,2D,D,37,4,44

5.5 AC Line Voltage Circuit 2 3 3

for the counter and flip-flop IC7. At the completion of the conversion, the
/INTR output returns to logic zero, and the half-monostable formed by IC2c
sends a positive transient pulse that latches IC7's Q output high. The IC7 out­
put enables the IC2d Nand gate.

If the processor is not working, its standby output (/SBY) is high. Conse­
quently, IC2d's Nand output drives the speech processor's address-load input
(/ALD) low to start an allophone cycle. During this cycle, the processing chip
holds its /SBY output low for an interval appropriate to that particular allo­
phone. Each logic-low /SBY transition advances counter IC3 one count
through the Nand gate (starting from zero, following closure of SI). When the
speech processor finishes its report and resets, /SBY returns high again, and
the Nand gate output goes low, causing the /ALD to load the next EPROM
output into the speech processor and initiate the next allophone cycle.

1140 2E,F,F,B,39,F,F,B,21,27,C,C,15,ID,34,2,D,13,23,35,2D,D,37,
4, 44

1160 2E,F,F,B,39,F,F,B,21,27 ,C,C,15,ID,34,2,D,13,2E,F,F,B,23,35,
2D,D,37,4,44

1180 2E, F,F, B, 39, F, F, B, 21, 27, C, C, 15, ID, 34, 2,D, 13, 2E, F,F, B, 23, 35,
2D,D,37,4, 44

11A0 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, ID, 34, 2, D, 13, 2E, F, F, B, 23, 35,
2D,D,37, 4, 44

11C0 2E,F, F,B, 39, F, F, B, 21, 27, C, C, 15, ID, 34, 2, D, 13, ID, E, 13, 23, 35, 2D,
D,37,4,44

U E O 2E, F, F, Β, 39, F, F, Β, 21, 27, C, C, 15, ID, 34, 2, D, 13, 28, 28, 3A, 23, 35,
2D,D,37,4,44

1200 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D,34,2,D,13,28,28,3A,23,35,
2D,D,37,4,44

1220 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D,34,2,D,13,28,28,6,23,23,35,
2D,D,37,4,44

1240 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 1D, 34, 2, D, 13, 28, 28, 6, 23, 23, 35,
2D,D,37, 4, 44

1260 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 1D, 34, 2, D, 13, 37, 37, C, 29, 3 7, 23,
35,2D,D,37,4,44

1280 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 1D, 34, 2, D, 13, 37, 37, 7, 7, C, B, 23,
35,2D,D,37, 4, 44

12A0 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 1D, 34, 2, D, 13, 14, 2, D, 23, 35, 2D,
37,4,44

12C0 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 1D, 34, 2, D, 13, 14, 2,D, 23, 35, 2D,
37,4,44

12E0 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 1D, 34, 2, D, 13, 38, 18, 6, B, 23, 35,
2D,D,37, 4, 44

1300 2E, F, F, B, 39, F, F, B, 21, 27, C, C, 15, 28, 3A, 2, D, 13, 23, 35, 2D, D, 37, 4,
44

1320 2E,F,F,B,39,F,F,B,21,27,C,C,15,28,3A,2,D,13,23,35,2D,D,37,4,
44

2 3 4 5 . Test and Measurement Circuits

5.6 Designing a Circuit to
Announce Alternating Current
Line Frequency Cycles

The circuit shown in Figure 5.11 measures the frequency of the ac line to
which it is connected. A 120 Vac to 6 Vac transformer with a maximum output
of 500 mA is utilized to send the positive cycle of the ac line frequency. The
negative cycle is clamped by a 1N4001 switching diode. The 500 ohm resistor
limits the current through the LED contained in the logic optocoupler with a

f i n

5V

16

5V*

22pF <>20M
IC4

MM5369E5TI

P0-P7

Τ6

P11

Vcc

RST

IC3

Am29CPL151

CLK

GND

T4

To
SUM-8

INTR

To WR

5V

X
5V

100K

0.1

[J O C K

tes t

F i g u r e 5.11 Schematic for the speech synthesized alternating current line frequency
meter.

5.6 Circuit for AC Line Frequency Cycles 2 3 5

Schmitt trigger output (H11L2GE) manufactured by Harris Semiconductor.
The optocoupler converts the sine wave input cycles to square wave pulses
which feed the input frequency to the dual BCD counters (ICla and IClb).

The two BCD digits (D2 and Dl) that measure the units and tens of units of
the ac line frequency are routed to the FPC Am29CPL151 by using a quad
2-to-l multiplexer (74HC257). Table 5.8 shows the range of the frequency
meter which varies from 50 to 69 Hz.

Table 5.9 contains the microcode program for the FPC Am29CPL151. As
shown in Figure 5.11, the FPC is clocked by a 100 Hz frequency generated by
IC4 and associated components. In this form, the FPC will perform each in­
struction in 10 ms (10,000 μ$)\ issuing output pulses with 10 ms of duration.
The output pulses are named "reset," "cken," and "SELD2." Thanks to the
stable, low frequency of 100 Hz, the output "enable" (P10 of IC10) is gener­
ated by merely loading the CREG counter of the FPC with the number 99.
Because the FPC Am29CPL151 contains a 6 CREG counter of six bits, the
number 99 is loaded in two steps and then counter CREG is decremented and
tested against zero. Notice that while the CREG counter is being decre­
mented, the output "enable" permits counters ICla and IClb to count of the
incoming pulses received at the input CLK (pin 1 of ICla).

Table 5.9 presents the software program for the FPC Am29CPL151. The
"comments" section in the software program explains in detail the steps being
followed by the FPC to drive the speech processor correctly. In this case, the
FPC Am29CPL151 is capable of reading the input frequency of two BCD
counters (ICla, and IClb) by using a multiplexer 74HC257 (IC2). IC2 is a
dual quad-channel multiplexer that selects the BCD output of each counter by
changing the logic at the input SEL of IC2. The FPC drives the 74HC257 by
asserting a logic high via output P9 in order to read the MSD digit. It is neces­
sary to keep the input SEL of the 74HC257 in a logic high in order to maintain
the selection of the second digit. Digit Dl is always selected by default when
not specified. This feature permits the FPC to perform several tasks of com­
parison with the selected BCD digit. In this manner, the FPC selects one of
the two BCD digits to execute the subroutine of comparisons in order to de­
termine the decimal value of the selected digit. Output P l l of the FPC is used
to assert a logic low to the /WR input of the Digitalker.

2 3 6 5 . Test and Measurement Circuits

T A B L E 5.9
Software Program for the FPC Am29CPL151

DEVICE (CPL151)

DEFINE "test inputs"
intr = t6 equal = eq test

"Output control bits are given name assginments"
zero = lF#h
four = 04#h
eight = 08#h
pulses = 9C#h

one = 01#h
five = 05#h
nine = 09#h
selD2 = 100#h

two = 02#h
six = 06#h
fifty = 17#h

wr = 800#h

three = 03#h
seven = 07#h
sixty = 18#h
error = xx#h

reset = 8000#h cken

DEFAULT—OUTPUT = 0800#h;

TEST_CONDITION = INTR;

BEGIN

400#h;

"Default test condition"

10 " zero+wr, goto pl(nO)
' 1 " one+wr, goto pl(nl)
-2" two+wr, goto pl(n2)
'3" three+wr, goto pl(n3)
• 4« four+wr, goto pl(n4)
•5" five+wr, goto pl(n5)
•6" six+wr, goto pl(n6)
'7" seven+wr, goto pl(n7)
•8" eight+wr, goto pl(n8)
'9" nine+wr, goto pl(n9)

MAIN PROCESS

"10
"11
"12
"13

"14
"15
"16
"17
"18
"19
"20
"21
"22
"23
"24
"25
"26
"27
"28

"start:
"RESET+wr,
"stay:cken+wr,
"stayl:cken+wr

" SELD2+wr,
" SELD2+wr,
" f i f ty+wr,
" SELD2+wr,
" SELD2+wr,
" sixty+wr,
" error+wr,
"readDl:fifty
"stay2:

'rdDl: sixty,
'msgerr : error
"stay3:

if (test) then goto pl(start);
load pl (59) ;
while (creg <> 0) wait else load pl(39
while (creg <> 0) loop to pl(stayl);

DISPLAY FORMAT: 00 Scale: Hz D2 Dl
continue;
cmp tm(0F#h) to pl(05#h);
if (equal) then goto pl(readDl);
continue;
cmp tm(0F#h) to pl(06#h);
if (equal) then goto pl(rdDl);
call pl(msgerr);

continue; "/WR is pulsed low"
,if (not intr) then goto pl(stay2);
, cmp tm(0F#h) to pl(00#h); "Dl = 0?
, if (equal) then goto pl(start);
,goto tm(0F#h);
if (test) then goto pl(stay2);"/WR =
continue; "/WR is pulsed low"
,if (not intr) then goto pl(stay3);

"D2 = 5?'

"D2 =

5.7 Monitoring Respiratory Rate 2 3 7

"29"
"30"n0:zero,
"31"nl:one,
"32"n2.two,
"33"n3:three,
"34"n4:four,
"35"n5:five,
"36"n6:six,
"37"n7:seven,
"38"n8:eight,
"39"n9:nine,
"40"finish:

"41"HZ:pulses+wr,
"42" pulses,
"43"

••44"
END.

'/WR is pulsed low"
,goto pl(start)

goto pl(finish);
goto pl(finish)
goto pl(finish)
goto pl(finish);
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
continue;

,if (not intr) then goto pl(finish);

continue; "Pulses"
continue;
,if (intr) then goto pl(start) else wait;

. org 63#d
, goto pl(start);

When the operator presses the "test" switch, the program jumps to line 2,
which resets the dual BCD counters while the internal CREG counter of the
FPC is loaded with the number 59. The dual BCD counters (ICla and IClb)
perform a complete digital reading because the input "enable" is held at a
logic high for an interval of 1.000 s. In this case, the FPC makes the Digi­
talker announce digital readings within the range of 50 to 69. In addition, the
Digitalker enunciates the word "pulses" after each digital ac line frequency
reading is vocalized.

5.7 Using α Speech Processor to Monitor
Respiratory Rate

To a seriously injured patient or one undergoing surgery, respiratory rate is
critical to immediate survival. With a respiratory sensor placed under an oxy­
gen mask, medical workers can monitor respirations per minute on a liquid
crystal display. In addition, a speech synthesizer will announce the readings
and warn of possible respiratory failures.

The sensor is a circuit that detects air pressure. Because the pressure of
expired air is higher than that of inhaled air, the sensor, placed in the airway at
the bottom of an oxygen mask, can monitor the patient's respiratory flow. The
circuit then converts these air-pressure signals to respirations per minute
readings.

Edmund Scientific sells the sensing device, an ultrasensitive 0.004 psi air-
pressure switch (Catalog No. E36,839). Single-pole, normally open switch

2 3 8 5 . Test and Measurement Circuits

contacts on the sensor are rated to handle 20 mA. The sensor's input port ac­
cepts 1/8-in. inside diameter tubing (Catalog No. E35,918), which connects to
the airway in the oxygen mask.

Figure 5.12 presents the schematic for the complete respiratory rate moni­
tor. The respiratory rate meter is designed so that it can be converted to a
high-reliability system without having to change the architecture presented
here. A 7555 timer, ICI, configured as a monostable multivibrator, gives a
0.1 s positive, square output pulse each time a monitored person exhales and

F i g u r e 5.12 An air-pressure sensor placed in the airway at the bottom of an oxygen
mask detects respiratory flow. A circuit within the sensor converts the signals to respi-
rations-per-minute readings on an LCD and a speech synthesizer warns of respiratory
failure.

5.7 Monitoring Respiratory Rate 2 3 9

the sensor switch closes. This positive pulse is detected by the FPC
Am29CPL154 using the testable input T7.

The FPC (IC3) enables timer IC2, a 5 kHz oscillator that drives a piezo­
electric buzzer, to produce an audible tone for every pulse received. The posi­
tive pulse also causes the FPC to pass bursts of crystal-controlled 100 Hz sig­
nals from the MM5369EST oscillator chip IC5 by making the input COUNT
DOWN high.

Once the period reading is stored in the binary counters 74HC193, the FPC
enables the latch 74HC373 in order to send the binary reading to the six test­
able inputs TO to T5. The binary reading is used by the FPC to jump directly
to the location indicated by the same digital reading. When the program jumps
to the location specified by the digital input reading, the new specified loca­
tion will contain the equivalent in respirations per minute (RPM). This new
equivalent reading in RPM is fed back and is loaded into the binary counters
74HC193 to be used for the speech processor's program. Also, outputs PO to
P7 of the FPC are used for loading the speech data into the speech synthesizer.
Thanks to the 74HC257, the FPC can make use of several subroutines to de­
termine the magnitude of the respiratory rate, so the Digitalker can announce
it correctly.

The routine for measuring the period is in lines 3 to 6. The routine used for
converting the period measured in binary format to an equivalent in respira­
tions per minute is within lines 7 to 94. The "speech" routine for controlling
the Digitalker starts in line 95.

To understand how the software program works, we will assume that we
are measuring a respiratory rate with a period of 3.0 s. To measure the period
within two respirations, the program will stay in line 3 (see Table 5.10) wait­
ing for the first respiratory pulse. When the first pulse is received at input T7,
the program jumps to line 4, which clears counters 74HC193 to a zero state in
order to prepare them for a new digital period reading. The instruction in line
4 loads the internal CREG counter with the number 49. Then the instruction
"while (creg < > 0) loop to pl(stay)" in line 5 decrements the internal CREG
counter until it reaches a value of zero. Because the FPC is being clocked at
100 Hz, the internal counter CREG will be decremented in 0.5 s; the piezo-
buzzer will sound for 0.5 s while the external counters 74HC193 keep measur­
ing the period. The program then jumps to line 6 in order to wait for the next
respiratory pulse. When the second respiratory pulse is received, the program
jumps to line 7 where the instruction "goto tm(0011111 l # b) " sends the pro­
gram to an address specified by the binary value of the respiratory period.
This binary value is selected by the 74HC373 under control of the FPC.

Lines 8 to 63 are used to specify the equivalent constant in respirations per
minute defined as "K . " In this case, a period of 3.0 s will make the program
jump to line 30. As shown in Table 5.10, line 30 contains the constant K20,
equal to number 20 in hexadecimal. At the same time, the instruction in line

2 4 0 5 . Test and Measurement Circuits

T A B L E 5.10
Software Program for the Respiratory Rate Meter

DEVICE (CPL154)

DEFAULTS;

DEFINE "test inputs"

intr=t6 equal=eq resp=t7

" Output control bits and words from the Digitalker are assigned"
HIGH=5B#h "address of word high from DT1050 vocabulary"

zero=lF#h one=01#h two=02#h three=03#h four=04#h five=05#h
six=06#h seven=07#h eight=08#h nine=09#h eleven=0B#H twelve=0C#H
thirteen=0D#H fourteen=0E#H fifteen=0F#H sixteen=10#H seventeen
=11#H eighteen=12#H nineteen=13#H twenty = 14#h thirty=15#H forty
=15#H fifty = 17#h sixty=18#h
pulses=9C#h selD2=100#h wr=800#h clear=400#h Ena=100#h
buzzer=8000#h ld=1000#h digl=8000#h dig2=200#h
R=31#h P=2F#h M=2A#h high = 5B#h
danger=4C#h low=67#h rate=7D#h HC373=4000#h HC257=2000#h
K60=60#h K55=55#h K50=50#h K46=46#h K42=42#h K40=40#h

K33=33#h K32=32#h K30=30#h K29=29#h
K25=25#h K24=24#h K23=23#h K22=22#h
K19=19#h K18=18#h K17=17#h K16=16#h
K13=13#h K12=12#h Kll=ll#h K10 = 10#h

K38=38#h
K27=27#h
K21=21#h
K15=15#h
K9 = 09#H;

DEFAULT_OUTPUT=0 8 0 0#h
TEST—CONDIΤIΟΝ=INTR ;

K35=35#h
k26=26#h
K20=20#h
K14=14#h

"/WR is high when not specified"
"Default test condition"

BEGIN
" 1 second delay to restart and initialize system"
"1"start: wr+ld+HC373+clear,
"2"same: wr+buzzer+ld+HC373,
"3" stay: wr+ld+HC373,
"4" wr+clear+ld+HC373,
"5" sty: wr+ena+ld+HC373+buzzer,
"6"stay2: wr+ena+ld+HC373,
"7"wr+ld+HC373-fbuzzer,

load pl (99) ;
while (creg <> 0) loop to pl(same);
if (not resp) then goto pl(stay);
load pl(49);
while (creg <> 0) loop to pl(sty);
if (not resp) then goto pl(stay2);
goto tm(00111111#b); "Mask TO to T5"

Routine for conversion to Respirations Per Minute

"8"wr+ld+HC257, goto pl(highrate)
"9"wr+ld+HC257, goto pl(highrate)
"10"wr+K60+1d+HC2 5 7, goto pl(rpm60)
"11"wr+K55+ld+HC257, goto pl(rpm55)
"12"wr+K50+ld+HC257, goto pl(rpm50)
"13"wr+K4 6+1d+HC2 57, goto pl(rpm46)
"14"wr+K42+ld+HC257, goto pl (rpm42)
"15"wr+K40+ld+HC257, goto pl(rpm40)
"16"wr+K3 8+1d+HC2 5 7, goto pl(rpm38)
"17"wr+K3 5+1d+HC2 57, goto pl(rpm35)
"18"wr+K33+ld+HC257, goto pl(rpm33)

5.7 Monitoring Respiratory Rate 2 4 1

"19"wr+K32+ld+HC257, goto pi (rpm32)
"20 'wr+K30+ld+HC257, goto pi (rpm30)
"21 •wr+K29+ld+HC257, goto pi (rpm29)
"22 'wr+K27+ld+HC257, goto pi (rpm27)
"23 'wr+K27+ld+HC257, goto pi (rpm27)
"24 'wr+K25+ld+HC257, goto pi (rpm25)
"25 •wr+K24+ld+HC257, goto pl (rpm24)
"26 •wr+K23+ld+HC257, goto pi (rpm23)
"27 'wr+K22+ld+HC257, goto pl (rpm22)
"28 'wr+K21+ld+HC257, goto pl (rpm21)
"29 'wr+K21+ld+HC257, goto pl (rpm21)
"30 'wr+K20+ld+HC257, goto pl (rpm20)
"31 'wr+K19+ld+HC257, goto pl (rpml9)
"32 'wr+K19+ld+HC257, goto pi (rpml9)
"33 'wr+K18+ld+HC257, goto pl (rpml8)
"34 'wr+K18+ld+HC257, goto pi (rpml8)
"35 'wr+K17+ld+HC257, goto pl (rpml7)
"36 'wr+K17+ld+HC257, goto pi (rpml7)
"37 'wr+K16+ld+HC257, goto pi (rpml6)
"38 •wr+K16+ld+HC257, goto pi (rpml6)
"39 'wr+K15+ld+HC257, goto pi (rpml5)
"40"wr+K15+1d+HC2 57, goto pi (rpml5)
"41"wr+K15+ld+HC257, goto pi (rpml5)
"42 'wr+K14+ld+HC257, goto pi (rpml4)
"43 'wr+K14+ld+HC257, goto pi (rpml4)
"44 'wr+K14+ld+HC257, goto pi (rpml4)
"45 'wr+K13+ld+HC257, goto pi (rpml3)
"46 'wr+K13+ld+HC257, goto pi (rpml3)
"47 'wr+K13+ld+HC257, goto pl (rpml3)
"48 'wr+K13+ld+HC257, goto pl (rpml3)
"49"wr+K12+ld+HC257, goto pi (rpml2)
"50 'wr+K12+ld+HC257, goto pi (rpml2)
"51 'wr+K12+ld+HC257, goto pl (rpml2)
"52"wr+K12+1d+HC2 57, goto pl (rpml2)
"53 'wr+Kll+ld+HC257, goto pi (rpmll)
"54 'wr+Kll+ld+HC257, goto pi (rpmll)
"55 'wr+Kll+ld+HC257, goto pl (rpmll)
"56 'wr+Kll+ld+HC257, goto pl (rpmll)
"57 'wr+Kll+ld+HC257, goto pl (rpmll)
"58 'wr+K10+ld+HC257, goto pi (rpmll)
"59"wr+K10+1d+HC2 5 7, goto pi (rpmlO)
"60 wr+K10+ld+HC257, goto pl (rpmlO)
"61 'wr+K10+ld+HC257, goto pi (rpmlO)
"62 wr+K9+ld+HC257, goto pi (rpm9);
"63 wr+ld+HC257, goto pl (lowrate)
- Load input of counters 74HC193 is pulsed low
"64"rpm60:wr+K60+HC257, goto pl(speech);
"65"rpm55:wr+K55+HC257, goto pl(speech);
"66"rpm50:wr+K50+HC257, goto pl(speech);
"67"rpm46:wr+K46+HC257, goto pl(speech);
"68"rpm42:wr+K42+HC257, goto pl(speech);
"69"rpm40:wr+K40+HC257, goto pl(speech);
"70"rpm38:wr+K38+HC257, goto pl(speech);
"71"rpm35:wr+K35+HC257, goto pl(speech);

2 4 2 5 . Test and Measurement Circuits

"72"rpm33 wr+K33+HC257, goto pi (speech)
"73"rpm32 wr+K32+HC257, goto pl (speech)
"74"rpm30 wr+K30+HC257, goto pi (speech)
"75"rpm29 wr+K29+HC257, goto pi (speech)
"76"rpm27 wr+K27+HC257, goto pl (speech)
, ,77"rpm26 wr+K26+HC257, goto pi (speech)
"78"rpm25 wr+K25+HC257, goto pi (speech)
"79"rpm24 wr+K24+HC257, goto pi (speech)
"80"rpm23 wr+K23+HC257, goto pi (speech)
"81"rpm22 wr+K22+HC257, goto pi (speech)
"82"rpm21 wr+K21+HC257, goto pl (speech)
"83"rpm20 wr+K20+HC257, goto pi (speech)
"84"rpml9 wr+K19+HC257, goto pi (speech)
"85"rpml8 wr+K18+HC257, goto pl (speech)
"86"rpml7 wr+K17+HC257, goto pi (speech)
"87"rpml6 wr+K16+HC257, goto pl (speech)
"88"rpml5 wr+K15+HC257, goto pi (speech)
"89"rpml4 wr+K14+HC257, goto pi (speech)
"90"rpml3 wr+K13+HC257, goto pi (speech)
"91"rpml2 wr+K12+HC257, goto pi (speech)
"92"rpmll wr+Kll+HC257, goto pi (speech)
"93"rpml0 wr+K10+HC257, goto pi (speech)
"94"rpm9:wr+K9+HC25 7, goto pi (speech)

LD is pulsed high and the 4543 decoders display the RPM

"95"speech:wr+ld+HC257+dig2, continue;
"96"wr+ld+HC257+dig2,
" 9 7"wr+1d+HC2 5 7+d i g2,
"98"wr+ld+HC257+dig2,
"99"wr+ld+HC257+dig2+twenty,
"100"wr+Ld+HC2 5 7+di g2,
" 101"wr+ld+HC257+dig2+thirty
"102"wr+ld+HC257+dig2,
"103"wr+1d+HC2 5 7+di g2+f or ty,
"104"wr+ld+HC257+dig2,
"105"wr+ld+HC257+dig2+fifty,
" 106"wr+ld+HC257+dig2,
"107"wr+ld+HC257+dig2+sixty,
" 108"wr+ld+HC257+digl,

By default D2 = 1,
"109"BCD4:wr+ld+HC257,
"110"wr+ld+HC257,
"lll"wr+ld+HC257,
" 112"wr+1d+HC2 5 7+e1even,
"113"wr+ld+HC257,
"114"wr+1d+HC2 5 7+twe1ve,
"115"wr+ld+HC257,
"116"wr+ld+HC257+thirteen,
"117"wr+ld+HC257,
"118"wr+ld+HC257+fourteen,
"119"wr+ld+HC257,

cmp tm(0F#h) to pl(00#h); "D2=0?
if (equal) then goto pl(BCD4);
cmp tm(0F#h) to pl(02#h); "D2=2?"
if (equal) then goto pl(n20);
cmp tm(0F#h) to pl(03#h); "02=3?"
if (equal) then goto pl(n30);
cmp tm(0F#h) to pl(03#h); "D2=4?"
if (equal) then goto pl(n40) ;
cmp tm(0F#h) to pl(03#h); "D2=5?"
if (equal) then goto pl(n50);
cmp tm(0F#h) to pl(03#h); "D2=6?"
if (equal) then goto pl(n60);
continue;

and Dl is compared "
cmp tm(0F#h) to pl(00#h);
if (equal) then goto pl(nlO);
cmp tm(0F#h) to pl(01#h);
if (equal) then goto pl(nil)
cmp tm(0F#h) to pl(02#h);
if (equal) then goto pl(nl2)
cmp tm(0F#h) to pl(03#h) ;
if (equal) then goto pl(nl3)
cmp tm(0F#h) to pl(04#h) ;
if (equal) then goto pl(nl4);
cmp tm(0F#h) to pl(05#h) ;

5.7 Monitoring Respiratory Rate 2 4 3

"120"wr+ld+HC257+fifteen,
"121"wr+ld+HC257,
"122"wr+ld+HC257+sixteen,
"123"wr+ld+HC257,
"123"wr+ld+HC257+seventeen,
"124"wr+ld+HC257,
"125"wr+ld+HC257+eighteen,
"126"wr+ld+HC257+nineteen,

if (equal) then goto pl(nl5);
cmp tm(0F#h) to pl(06#h);
if (equal) then goto pl(nl6);
cmp tm(OF#h) to pl(07#h);
if (equal) then goto pl(nl7);
cmp tm(OF#h) to pl(08#h);
if (equal) then goto pl(nl8);
goto pl(nl9);

-/WR is pulsed low in the instructions below
"127"nll:eleven+ld+HC257,
"128"nl2:twelve+ld+HC257,
"129"nl3:thirteen+ld+HC257,
"130"nl4:fourteen+ld+HC257,
"131"nl5:fifteen+ld+HC257,
"132"nl6:sixteen+ld+HC257,
"133"nl7:seventeen+ld+HC257,
"134"nl8:eighteen+Ld+HC257,
"135"nl9:nineteen+ld+HC257,

"136"finish:wr+HC257+ld, if

goto pl(finish);
goto pl(finish);
goto pl(finish);
goto pl(finish);
goto pl(finish);
goto pl(finish);
goto pl(finish);
goto pl(finish);
goto pl(finish);

(not intr) then goto pl(finish)

"137"wr+HC257+ld, cmp tm(OF#h) to pl (00#h); ' Dl -= 0?"
"138"wr+HC257+ld, if (equal) then goto pl(rpm2);
"139"wr+HC257+ld, cmp tm(OF#h) to pl(01#h); "Dl = 1?
"140"wr+HC257+ld, if (equal) then goto pl(nl)
"141"wr+HC257+ld, cmp tm(OF#h) to pl(02#h); "Dl = 2?
"142"wr+HC257+ld, if (equal) then goto pl(n2)
"143"wr+HC257+ld, cmp tm(OF#h) to pl(03#h); "Dl = 3?
"144"wr+HC257+ld, if (equal) then goto pl(n3)
"145"wr+HC257+ld, cmp tm(OF#h) to pl (04#h); "Dl - 4?
"146"wr+HC257+ld, if (equal) then goto pl(n4)
"147"wr+HC257+ld, cmp tm(OF#h) to pl(05#h); "Dl = 5?
"148"wr+HC257+ld, if (equal) then goto pl(n5)
"149"wr+HC257+ld, cmp tm(OF#h) to pl(06#h); "Dl = 6?
"150"wr+HC257+ld, if (equal) then goto pl(n6)
"151"wr+HC257+ld, cmp tm(OF#h) to pl (07#h); "Dl = 7?
"152"wr+HC257+ld, if (equal) then goto pl(n7)
"153"wr+HC257+ld, cmp tm(OF#h) to pl(08#h); "Dl = 8?
"154"wr+HC257+ld, if (equal) then goto pl(n8)
"155"wr+HC257+ld, goto pl(n9);
"156"n0:zero+HC257+ld, goto pl(fin);'
"156"nl:one+HC257+ld, goto pl(fin);
"157"n2: two+HC257-t-ld, goto pl (f in) ;
"158"n3:three+HC257+ld, goto pl(fin);
"159"n4:four+HC257+ld, goto pl(fin);
"160"n5:five+HC257+ld, goto pl(fin);
"161"n6:six+HC257+ld, goto pl(fin);
"162"n7:seven+HC257+ld, goto pl(fin);
"163"n8:eight+HC257+ld, goto pl(fin);
"164"n9:nine+HC257+ld, goto pl(fin);
"165"fin: wr+HC257+ld, if (not intr)
"166" wr+HC257+ld ,call pl(rpm);
"167" wr+HC257+ld+clear, goto pl(start)
"168"n20: twenty+HC257, goto pl(fin);

/WR is pulsed low"

then goto pl(fin)

2 4 4 5 . Test and Measurement Circuits

"I69"n30
"170"n40
"171"n50
*172"n60

thirty+HC257,
forty+HC257,
fifty+HC257,
sixty+HC257,

goto pl(fin)
goto pl(fin)
goto pl(fin)
goto pl(fin)

"173"rpm wr+ld+HC257+R, continue;
"174" ld+HC257+R, call pl(stand);
"175" wr+ld+HC257+P, continue;
Ί 7 6 " ld+HC257+P, call pl(stand);
Ί 7 7 " wr+ld+HC257+M, continue;
Ί 7 8 " ld+HC257+M, call pl(stand);
•179" wr+ld+HC257, ret;
Ί 8 0 " stand:wr+ld+HC257, if (not intr) then goto pl(stand
Ί 8 1 " wr+ld+HC257, ret;

"182
"183

"184
"185
"186
"187
"188
"189
"190

"191
"192"
"193"
"194"
"195"

"196"
END.

'rpm2: wr+ld+HC257, cal
wr+ld+HC257, got

•lowrate: wr+ld+HC257+DANGER
1d+HC2 5 7+DANGER,
wr+ld+HC257+L0W,
ld+HC257+LOW,

•RATE1: wr+ld+HC257+RATE,
ld+HC257+RATE,
wr+ld+HC257,

'highrate: wr+ld+HC257+DANGER
ld+HC257+DANGER,
wr+1d+HC257+HIGH,
ld+HC257+HIGH,
wr+ld+HC257+RATE,

.org 511#d
,goto pl(start);

1 pl(rpm);
ο pl(start) ;

continue;
call pl(stand);
continue;
call pl(stand);
continue;
call pl(stand) ;
goto pl(start);

continue;
call pl(stand);
continue;
call pl(stand);
goto pl(ratel) ;

20 "goto pl(rpm20)" makes the program jump to the label "rpm20" located
in line 83. Notice that the instruction in line 83 does not specify the output
"Id" in order to generate a low transition at the input LOAD of counters
74HC193. This low transition will load the number 20 into counters 74HC193.
Note that counters 74HC193 now contain the number 20 at its outputs. In fact,
the FPC solves the equation

F = ^
Τ

where the constant 60 represents sixty seconds in a minute, and " T " is the
period in seconds.

The instruction "goto pl(speech)" in line 83 now makes the program jump
to the routine "speech" in order to start the procedure for the Digitalker. The

5.8 A Fault-Tolerant Respiratory Rate Meter 2 4 5

routine "speech" compares the two BCD digits selected by the 74HC257
under control of the FPC Am29CPL154. When this routine finds the correct
value of the first digit, it loads the address where the number is located in the
Digitalker. Then the program gives a logic low pulse to the / WR input of the
Digitalker to start a speech sequence. The FPC will keep monitoring the status
of the Digitalker by reading its /INTR output at the testable input T6 (see Fig­
ure 5.12). In this case the word "twenty . . . " i s announced by the Digitalker,
after which the program executes the instruction "call pl(rpm)" in line 166.
Subroutine " rpm" announces the message "RPM" after the word "twenty,"
where the word "RPM" stands for respirations per minute. Once the message
"twenty RPM" is announced, the program jumps to the label "start" located
in line 1.

Labels "lowrate" and "highrate" are used to make the Digitalker speak the
respective word when a period between two respirations is out of range, in this
case higher than 6.3 s and lower than 1.0 s, respectively.

5.8 Designing α Fault-Tolerant
Respiratory Rate Meter

A respiratory rate meter with fault tolerance can be built using the same tech­
niques and circuitry presented in Section 5.7, but in this case we will use re­
dundancy techniques to avoid errors that could affect the output reading. We
will use the method of triplicated modular redundancy (TMR) in order to iso­
late a single-bit fault and avoid a failure of the complete device.

Notice that if the respiratory rate meter announces an incorrect reading,
medical workers can respond erroneously because they trust the reliability of
the measurement performed by this device. The technique of using voters to
isolate a single fault is now explained briefly as an introduction to the topic of
redundancy.

Because it is impossible to have components which are totally reliable, re­
dundancy techniques must be employed to increase the probability of system
survival during the time t.

For a system M, R(t) is defined as the probability that the system will not
have failed up until time t. The principal goal of a fault design is to prolong
the average life of the system; this measure is referred to as the mean time
before failure (MTBF) defined as:

Assuming that the MTBF is constant (l /λ) , and defining λ as the failure rate,
then R(t) is:

R(t) = e~ x t

2 4 6 5 . Test and Measurement Circuits

By using the circuitry of the respiratory rate meter presented in the previous
section in triplicated form at the subsystem level to keep components to a
minimum, a high-reliability respiratory meter can be achieved. The correction
logic is made with a majority logic voter configured for three inputs. The voter
realizes the function

v(x,y,z) = xy + yz + xz.

The scheme for the TMR voter is shown in Figure 5.13. Input errors and
faults presented in V will be corrected, and any single fault of each module is
permitted. Note that input sensors are equal but independent.

The reliability of the basic TMR configuration is

R = Rv * (Rm 3 + 3Rm 2 (1 - Rm))
R = Rv * (3Rm 2 - 2Rm 3)

where Rv and Rm are the reliabilities of the voter and a single copy of the
triplicated module, respectively. The TMR configuration has a single point of
failure: the voter. In the circuit of Figure 5.13 the only solution is to make the
voter more reliable through a fault-avoidance and/or fault-tolerance technique.

A TMR system will fail only if two or more subsystems Mi fail; that is,
some failure in two or more copies may occur in such a way that an error is not
avoided. Assuming that each of the subsystems has probability R(t) of surviv­
ing to time t, the triplicated system probability of survival is R'(t) defined by

R'(t) = e - x t e - x t e - x t + 3e~ 2 X t (l - e~Xt) = e~ 2 X t - 2e~ 3 X t

Probability Probability of
of all three any two of the
of the subsystems
subsystems surviving
surviving

The concept of triplicated modular redundancy can also be applied on the
subsystem level, as illustrated in Figure 5.14. In this case a single error in any
subsystem will be corrected at the system output. In addition, multiple errors

X1

Xn

xi

XI

Xn

L1

L2 Y s L2 Y s L2

Λ ν

L3

F i g u r e 5.13 Basic TMR voter.

5.8 A Fault-Tolerant Respiratory Rate Meter

SENSORS

2 4 7

P8 FPC3
P13's

clear

P8 T7 po_p7
P10
P13 T6
P9

P4T0-T5 P11
P14
P12

FPC1

MM5369a

I MM5369b

I MM5369C

100 Hz

10 Hz
V16 fiTÎQ

10

le

P8 T7 po_p7
P10 , χ P13 T6fH
P9
T0-T5 P11
P14
P12 FPC2

P8 T7 po_P7
P10
P13 ΤδΚ^
P9
T0-T5 P11
P14
P12 FPC3

FIG. 5.14

F i g u r e 5.14 Fault-tolerant respiratory rate meter.

which occur in different subsystems will be corrected. The advantage of par­
titioning is that the resulting design can withstand more failures than the
equivalent configuration with only one large triplicated module.

We will now proceed to design the TMR voters using the programmable
array logic PAL16L8 chip. The software PALASM2 from Advanced Micro
Devices was used to achieve three TMR voters per chip. Table 5.11 presents
the equations used to obtain three TMR voters per chip using the software
PALASM2. In addition, Table 5.12 shows the JEDEC file generated ready to
be used by the PAL programmer.

2 4 8 5 . Test and Measurement Circuits

T A B L E 5.11
Program Utilized to Design TMR Voters with the Chip PAL16L8

TITLE
PATTERN
REVISION
AUTHOR
COMPANY
DATE
CHIP

TRIPLE TMR VOTERS

R. JIMENEZ
SHUGART CORPORATION
11/10/89
VOTER PAL16L8

; pins

NC /Ρ /Μ /Ν /0 /Q /R /L NC

pins 11 12 13 14 15 16 17 18 19
VOTER

PAL16L8

\/

10
GND
VCC

20

X - { 1 20} - VCC
Y - { 2 19}-> NC
ζ - { 3 18 } -> /L
A - { 4 17}-> /R
Β - { 5 16}-> /Q
C - { 6 15}-> /o
D - { 7 14} -> /N
Ε - { 8 13}-> /M
F - { 9 12}-> /P

GND - { 10 11}- NC

EQUATIONS

M = X*Y
+ x * z

+ Y*Z

Ν = A*B
+ A*C
+ B*C

0 = D*E
+ D*F
+ E*F

Ρ = M*N
+ M*0
+ N*0

Q = /M
R = /N
L = /O

SIMULATION

TRACE—ON

; FIRST TMR VOTER

; SECOND TMR VOTER

; THIRD TMR VOTER

; VOTING THE VOTERS

; MONITORING OUTPUTS

X Y Z M A B C N D E F O P

5.8 A Fault-Tolerant Respiratory Rate Meter 2 4 9

; LOOK A L L TMR V O T E R S ; LOOK T H E V O T I N G

; V O T E R

S E T F X Y Ζ Α Β / C D / E F

CHECK M Ν 0 P

S E T F X Y / z Α / Β c D / E / F

CHECK M Ν / O P

S E T F X / Y Ζ Α / Β / c / D E F

CHECK M / Ν 0 P

S E T F X / Y / ζ / Α Β c / D E / F

CHECK / M Ν / O / P

S E T F / X Y ζ / Α Β / c / D / E F

CHECK M / Ν / O / P

S E T F / X Y / ζ / Α / Β c / D / E / F

CHECK / M / Ν / O / P

S E T F / X / Y ζ / Α / Β / c D E F

CHECK / M / Ν 0 / P

S E T F / X / Y / ζ Α Β c D E / F

CHECK / M Ν 0 P

; LOOK A T T H E I N D I C A T O R O U T P U T

S E T F X Y Ζ Α Β c D E F

CHECK /Q / R /L

T R A C E . _ O F F

Using the TMR voters contained in the PAL16L8, Figure 5.14 shows the
fault-tolerant version of the respiratory rate meter. Here three 7555 timers use
the same RC components to detect respiration using the sensor network. If any
one of the three timers, for example, is stuck at zero or stuck at one, the voter
VI will isolate the fault and will give the correct output generated by the rest
of the timers operating in good conditions. The voter will also accept one of
the timers stuck at zero and a second timer stuck at one while the third timer
keeps operating correctly. Such failures are called compensating failures.

On the other hand, the period measured by counters 74HC193 is voted be­
fore reaching the inputs of the triplicated latches 74HC373 and the triplicated
tri-state selectors 74HC257. Three FPCs sharing a TMR clock execute the
program in triplicated form. The result of the respiratory measurement is
voted before driving the speech processor. The program stored in the internal
EPROM of each FPC is the same used by the FPC in the design presented in
Table 5.10. Voting the FPCs has the advantage of being able to withstand fail­
ures in two different locations in two different EPROMs that are contained in
each FPC. For example, consider what happens when a failure is present in
memory location 65 on one memory of the FPC and a failure in memory loca­
tion 67 on another. Since these failures are on two different FPCs, they do not
act together in the voting process to cause an error.

2 5 0 5 . Test and Measurement Circuits

T A B L E 5.12
J E D E C File for the PALI 6L8

PAL16L8
VOTER*
QV512*
QP20*
QF2048*
G0*F0*
L0256 11111111111111111111111111111111*
L0288 11111111111111111101111111111111*
L0512 11111111111111111111111111111111*
L0544 11111111111111111111110111111111*
L0768 11111111111111111111111111111111*
L0800 11111111111111111111111111011111*
L1024 11111111111111111111111111111111*
L1056 11111111111111111111011101111111*
L1088 11111111111111111111011111110111*
L1120 11111111111111111111111101110111*
L1280 11111111111111111111111111111111*
L1312 11111111011101111111111111111111*
L1344 11111111011111110111111111111111*
L1376 11111111111101110111111111111111*
L1536 11111111111111111111111111111111*
L1568 01011111111111111111111111111111*
L1600 11010111111111111111111111111111*
L1632 01110111111111111111111111111111*
L1792 11111111111111111111111111111111*
L1824 11111111111111111111111011101111*
L1856 11111111111111111110111111101111*
L1888 11111111111111111110111011111111*
V0001 111110101NXLLLLHHHXN*
V0002 11010110 ONXLLLHHHLXN *
V0003 101100011NXLLHLHLHXN*
V0004 100011010NXHHLHLHLXN*
V0005 011010001NXHLHHHLLXN *
V0006 01000100ONXHHHHLLLXN*
V0007 001000111NXHHHLLLHXN*
V0008 00011111ONXLHLLLHHXN*
V0009 111111111NXLLLLHHHXN*
C55B0*
EDBB

PALASM XPLOT, V2.23 - M A R K E T RELEASE (2-1-88)
(C) - COPYRIGHT MONOLITHIC MEMORIES INC, 1988
Title TRIPLE T M R VOTERS Author : RICARDO JIMENEZ
Pattern : Company :
Revision : A Date 11/10/89

5.9 A Soil Moisture Meter 2 5 1

5.9 Designing α Soil Moisture Meter

Figure 5.15 shows a circuit that can be used to obtain vocalized readings of the
moisture at the vital root level in order to eliminate plant underwatering and
overwatering problems. All you have to do is insert the probe near the plant
and the circuit will announce the digital moisture level using an 8 ohm speaker
or headphones.

The sensor probe used was taken from the "light and moisture meter for
plants" manufactured by Radio Shack (Catalog No. 63-685). The sensor
wires must be connected between the 100K resistor and the base of transistor
Q l , which causes voltage readings across the 100 ohm resistor (see Figure
5.15). When you put the sensor probe in soil, the soil acts as a variable re­
sistor, depending upon the amount of water contained in the sample; a collec­
tor current (given by ic = Β ib) will flow through the transistor. The voltage
across the 100 ohm resistor is routed to an 8-bit A/D converter ADC0804.

In order to get accurate readings, you have to calibrate this meter as fol­
lows. Put the sensor probe into a glass of water; here a reading of 100 is

To low p a s s
fiI ter and
a u d i o A m p ,

sensor
probe

F i g u r e 5.15 Schematic for the speech-synthesized moisture meter.

2 5 2 5 . Test and Measurement Circuits

T A B L E 5.13
E P R O M Program for the Moisture Meter

Reading Hex Add Hex Data

0 % 00 2B,3C,35,4,44
1 % 40 2E, F, F, B, 4, 44
2 % 80 D, IF,4,44
3 % CO ID, E, 13, 4, 44
4 % 100 28,28,3A,4,44
5 % 140 28,28,6,23,4,44
6 % 180 37, 37, C, C,2,29,37,4,44
7 % ICO 37, 37, 7, 7, 23, C, B, 4, 44
8 % 200 14, 2,D,4,44
9 % 240 B, 18, 6, B,4,44

10 % 280 D, 7, 7,B,4,44
11 % 2C0 C, 2D, 7, 7,23,C,23,4,44
12 % 300 D, 30, 7, 7, 2D, 23, 4, 44
13 % 340 ID, 33, 2, D, 13, B, 4, 44
14 % 380 28,3A,1,2,D,13,B,4,44
15 % 3C0 28,C,28,1,2,D,13,B,4,44
16 % 400 37, 37, C, 2, 29, 37, 2, D, 13, B, 4, 44
17 % 440 37, 37, 7, 23, ID, B, 2, D, 13, B, 4, 44
18 % 480 14, 2, D, 13, B, 4, 44
19 % 4C0 B, 6,B, 2,D, 13, B, 4, 44
20 % 500 D,30,7,7,B,2,D,13,2,4,44
21 % 540 D,30,7,7,B,2,D,13,2,2E,F,F,B,4,44
22 % 580 D, 30, 7, 7, B, 2, D, 13, 2, D, IF, 4, 44
23 % 5C0 D, 30, 7, 7, B, 2, D, 13, 2, ID, E, 13, 4, 44
24 % 600 D, 30, 7, 7, B, 2, D, 13, 2, 28, 28, 3A, 4, 44
25 % 640 D, 30, 7, 7, B, 2, D, 13, 2, 28, 28, 6, 23, 4, 44
26 % 680 D,30,7,7,B,2,D,13,2,37,37,C,C,2,29,37,4,44
27 % 6C0 D, 30, 7, 7, B, 2,D, 13, 2, 37, 37, 7, 7, 23, C,B, 4, 44
28 % 700 D, 30, 7, 7, B, 2, D, 13, 2, 14, 2D, 4, 44
29 % 740 D,30,7,7,B,2,D,13,2,B,18,6,B,4,44
30 % 780 ID,34, 1, 2, D,13,4,44

95 % 17C0 B, 6, B, 2, D, 13, 2, 28, 28, 6, 23, 4, 44
96 % 1800 B,6,B,2,D,13,2,37,37,7,7,23,C,B,4,44
97 % 1840 B,6,B,2,D,13,2,37,37,7,7,23,C,B,4,44
98 % 1880 B, 6, B, 2, D, 13, 2, 14, 2, D, 4, 44
99 % 18C0 B,6,B,2,D,13,2,B,18,6,B,4,44

100 % 19C0 2B, 3C, 35, 2, 39, F, F, Β, 1, 21, 27, C, C, 1, 15, 4, 44

5.10 A C M O S MSI Capacitance Meter 2 5 3

needed. This is achieved by turning the 1 megaohm pot while the 20K pot is
adjusted at approximately 10K. When the sensor probe is out of the water, a
reading of "zero" will be announced by the speech processor SP0256-AL2.
Now you can measure moisture levels within the range of 0 to 100. For ex­
ample, a rose plant needs moisture levels within the range of 70 and 80. If the
measured level for this plant is within this range, the plant does not need any
water. For more information about moisture levels for all kind of plants, see
the manual included with the moisture sensor. The EPROM program is given
in Table 5.13.

5.10 Designing α CMOS M S I 3

Capacitance Meter

The problem with many digital capacitance-measuring circuits lies in TTL or
LS technology, which draws high current and mandates a high part count.
Also, liquid-crystal displays (LCDs) use far less current than LED displays. A
four-digit LED display draws about 250 mA, compared with about 20 μ A for
LCDs.

A speech-synthesized CMOS MSI circuit with an LCD solves both prob­
lems (see Figure 5.16). The circuit, a four-digit LCD autoranging capacitance
meter, requires only the insertion of the unknown capacitor (Cx). The circuit
automatically selects the scale and the display's decimal point position. The
circuit's range is 1 pF to 1000 μ Ε It consumes only 250 m A at 5 V.

Timer T l , operating in a linear monostable mode, charges Cx through a
constant-current source formed by transistor Ql and resistors R5 to R8 in ac­
cordance with the scale. ICI, a 74HC4066 quad bilateral switch, automati­
cally selects one of these resistors. The time between pulse outputs from Tl
then depends on the value of Cx.

Whenever the output (pin 3) of timer Tl is high, timer T2's reset input (pin
4) oscillates at the fixed frequency fl of about 45,000 Hz. IC3, a 74HC4017
decade counter/divider, divides this frequency by 10 to f2. The higher fre­
quency serves the picofarad (pF) range; the lower frequency, the microfarad
(^F) range. IC4, a 74HC4051 analog multiplexer/demultiplexer, selects fl or
f2 and routes it to the counter input of the BCD counters CD4518 (pin 1 of
IC6a).

When the Cx capacitor charges to the threshold value of Tl (two-thirds
of Vdd), Tl 's output pin 3 goes low; then this pin is read by the FPC
Am29CPL154. The input of Tl is triggered by the FPC when the user presses
the switch "test," causing that pin 3 output to go high. At this point, IC5

3Reprinted and adapted with permission from Electronic Design, Vol. 36, no. 20, September
8, 1988. Copyright 1988, Penton Publishing.

2 5 4 5 . Test and Measurement Circuits

B D3 • D 2 • L C 0 0 0 4 D1 Γ Ί

• D P 1 L - J « D P 2 I — J « Q P 3 L J

1 1 1

F i g u r e 5.16 Speech-synthesized autoranging capacitance meter.

5.10 A C M O S MSI Capacitance Meter 2 5 5

f rom
D1

from
D2

from
D3

from
D4

Q0-
from IC1 Q1-

Q2-
Q3-

IC14 Vdd
PAL16H2

GND
A Β

IC9o

C I DIG1

to in1 <r
of T1

! C 9 b <(•
I B Β 0 0

-te SDIG2.
J n

IC9c ^

Β Ρ *
C 5 é DIG ^
D i t

IC9d
A K > <

C ÏDIG4I

IC11 g
74HC137 C

Y3

Y4

Y5

5VT

22pF ^3.5 7 £ 20M
Λ / ν - τ —
!3.57̂ 20M

C15
|LIMS369ESTL

to BP
100 Hz

• 5 V

4-2 Ii ne encoder

to rst of IC2

ΡΙΟ T4 T 5 P15

P0-P7

P11
T7

P12
P13
P14 Ycc

RST
IC10

A*29CPL154

P8

CLK
GND T 6 > GND T 6

7 Γ

•91

1ÛÛK

:o.i

DT1050

SW1-SW8

SPS1054
INTR 55R 1

SSR2

IC12

WR
7 fT

f ro m
pin3 o f T 1

1 Y

SEL Vc c
1A

C 1 3

7 4 H C 1 5 7

1 B

S T R O B E GN D

5V

~5l00K

F i g u r e 5,1 6 (continued)

(one-half o f a 74HC453 8 one-sho t multivibrator) als o triggers , an d it s pi n 7
output goe s low , enablin g I C 6 t o stor e a coun t o f th e frequenc y inpu t i n it s
internal latches . Whe n thi s puls e ends , th e othe r hal f o f I C 5 triggers , an d th e
reset pi n o f I C 6 receive s a negativ e puls e tha t reset s IC6 ' s counter s t o zer o
before startin g a ne w countin g cycle .

2 5 6 5 . Test and Measurement Circuits

A potentiometer (Ra) nulls the stray collector-base capacitance of tran­
sistor Ql . Diodes Dl and D2 protect the Tl timer from possible overcharges
caused by inserting a charged capacitor. When first turned on, the circuit
starts in the picofarad range, because IC2, another 74HC4017, delivers a high
from its QO output, which controls ICI, IC4, and the range LEDs through an
IC7 XOR gate (one-fourth of CD4071). Accordingly, ICI, which controls the
constant charging current of Cx, selects the 10 megaohm resistor, R8. Also,
IC4 selects the higher frequency fl because R8 is for small capacitors that
need a high frequency to properly measure the charging time. Finally, the
XOR gate output stays high to make the LED D4 glow, indicating that the
LCD's digital reading is in picofarads. The circuit enters the picofarad range
automatically after announcing the value of the capacitor under measurement.
To start a measurement, press the SI switch to reset IC2 to start with QO high.
The maximum pF scale reading is 9999 pF.

A Cx with a higher value, for example 0.020 /xF, causes an overflow pulse
from the /carry output (pin 28) of the IC6 counter. This output activates the
clock input of the IC2 decade-counter, which makes IC2's Ql output go high
and selects the 100 kilohm resistor R7. Cx then charges more rapidly than it
would with the 10 megaohm resistor and generates no overflow pulse. Also the
decimal point DPI now glows because the XOR gate driving it also depends
on Ql of IC2. The reading display then is 0.020 μ Ε On this scale, the maxi­
mum reading is 9.999 μ Ε

To interface the autoranging capacitance meter with the speech processor
Digitalker, we use the FPC Am29CPL154. The right side of Figure 5.16
shows the FPC controlling a 2-to-7 decoder to select each of the four digits.
As can be seen in Figure 5.16, outputs P0 to P7 send the speech data to the
SW1-SW8 address inputs of the Digitalker. Output Y5 of ICI 1 is used to pulse
the /WR input of the Digitalker low. Input T7 of the FPC is used for monitor­
ing when the speech processor has completed saying a word. Outputs P10 and
Ρ15 of the FPC are used to trigger timer Tl and reset Johnson counter IC2,
respectively. Testable inputs T4 and T5 of the FPC are used to determine the
position of the decimal point when a reading has been performed. This way,
the FPC knows the scale of the digital reading in order to process it and make
the Digitalker articulate the message corresponding to the capacitor under
measurement. To start a reading, the user has to insert the unknown capacitor
Cx near timer T l , and then press the switch SI in order to cause a logic low at
the testable input T6 of the FPC (IC10).

The routine used by the FPC is similar to the one presented in the first sec­
tion of Chapter 5. In this case, the routine is adapted in the main process sec­
tion to control timer Tl and counter IC2. Table 5.14 shows the software pro­
gram required to generate the JEDEC file and program the FPC Am29CPL154
for this particular function.

5.10 A C M O S MSI Capacitance Meter 2 5 7

T A B L E 5.14
Software Program for the Speech Synthesized Autoranging Capacitance Meter

DEVICE (CPL154)

DEFAULT 1;

DEFINE "test inputs"
intr = tl equal = eq
test = t6 "T6 reads switch SI or output timer Tl"

"Output control bits are given name assginments"
zero =
four =
eight

lF#h
04#h

= 08#h

one
f ive
nine

01#h
05#h
09#h

two = 02#h
six = 06#h
ten = 0A#h

three = 03#h
seven = 07#h

eleven = 0B#h
twelve = 0C#h
sixteen = 10#h
twenty = 14#h
= 18#h
seventy = 19#h
thousand = lD#h
point = 9A#h
resetl = 8000#h
inl = 400#h
GL = 800#h

DEFAULT_OUTPUT

OUT_POLARITY =

TEST_CONDITION

thirteen = 0D#h fourteen = 0E#h fifteen = 0F#h
seventeen = ll#h eighteen = 12#h nineteen = 13#h

thirty = 15#h forty = 16#h fifty = 17#h sixty

eighty = lA#h ninety = lB#h hundred
U = 34#h Ρ = 2F#h F = 25#h

lC#h

digl
dig2
dig3
dig4

= 0000#h;

F7FF#h;

= INTR;

1000#h
2000#h
3000#h
4000#h;

"Default test condition"

wr = 5000#h and = 3C#h
selP8 = 100#h

BEGIN
"0" zero, goto pl(n0)
"1" one, goto pl(nl)
"2" two, goto pl(n2)
"3" three, goto pl(n3)
»4-. four, goto pl(n4)
"5" five, goto pl(n5)
"6" six, goto pl(n6)
"7" seven, goto pl(n7)
"8" eight, goto pl(n8)
"9" nine, goto pl(n9);

MAIN PROCESS

" 10"start:resetl,
"11"
"12"
"13" resetl,
"14"
"15"
"16" resetl,
"17"
"18"

if (test) then goto pl(start)
cmp tm (30#h) to pl (00#h);
if (equal) then goto pl (pF);
cal1 pl(count);
cmp tm (30#h) to pl (10#h);
if (equal) then goto pl(uFl);
call pl(count);
cmp tm (30#h) to pl (20#h);
if (equal) then goto pl (uF2);

"testing overflow"
"pF scale "

"testing overflow"
"uF scale "

"testing overflow"
"uF scale"

2 5 8 5 . Test and Measurement Circuits

"19" resetl, call pl(count);
"20" ,goto pl(uF3);

DISPLAY FORMAT: 0000 Scale: pF D4 D3 D2 Dl
"21"pF:dig4, continue;
"22" dig4+GL, continue; " Digit 4 is selected by IC 74HC137"
"23" ,cmp tm(0F#h) to pl(00#h); "D4 = 0?"
"24" dig3, if (not equal) then goto pl(spkD4);
"25" dig3+GL, continue;
"26" ,cmp tm(0F#h) to pl(00#h); "D3 = 0? "
"27" dig2, if (not equal) then goto pl(spkD3);
"28" dig2+GL, continue;
"29" ,cmp tm(0F#h) to pl(00#h); "D2 = 0?"
"30" ,if (not equal) then goto pl(ptyc);
"31"spkdl:digl, continue;
"32" digl+GL, call pl(announ); "Announce Dl "
"33"hrtz: ,call pl(HZ); "Hertz"
"34" ,goto pl(start);
"35"spkd4:dig4, continue;
"36" dig4+GL, call pl(announ); "Announce D4"
"37" thousand, continue;
"38"thousand+wr, continue; "Thousand..."
"39"same:dig3, if (not intr) then goto pl(same);
"40" dig3+GL, continue;
"41" ,cmp tm(0F#h) to pl(00#h); "D3 = 0?"
"42" ,if (not equal) then goto pl(spkD3);
"43" dig2, continue;
"44" dig2+GL, continue;
"45" ,cmp tm(0F#h) to pl(00#h); "D2 = 0?"
"46" ,if (not equal) then goto pl(ptyand);
"47"spkand:and, continue;
"48" and+wr, continue; "And..."
"49"same2: ,if (not intr) then goto pl(same2);
"50" ,goto pl(spkdl);
"51"spkd3:dig3, continue;
"52" dig3+GL, call pl(announ); "Announce D3"
"53" hundred, continue;
"54" hundred+wr,continue; "Hundred..."
"55"same3:dig2, if (not intr) then goto pl(same3);
"56" dig2+GL, continue;
"57" ,cmp tm(0F#h) to pl(00#h); "D2 = 0?"
"58" ,if (not equal) then goto pl(ptyand);
"59" digl, continue;
"60" digl+GL, continue;
"61" ,cmp tm(0F#h) to pl(00#h); "Dl = 0?"
"62" ,if (not equal) then goto pl(spkand);
"63" ,goto pl(hrtz);
"64"ptyand:and, continue;
"65" and+wr, continue;
"66"same4:dig2, if (not intr) then goto pl(same4);
"67"ptyc:dig2+GL,continue;
"68" ,cmp tm(0F#h) to pl(01#h); "D2 = 1?"
"69" ,if (not equal) then goto pl(ptyb);

5.10 A C M O S MSI Capacitance Meter 2 5 9

"70" digl, continue;
"71" digl+GL, call pl(BCD4); "Announce Dl"
"72" ,goto pl(hrtz);
"73"ptyb:dig2, continue; "Announce D2"
"74" dig2+GL, call pl(BCD3b);
"75" digl, continue;
"76" digl+GL, continue;
"77" ,cmp tm(0F#h) to pl(00#h); "Dl = 0?"
"78" ,if (equal) then goto pl(hrtz) ;
"79" ,call pl(announ); "Announce Dl"
"80" ,goto pl(hrtz) ;

" DISPLAY FORMAT: 10.00 Scale: uF2 D4 D3.D2 Dl"
"81"uF2:dig4, continue; "D4 is necesarily not zero"
"82" dig4+GL, continue; "D4 is latched"
"83" ,cmp tm(0F#h) to pl(00#h); "D4=0?
"84" ,if (not equal) then goto pl(rick5);
"85"sayd3: dig3, continue; "say D3 because D4=0"
"86" dig3+GL, call pl(announ); "D3 is latched"
"87"pnt: point, continue; "Point.."
"88" point+wr, continue;
"89"idle: ,if (not intr) then goto pl(idle);
"90" dig2, continue;
"91" dig2+GL, continue;
"92" ,cmp tm(0F#h) to pl(00#h); "D2=0? "
"93" ,if (not equal) then goto pl(rick2);
"94" ,continue;
"95" ,call pl(announ); "announce D2"
"96"pat: digl, continue;
"97" digl+GL, call pl(announ); "announce Dl"
"98"paty: ,call pl(KHZ); "announce KiloHertz"
"99" ,goto pl(start) ;
"100"rick2: digl, continue;
"101" digl+GL, continue;
"102" ,cmp tm(0F#h) to pl(00#h);
"103" ,if (not equal) then goto pl(rick3);
"104" dig2, continue;
"105" dig2+GL, call pl(BCD3);
"106" ,goto pl(paty) ;
"107"rick3: dig2, continue;
"108" dig2+GL, continue;
"109" ,cmp tm(0F#h) to pl(01#h);
"110" ,if (not equal) then goto pl(rick4);
"111" , call pl(BCD4) ;
"112" ,goto pl(paty);
"113"rick4: dig2, continue;
"114" dig2+GL, call pl(BCD3b);
"115" ,goto pl(pat);
"116"rick5: dig4, continue;
"117" dig4+GL, continue;
"118" ,cmp tm(0F#h) to pl(01#h); "D4=l? "
"119" ,if (not equal) then goto pl(rick6) ;

2 6 0 5 . Test and Measurement Circuits

"120" dig3, continue;
"121" dig3+GL, call pl(BCD4); "Announce D3"
"122" ,goto pl (pnt);
"123"rick6 : dig4, continue;
"124" dig4+GL, call pl (BCD3b); "Announce D4"
"125" dig3, continue;
"126" dig3+GL, continue;
"127" ,cmp tm(0F#h) to pl(00#h); "D3 = 0?
"128" ,if (not equal) then goto pl(sayd3)
"129" ,goto pl(pnt);

» DISPLAY FORMAT : 100.0 Scale:uF3 D4 D3 D2.D1
"130"uF3:dig4, continue; "D4 is not zero"
"131" dig4+GL, call pl(announ); "D4 is latched"
"132" hundred, continue; "Hundred..."
"133" hundred+wr, continue;
"134"sty5: ,if (not intr) then goto pl(sty5);
"135" and, continue;
"136" and+wr, continue; "And...."
"137"sty6: ,if (not intr) then goto pl(sty6);
"138" dig3, continue;
"139" dig3+GL, continue;
"140" ,cmp tm(0F#h) to pl(00#h); "D3=0? "
"141" ,if (not equal) then goto pl(lug3);
"142"lug4: dig2, continue;
"143" dig2+GL, call pl(announ); "D2 is announced"
"144"lug5: point, continue;
"145" point+wr, continue;
"146"sty20 ,if(not intr) then goto pl(sty20);
"147" digl, continue;
"148" digl+GL, call pl(announ); "Dl is announced"
"149" ,call pl(KHZ);
"150" ,goto pl(start);
"151"lug3: dig3, continue;
"152" dig3+GL, continue;
"153" ,cmp tm(0f#h) to pl(01#h); "D3
"154" ,if (equal) then goto pl(lug6);
"155" ,call pl(BCD3b);
"156" dig2, continue;
"157" dig2+GL, continue;
"158" ,cmp tm(0F#h) to pl(00#h); "D2=0?"
"159" ,if (not equal) then goto pl(lug4);
"160" ,goto pl(lug5);
"161"lug6: dig2, continue;
"162" dig2+GL, call pl(BCD4);
"163" ,goto pl(lug5);

DISPLAY FORMAT:
"164"uFl:dig4,
"165" dig4+GL,
"166" point,
"167" point+wr,

1.000 Scale: uFl
continue;
call pl(announ);"D4 is latched"
continue;
continue; "Point"

5.10 A C M O S MSI Capacitance Meter

'168"sty8: ,if (not intr) then goto pl(sty8)
Ί 6 9 " dig3, continue;
Ί 7 0 " dig3+GL, call pl(announ);"D3 is latched"
"171" dig2, continue;
"172" dig2+GL, call pl(announ);"D2 is selected'
"173" digl, continue;
"174" digl+GL, call pl(announ);"Dl is selected'
"175" ,call pl(MHZ);
"176" ,goto pl(start);

" ***** Routine to trigger timer Tl ***** »«

"177"count:selP8, continue; "pin 3 of Tl is selected"
"178" selP8+inl, continue; "timer Tl is triggered"
"179"stay:selP8, if (test) then goto pl(stay);"wait for Tl
to go low"
"180" , ret;

ROUTINES BCD3 AND BCD3b

thirty+GL,

forty+GL,

fifty+GL,

sixty+GL,

"180"BCD3:
"181" ten+GL,
"182"BCD3b:
"183" twenty+GL,
"184"
"185
"186
"187
"188
"189
"190
"191
"192"
"193"seventy+GL
"194"
"195" eighty+GL
"196" ninety+GL
"197"nl0:ten+wr,
"19 8"n2 0 :twenty+wr,
"199"n30:thirty+wr,
"200"n40:forty+wr,
"201"n50:fifty+wr,
"202"n60:sixty+wr,
"203"n70:seventy+wr
"204"n80:eighty+wr,
"205"n90:ninety+wr,
"206"xb:
"207"

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then
goto pl(n90) ;

goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
if (not intr;
ret;

pl(01#h);
goto pl(nlO);
pl(02#h);
goto pl(n20) ;
pl(03#h);
goto pl(n30);
pl(04#h);
goto pl(n40);
pl(05#h);
goto pl(n50);
pl(06#h);
goto pl(n60);
pl(07#h);
goto pl(n70);
pl(08#h);
goto pl(n80);

then goto pl(xb);

2 6 2 5 . Test and Measurement Circuits

ROUTINE BCD4

"208"
"209"
"210"
"211"
"212"
"213"
"214"
"215"
"216"
"217"
"218"
"219"
"220"
"221"
"222"
"223"
"224'
"225"
"226'
"227'
"228'
"229'
"230'
"231'
"232'
"233'
"234'
"235'

"236'
"237'
"238'
"239'
"240'
"241'
"242'
"243'
"244·
"245'
"246'

"247'
"248'

BCD4: ,cmp tm(0F#h) to pl(00#h);
ten+GL, if (equal) then goto pl(nlO);

,cmp tm(0F#h) to pl(01#h);
eleven+GL, if (equal) then goto pl(nll);

,cmp tm(0F#h) to pl(02#h);
twelve+GL, if (equal) then goto pl(nl2);

,cmp tm(0F#h) to pl(03#h);
thirteen+GL, if (equal) then goto pl(nl3);

,cmp tm(0F#h) to pl(04#h);
fourteen+GL, if (equal) then goto pl(nl4);

,cmp tm(0F#h) to pl(05#h);
fifteen+GL, if (equal) then goto pl(nl5);

,cmp tm(0F#h) to pl(06#h);
sixteen+GL, if (equal) then goto pl(nl6);
" ,cmp tm(0F#h) to pl(07#h);
'seventeen+GL,if (equal) then goto pl(nl7);

,cmp tm(0F#h) to pl(08#h);
'eighteen+GL, if (equal) then goto pl(nl8);
'nineteen+GL, goto pl(nl9);
nil:eleven+wr,
nl2:twelve+wr,
nl3:thirteen+wr,
nl4:fourteen+wr,
nl5:fifteen+wr,
'nl6:sixteen+wr,
'nl7:seventeen+wr,
'nl8:eighteen+wr,
'nl9:nineteen+wr,
1 announ:
'n0:zero+wr,
'nl:one+wr,
'n2: two+wr,
'n3:three+wr,
•n4:four+wr,
•n5:five+wr,
•n6:six+wr,
•n7:seven+wr,
'n8:eight+wr,
'n9: nine+wr,

'finish:

goto pl(finish) ;
goto pl(finish) ;
goto pl(finish);
goto pl(finish);
goto pl(finish) ;
goto pl(finish);
goto pl(finish);
goto pl(finish);
goto pl(finish);

, goto tm(0F#h);
goto pl(finish) ;
goto pl(finish);
goto pl(finish);
goto pl(finish);
goto pl(finish) ;
goto pl(finish) ;
goto pl(finish);
goto pl (finish);
goto pl(finish);
goto pl(finish) ;

, if (not intr) then goto pl(finish);
, ret;

"249"HZ:P, continue;
"250" P+wr, continue;
"251" ,if (intr) then goto pl (stop) else wait;
"252"FF:F, continue;
"253" F+wr, continue;
"254" ,if (intr) then goto pl (stop) else wait;

5.11 A Talking Solid State Barometer 2 6 3

"255"KHZ:U, continue;
"256" U+wr, continue;
"257" , if (intr) then goto pl (FF) else wait;
"258"MHZ:million , goto pl(KHZ);
"259"stop:wr, ret;

.org 511#d
"260" ,goto pl(start);
END.

5.11 Designing α Talking
Solid State Barometer

The circuit shown in Figure 5.17 is a 0 to 200 mmHg pressure meter that vo­
calizes readings each time the user presses a switch. The 3-1/2 digit A/D con­
verter will give 199.9 mmHg full-scale. This meter provides a resolution of
0.1 mmHg. The same circuit can also be used for other pressure ranges simply
by changing the sensor and gain.

The resistor divider network composed of two 100K resistors and pot Rl
provides the offset adjustment for the circuit. The sensor used in this project is
the BPOl manufactured by Sensym (1255 Ream wood Avenue, Sunnyvale, CA
94089). The BPOl consists of a highly linear, low noise semiconductor pres­
sure sensor in combination with a precision thick film ceramic, housed in a
compact nylon case. This package offers small size and excellent isolation to
external package stresses. It also provides convenient mounting holes and
pressure ports for ease of use with standard plastic tubing.

Since the BPOl provides an output which is ratiometric to its supply volt­
age, using the electrical parameters of the data sheet, the expected output volt­
age will be 10 mV at 200 mmHg when operating from a 5 V supply. For the
components values shown, a full-scale input voltage of 200 mV (Vo) is re­
quired for the TSC8750 in order to display a full-scale output of 1999. This
way, the gain required for the instrumentation amplifier is 20. The output volt­
age equation and the gain equation derived are given below and are now used
to solve for the unknown resistance, Rt:

Vout - Vin [2(1 + R/Rt)] + Vo

or, rewriting

Vout = Vin Αν + Vo

where Av = 2(1 + R/Rt).
Vo is the initial output Vo for zero pressure applied. From the last equation,

with Rl = 10K, Rt is found to be 1.1K. The full-scale span adjustment is fine
tuned by using pot R3, which sets the reference voltage of the A/D converter.

2 6 4 5 . Test and Measurement Circuits

F i g u r e 5.17 Schematic for the talking solid state barometer.

To adjust the pressure meter, apply 165 mmHg and adjust R3 until the display
reads 165, then apply 0 mmHg and adjust R2 until the display reads 000.0.

The TSC870 (3.5 digit ADC w/parallel BCD output) initiates a conversion
cycle when the input "initiate conversion" (pin 21) is pulsed high. When the
input (pin 21) of the TSC8750 is pulsed high, the converter gives a logic high
on the Busy pin to indicate that a conversion cycle is in process. A logic " 1 "
to logic " 0 " transition indicates that conversion is complete and the result has
been latched at the Digits Out pins. The FPC will drive the TSC8750 to deter-

5.12 A Talking Darkroom Timer 2 6 5

f rom
D1

from
DZ

f rom
D3

f rom
D4

I C 9 A <

|C £ DIG1

h ζ.
IC9b <

B r ^
C ¥ DIC2.
D £

IC9c <
A.
B

D

iCSd

£ OC
= DIG4

I Cl 1

74HC137 C H

Y3

Y4
Y 5 h

5VT

22pF ' ^ ^

Hf
22pF Q3.57^20MÎAI5569EST |

j f P l

ÏL

from BUS Y

! C1 5
=5691

P0-P7

P11

P12
P13
P14

IC10

Am29CPL154

T0-T3

CLK.
P8

<m

R S T — 4

DT105D

SW1-SW3

5P51054
MTR 55R 1

SSR2

ÎC12

>100K

~~^rfi 1
I l es t

H
CND

,5V

to i n i t l a t e convers io n
<

F i g u r e 5.1 7 (continued)

mine th e magnitud e o f th e digita l pressur e readin g i n orde r t o mak e th e speec h
processor (DT1050) vocaliz e th e digita l result .

Table 5.1 5 show s th e microcod e progra m fo r th e soli d stat e barometer .

5.12 Designin g α Talking
Darkroom Timer

The project presented in this section is a programmable digital timing circuit
that has countless applications around the shop and home. This circuit is com­
monly used in the photographic world to obtain the precise time a film has to
be exposed to the light in a darkroom.

The schematic diagram in Figure 5.18 shows how the circuit works. The
circuit can be programmed to generate any one of nine timing intervals. Any
desired starting point from one (1) to nine (9) is selected by means of switch
" t ime." The user will hear the selected timing interval from the speech syn­
thesizer. At the same time, the seven-segment LED display will present the
selected interval. A half-monostable circuit is added to the normally open
switches " t ime" and "s tp" in order to provide a clean output positive pulse to

2 6 6 5 , Test and Measurement Circuits

T A B L E 5.15
Software Program for the Talking Barometer

DEVICE (CPL154)

DEFAULT = 1;

DEFINE "test inputs"
busy = t7 intr = t6 equal = eq

"Output control bits are given name assginments"
zero = lF#h one = 01#h two = 02#h three = 03#h
four = 04#h five = 05#h six = 06#h seven = 07#h
eight = 08#h nine = 09#h ten = OA#h eleven = OB#h
twelve = OC#h thirteen = OD#h fourteen = OE#h fifteen = OF#h
sixteen = 10#h seventeen = ll#h eighteen = 12#h nineteen = 13#h
twenty = 14#h thirty = 15#h forty = 16#h fifty = 17#h sixty
= 18#h
seventy = 19#h eighty = lA#h ninety = lB#h hundred = lC#h
thousand = lD#h milli = 6C#h volt = 8E#h ss = 81#h kilo = 62#h
over = 75#h point = 9A#h digl = 1000#h wr = 5000#h and = 3C#h
1000#h convrs = 4000#h
digl = 1000#h
dig2 = 2000#h
dig3 = 3000#h
dig4 = 4000#h
GL = 0800#h;

DEFAULT-OUTPUT = 0000#h;

OUT_POLARITY = F7FF#h;

TEST-CONDITION = INTR; "Default test condition"

BEGIN
0" zero, goto pl(n0)
1" one, goto pl(nl)
2" two, goto pl(n2)
3" three, goto pl(n3)
4" four, goto pl(n4)
5" five, goto pl(n5)
6" six, goto pl(n6)
7" seven, goto pl(n7)
8" eight, goto pl(n8)
9" nine, goto pl(n9)

MAIN PROCESS

10"start:scalel, continue;
11"voltage:convrs+scalel, continue;"pin 21 is pulsed high"
12"stay: scalel, if (busy) then goto pl(stay);

DISPLAY FORMAT: 000.0 - 199.9 Scale: mV (0-200 mV) D4 D3 D2.D1"

13"SPmV:dig4, continue; "D4 is not zero"

5.12 A Talking Darkroom Timer 2 6 7

"14" dig4+GL, call pl(announ); "D4 is latched"
"15" hundred, continue; "Hundred..."
"16" hundred+wr, continue;
"17"sty5: ,if (not intr) then goto pl(sty5);
"18" and, continue;
"19" and+wr, continue; "And...."
"20"sty6: ,if (not intr) then goto pl(sty6);
"21" dig3, continue;
"22" dig3+GL, continue;
"23" ,cmp tm(OF#h) to pl(00#h); "D3=0? "
"24" ,if (not equal) then goto pl(lug3);
"25"lug4: dig2, continue;
"26" dig2+GL, call pl(announ); "D2 is announced"
"27"lug5: point, continue;
"28" point+wr, continue;
"29"sty20: ,if(not intr) then goto pl(sty20);
"30" digl, continue;
"31" digl+GL, call pl(announ); "Dl is announced"
"32" ,call pl(KHZ); "Millivolts"
"33" ,goto pl(start);
"34"lug3: dig3, continue;
"35" dig3+GL, continue;
"36" ,cmp tm(0f#h) to pl(01#h); "D3=l?
"37" ,if (equal) then goto pl(lug6);
"38" ,call pl(BCD3b);
"39" dig2, continue;
"40" dig2+GL, continue;
"41" ,cmp tm(0F#h) to pl(00#h); "D2=0?"
"42" ,if (not equal) then goto pl(lug4);
"43" ,goto pl(lug5);
"44"lug6: dig2, continue;
"45" dig2+GL, call pl(BCD4);
"46" ,goto pl(lug5);

ROUTINES BCD3 AND BCD3b

"47"BCD3:
"48" ten+GL,
"49"BCD3b:
"50" twenty+GL,
"51"
"52" thirty+GL,
"126"
"127'
"128
"129'
"130
"131'
"132"
" 133"seventy+GL,
"134"
"135" eighty+GL,
"136" ninety+GL,

forty+GL,

fifty+GL,

sixty+GL,

,cmp tm(0F#h) to pl(01#h);
if (equal) then goto pl(nlO);

,cmp tm(0F#h) to pl(02#h);
if (equal) then goto pl(n20);

,cmp tm(0F#h) to pl (03#h) ;
if (equal) then goto pl(n30);
,cmp tm(0F#h) to pl(04#h);
if (equal) then goto pl(n40);

,cmp tm(0F#h) to pl(05#h);
if (equal) then goto pl(n50);

,cmp tm(0F#h) to pl(06#h);
if (equal) then goto pl(n60);

,cmp tm(0F#h) to pl(07#h);
if (equal) then goto pl(n70);

,cmp tm(0F#h) to pl(08#h);
if (equal) then goto pl(n80);
goto pl(n90);

2 6 8 5 . Test and Measurement Circuits

"137 'nlO ten+wr, goto pl(xb);
"138 'n20 twenty+wr, goto pl(xb);
"139 'n30 thirty+wr, goto pl(xb);
"140 'n40 forty+wr, goto pl(xb);
"141 'n50 fifty+wr, goto pl(xb);
"142 'n60 sixty+wr, goto pl(xb);
"143 'n70 seventy+wr, goto pl(xb);
"144"n80 eighty+wr, goto pl(xb);
"145"n90 ninety+wr, goto pl(xb);
"146 •xb: , if (not intr
"147 , ret;

then goto pl(xb)

ROUTINE BCD4

"148
"149
"150
"151
"152
"153
"154
"155
"156
"157
"158
"159
"160
"161
"162
"163
"164
"165
"166
"167
"168
"169
"170"
"171"
"172"
"173"
"174"
"175"

"176"
"177"
"178"
"179'
"180'
"181"
"182'
"183
"184

BCD4: ,cmp tm(0F#h) to pl(00#h);
ten+GL, if (equal) then goto pl(nlO)

, cmp tm(0F#h) to pl(01#h) ;
eleven+GL, if (equal) then goto pl(nll)

,cmp tm(0F#h) to pl(02#h);
twelve+GL, if (equal) then goto pl(nl2)

,cmp tm(0F#h) to pl(03#h);
thirteen+GL, if (equal) then goto pl(nl3)

,cmp tm(0F#h) to pl(04#h);
fourteen+GL, if (equal) then goto pl(nl4)

, cmp tm(0F#h) to pl(05#h);
fifteen+GL, if (equal) then goto pl(nl5)

,cmp tm(0F#h) to pl (06#h);
sixteen+GL, if (equal) then goto pl(nl6)

,cmp tm(0F#h) to pl(07#h);
seventeen+GL,if (equal) then goto pl(nl7)

,cmp tm(0F#h) to pl(08#h);
eighteen+GL, if (equal) then goto pl(nl8)
nineteen+GL, goto pl(nl9);
"nil:eleven+wr,
"nl2:twelve+wr,
"nl3:thirteen+wr,
nl4:fourteen+wr,
'nl5:fifteen+wr,
'nl6:sixteen+wr,
'nl7:seventeen+wr,
'nl8:eighteen+wr,
'nl9:nineteen+wr,
1 announ:
'n0:zero+wr,
'nl :one+wr,
"n2:two+wr,
"n3:three+wr,
"n4:four+wr,
'n5:five+wr,
"n6:six+wr,
"n7:seven+wr,

goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl (finish)
goto pl(finish)
goto pl(finish)

, goto tm(0F#h);
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl (finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl (finish)

5.12 A Talking Darkroom Timer 2 6 9

'185"n8:eight+wr,
"186"n9:nine+wr,

"187"finish:
"188"

goto pl(finish);
goto pl(finish);

,if (not intr) then goto pl(finish);
, ret;

"189"HZ:volt, continue;
"190" volt+wr, continue; "mm Hg. . . "
"191" ,if (intr) then goto pl(ssa) else wait;
"192"ssa:ss, continue; "S..."
"193" ss+wr, continue;
"194" ,if (intr) then goto pl(stop) else wait;
"195"KHZ:milli, continue;
"196" milli+wr, continue;
"197" , if (intr) then goto pl(HZ) else wait;
"198"stop:wr, ret;
"199"msgerr: over, continue; "OVER..."
"200" over+wr, continue;
"201" ,if (intr) then goto pl(HZ) else wait;

.org 511#d
"208" ,goto pl(start);
END.

the testable inputs TO and Tl of the FPC Am29CPL152. Output P12 of the
FPC is used to control Nand gate IClc, which in turn drives the internal LED
contained in the optocoupler MOC3010. The optocoupler MOC3010 is used to
isolate the ac power line from the circuit. Outputs P8 to Pl l of the FPC drive
the BCD-to-seven segment decoder/driver CD4543. Accordingly, output P13
is used to blank the LED display when the subroutine "light" is being per­
formed in order to avoid a reading of " 0 " when P8 to Pl l are not specified in
the microcode program.

When pushbutton "s tp" is closed momentarily, the user will hear the word
"start" then the ac lamp will be turned on for the previously selected time. If
the user needs to produce the same interval in the ac lamp, he just has to press
the "s tp" switch again.

Every time you push the " t ime" switch, the FPC begins its upward count.
The current BCD number present at its outputs (P8 to Pl l) is decoded by
CD4543 and is displayed on a common-cathode, seven-segment LED readout.
The FPCs program is designed to increment its position every time the
" t ime" switch is pressed; this causes the program to increment the number
displayed in the readout and make the speech processor speak the new number
of seconds that the light should be on.

When the number of seconds is correct, it is time to press the STP button;
this button starts the light. If the user presses "s tp" again when the light is on,
the light will be turned off immediately.

2 7 0 5 , Test and Measurement Circuits

t ime,

1 M

n;
stp

- +5V

•fee. display
F i g u r e 5.18 Circuit for the speech-synthesized darkroom timer.

The sequence of counting of seconds every time you press TIME is up and
start again (1,2,3,4,5,6,7,8,9 and 1 again).

Figure 5.19 shows the flowchart used to design the software program pre­
sented in Table 5.16. When the circuit is first turned on, the program is forced
to jump to line 1 where the label designated "start" is located. Then the pro­
gram keeps reading the logic status of the testable input TO connected to the
switch " t ime." If TO is pressed, the speech processor will speak the word
"one" and the program now will keep monitoring the status of the testable
inputs TO and Tl ("time" and "s tp ," respectively). Consequently, if the user
needs one second of light, he will have to press the "s tp" switch. Otherwise,
he will keep pressing the " t ime" switch to reach the timing interval he needs.
When the user has reached the timing interval he wants, for example 9 s, the
program will generate nine seconds of light by calling subroutine "light." The
subroutine "light" will make the speech processor announce the word "start"

5.12 A Talking Darkroom Timer 2 7 1

and then will turn on the ac lamp for an interval of 9 s. When this period ends,
the speech processor will speak the word "stop" to indicate that the process is
complete. The program then returns to the routine that gives nine seconds of
light. If the operator wants to expose several films to periods of nine seconds
of light, he will keep pressing the "s tp" switch. If not, he will have to press
the " t ime" switch to select a new timing interval of light.

SUI LIGNT

SAV STAR

SAY STOP

RETURN

SAV TUO

ALL THE BLOCKS HAUE THE SANE FORMAT

SAV NINE

F i g u r e 5.19 Flowchart for the darkroom timer.

2 7 2 5 . Test and Measurement Circuits

T A B L E 5.16
Software Program for the Speech Synthesized Darkroom Timer

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
ti = tO
stp = tl
sby = t2

"allophones and pauses are given name assignments"

pa2 = 01#h »

pa3 = 02#h t6- > ! 1 28 : - Vcc "
pa4 = 03#h " p0< - 1 2 27 ! < -elk "
pa5 = 04#h " pl< - 1 3 26 !< -cc "
oy = 05#h p2< - : 4 25 ! < - t o "

ay = 06#h " P 3 < - : 5 Am29CPL 24 ! < -tl "
eh = 07#h " p4< - : β 152 23 ! < -t2 "
kk3 = 08#h " p5< - : 7 22 : < -t3 "
PP = 09#h p6< - ', 8 21 !< -t4 "
jh = OA#h " p7< - ! 9 20!< -t5 "
nnl = OB#h p8< - ! 10 19! < -/reset"
ih = OC#h " p9< - : li 18! ->pl5 "
tt2 = OD#h " plO< - : 12 17! ->pl4 "
rrl = OE#h " pll< - ; i3 16! ->pl3 "
ax = OF#h Gnd -114 15 i ->pl2 "
mm = 10#h "
ttl = ll#h
dhl = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = lA#h hhl = lB#h
bbl = lC#h th = lD#h uh = lE#h uw2 = lF#h aw = 20#h
dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24#h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h W W = 2E#h xr = 2F#h
wh = 30#h yyi = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h;

"control the light activator and led display readout "

AClight = 1000#h BI = 2000#h "Blanking Display"

kl = 100#h k2 = 200#h k3 = 300#h k4 = 400#h

k5 = 500#h k6 = 600#h k7 = 700#h k8 = 800#h k9 = 900#h;

"the position of the display readout is p8 to pll (A thru D) "

DEFAULT_OUTPUT = 0000#h;

TEST—CONDITION = SBY; "/STANDBY is the default test condition"

BEGIN
"Wait for ti to go high"
"l"start: , if (not ti) then goto pl(start);
"2"stl: ww+kl, call pl(read); " say ONE "

5.12 A Talking Darkroom Timer 2 7 3

"3" ax+kl, call pl(read) ;
"4- ax+kl, call pl(read);
"5" nnl+kl, call pl(read);
"6" pa3+kl, call pl(read);
"7"stll: kl, if (ti) then goto pl(st2);
"8" kl, if (not stp) then goto pl(stll);
"9" kl, load pl(4);
"10" kl, call pl(light)
"11" kl, goto pl(stll);

"12"st2: tt2+k2, call pl(read) " say TWO "
"13" uw2+k2, call pl(read)
"14" pa3+k2, call pl(read)
"15"st21: k2 if (ti) then goto pl(st3);
"16" k2 if (not stp) then goto pl(st21)
"17" k2 load pl(9);
"18" k2 call pl(light);
"19" k2 goto pl(st21)

"20"st3: th+k3, call pl(read) " say THREE "
"21" rrl+k3, call pl(read)
"22" iy+k3, call pl(read)
"23" pa3+k3, call pl(read)
"24"st31: k3, if (ti) then goto pl(st4);
"25" k3, if (not stp) then goto pl(st31)
"26" k3 load pl (14) ;
"27" k3, call pl(light);
"28" k3 goto pl (st31)

"29"st4: ff+k4, call pl(read) " say FOUR "
"30" ff+k4, call pl(read)
"31" or-t-k4, call pl(read)
"32" pa3+k4, cal1 pl(read)
"33"st41: k4, if (ti) then goto pl (st5);
"34" k4, if (not stp) then goto pl (st41)
"35" k4, load pl(19);
"36" k4, call pl(light);
"37" k4, goto pl(st41)

"38"st5: ff+k5, call pl(read) " say FIVE "
"39" ff+k5, call pl(read)
"40" ay+k5, call pl(read)
"41" w + k 5 , call pl(read)
"42" pa3+k5, cal1 pl(read)
"43"st51: k5, if (ti) then goto pl(st6);
»44" k5, if (not stp) then goto pl (st51)
"45" k5, load pl (24) ;
"46" k5, call pl(light);
-47" k5, goto pl (st51)

"48"st6: ss+k6, call pl(read) " say SIX "
"49" ss-f-k6, call pl(read)
"50" ih+k6, call pl(read)
"51" ih+k6, call pl(read)
"52" pa3+k6, call pl(read)
"53" kk2+k6, call pl (read)
"54" ss+k6, call pl(read)
"55" pa3+k6, call pl(read)

2 7 4 5 . Test and Measurement Circuits

"56"st61: k6, if (ti) then goto pl (st7);
"57" k6, if (not stp) then goto pl (st61);
"58" k6, load pl(29);
"59" k6, call pl(light);
"60" k6, goto pl (st61);
"61"st7: ss+k7, call pl (read) ; " say SEVEN "
"62" ss+k7, call pl(read);
"63" eh+k7, call pl(read);
"64" eh+k7, call pl(read);
"65" w + k 7 , call pl (read) ;
"66" eh+k7, call pl(read);
"67" nnl+k7, call pl(read);
"68" pa3+k7, call pl (read);
"69"st71: k7, if (ti) then goto pl(st8);
"70" k7, if (not stp) then goto pl(st71);
"71" k7, load pl (34);
"72" k7, call pl(light);
"73" k7, goto pl (st71) ;

"74"st8: ey+k8, call pl(read); " say EIGHT "
"75" pa3+k8, call pl(read);
"76" tt2+k8, call pl(read);
"77" pa3+k8, call pl(read);
"78"st81: k8, if (ti) then goto pl(st9);
"79" k8, if (not stp) then goto pl(st81);
"80" k8, load pl(39);
"81" k8, call pl(light);
"82" k8, goto pl(st81);

"83"st9: nn2+k9, call pl(read); " say NINE "
"84" aa+k9, call pl(read);
"85" ay+k9, call pl(read);
"86" nnl+k9, call pl(read);
"87" pa3+k9, call pl(read);
"88"st91: k9, if (ti) then goto pl(stl);
"89" k9, if (not stp) then goto pl(st91);
"90" k9, load pl(44);
"91" k9, call pl(light);
"92" k9, goto pl (st91);

"subroutine READ"
"93"read: BI, continue; "allows sby to go low in 300 ns"
"94"styal: BI, if (not sby) then goto pl(styal); "reading
SBY"
"95" BI, ret;

"subroutine light"
"96"light: BI+ss, call pl(read);
"97" BI+ss, call pl(read); " say START "
"98" BI+pa3, call pl(read) ;
"99" BI+tt2, call pl(read);
"100" ΒΙ+ar, call pl(read);
"101" BI+pa3, call pl(read);
"102" BI+tt2, call pl(read);

5.13 A Talking Current Meter 2 7 5

"103"light2: AClight+pa5, continue;
"104" AClight+pal, continue;
"105"stay2: AClight+pal, if (not sby) then goto pl(stay2);
"106" AClight+pal, if (stp) then goto pl (stop);
"107" AClight+pal, while (creg<>0) loop to pl(light2)
"108"stop: ss, call pl(read)
"109" ss, call pl(read) " say STOP 11

"110" pa3, call pl(read)
"111" ttl, call pl(read)
"112" aa, call pl(read)
"113" aa, call pl(read)
"114" pa3, call pl(read)
"115" PP, call pl(read)
"116" pa3, call pl(read)
"117" , ret;

org 127#d
"118" , goto pl(start);
END.

5.13 Talking Current Meter

The circuit shown in Figure 5.20 is a talking current meter that vocalizes read­
ings within the range of 0 to 200 mA. Its resolution is 1 mA. The conversion
of current to voltage is performed by using an A/D converter (ADC) with par­
allel BCD outputs (TSC8750). The resulting digital conversion is read and
controlled by an FPC which also drives the speech processor Digitalker.

The use of a shunt resistor converts the current to a voltage. In this case, a
shunt resistor of 1 ohm (1/4 W) is used at the input pin of the ADC TSC8750.
When measuring current, the 199 mV scale is used. This limits the voltage
drop to 1 mV per count. The relationships for finding the values of resistors
Rin and Rref are:

Vin Full-Scale 0.2 V
Rin = = 20K

10 μΑ 10 μΑ

Vref - 5 V
Rref = —— = ^ = 250K

- 2 0 μΑ - 2 0 μΑ

The process for controlling the ADC TSC8750 is similar to the one shown
in Section 10 of this chapter. In this case, the TSC8750 is controlled by output
P14 of the FPC. When the user connects the terminal cables for measuring a
current, he presses the "test" switch to cause a negative transient pulse at the
input T4 of the FPC. The testable input T4 is being monitored by the instruc­
tion "start: if (test) then goto pl (start)," as shown in Table 5.17; this instruc-

2 7 6 5 . Test and Measurement Circuits

IC9a

DIG1 Li
SW 1-β

— •
ÎFTR

κ

5 V

<100K

5V

J:IOOK

To W R

.+5V

F i g u r e 5.20 Circuitry that makes up the talking current meter.

tion keeps the program monitoring the logic of the testable input T4. When
the "test" button is pressed, a logic low transient is generated and the pro­
gram jumps to the next line by default. The instruction " in l , continue" in line
11 contains the output " i n l " which generates a positive pulse on output P10.
As Figure 5.20 shows, output P10 is used for pulsing the pin called "initiate
conversion" of the ADC TSC8750 high; for instance, the ADC TSC8750 ini­
tiates the conversion process at the beginning of the instruction in line 11.
Because the FPC is being clocked by a 100 Hz frequency, each instruction is
performed in 10 ms. You can augment the clock frequency of the FPC up to
30 MHz without altering the operation of the entire circuit. To guarantee that

5.13 A Talking Current Meter 2 7 7

the conversion process of the ADC TSC8750 is complete, line 13 of the pro­
gram reads the logic status of the output "busy" of the ADC. The instruction
"hold: ,if (busy) then goto pl(hold)" will keep reading the function pin
"busy" in order to wait for the end of the conversion process. When the out­
put "busy" goes to a logic low, the FPC jumps by default to the next instruc­
tion where the routine for reading the digital value of digits D l , D2, and D3,
is performed. As soon as the FPC detects a digit different from zero, the FPC
causes the Digitalker to announce the digital number according to its position.
D3 is the most significant digit and Dl is the less significant digit. (In this
application Digit D4 is left unconnected because we are measuring only cur­
rents within the range of 1 to 199 mA with a resolution of 1 mA.) Notice that
the routine (from line 21 to 160) also monitors the value of digit D4; this will
not affect the function of the FPC and the Digitalker. This allows you to
change the scale of the readings without having to alter the software for your
specific need. Bear in mind that the software program presented in Table 5.17
will be able to handle current measurements when the digits D1 to D4 are not
using a decimal point. If you want to use a decimal point, consider using the
entire routine presented in Table 5.1.

T A B L E 5.17
Software Program for the Talking Current Meter

DEVICE (CPL154)

DEFAULT

DEFINE
intr =
test =

zero =
four =
eight

"test inputs"
tl equal = eq
t4 busy = t5

"Output control bits are given name assginments"
lF#h
04#h

= 08#h
twelve = 0C#h
sixteen = 10#h
twenty = 14#h
= 18#h
seventy = 19#h
thousand = lD#h
point = 9A#h
resetl = 8000#h
inl = 400#h
GL = 800#h

one = 01#h
five = 05#h
nine = 09#h

thirteen = 0D#h

two = 02#h
six = 06#h
ten = 0A#h

fourteen = 0E#h

three = 03#h
seven = 07#h

eleven = 0B#h
fifteen = 0F#h

seventeen = ll#h eighteen
thirty = 15#h forty = 16#h

= 12#h nineteen = 13#h
fifty = 17#h sixty

eighty = lA#h ninety
U = 34#h Ρ = 2F#h
digl = 1000#h
dig2 = 2000#h
dig3 = 3000#h
dig4 = 4000#h;

= lB#h hundred = lC#h
F = 25#h

wr = 5000#h and = 3C#h
selP8 = 100#h

DEFAULT-OUTPUT = 0000#h;

OUT_POLARITY = F7FF#h;

TEST-CONDITION = INTR; "Default test condition"

2 7 8 5 . Test and Measurement Circuits

BEGIN
"0" zero, goto pl(n0)
"1" one, goto pl(nl)
"2" two, goto pl(n2)
"3" three, goto pl(n3)
"4" four, goto pl(n4)
"5" f ive, goto pl(n5)
"6" six, goto pl(n6)
"7" seven, goto pl(n7)
"8" eight, goto pl(n8)
"9" nine, goto pl(n9)

" PROCESS FOR CONTROLLING THE ADC TSC8750

"10' start: , if (test) then goto pl(start);
"11' inl, continue; •ADC initiates conversion"

, continue;
, if (busy) then goto pl(hold)

"12"
"13"hold:

" DISPLAY FORMAT: 0000 Scale: mA D4 D3 D2 Dl
"21" dig4, continue;
"22" dig4+GL, continue; " Digit 4 is selected by IC 74HC137"
"23" ,cmp tm(0F#h) to pl(00#h); "D4 = 0?"
"24" dig3, if (not equal) then goto pl(spkD4);
"25" dig3+GL, continue;
"26" ,cmp tm(0F#h) to pl(00#h); "D3 = 0? "
"27" dig2, if (not equal) then goto pl(spkD3);
"28" dig2+GL, continue;
"29" ,cmp tm(0F#h) to pl(00#h); "D2 = 0?"
"30" ,if (not equal) then goto pl(ptyc);
"31" spkdl:digl, continue;
"32" digl+GL, call pl(announ); "Announce Dl
"33" hrtz: ,call pl(HZ); "mA"
"34" ,goto pl(start);
"35"spkd4: dig4, continue;
"36" dig4+GL, call pl(announ); "Announce D4"
"37" thousand, continue;
"38" thousand+wr, continue; "Thousand..."
"39" same:dig3, if (not intr) then goto pl(same);
"40" dig3+GL, continue;
"41" ,cmp tm(0F#h) to pl(00#h); "D3 = = 0?"
"42" ,if (not equal) then goto pl(spkD3);
"43" dig2, continue;
"44" dig2+GL, continue;
"45" ,cmp tm(0F#h) to pl(00#h); "D2 = = 0?"
"46" ,if (not equal) then goto pl(ptyand);
"47" spkand:and, continue;
"48" and+wr, continue; "And
"49"same2: ,if (not intr) then goto pl(same2);
"50" ,goto pl(spkdl);

5.13 A Talking Current Meter 2 7 9

"51
"52
"53
"54
"55
"56
"57
"58
"59
"60'
"6Γ
"62 1

"63 1

"64'
"65 1

"66'
"67'
"68'
"69'
"70'
"71'
"72'
"73'
"74'
"75'
"76'
"77'
"78'
"79»
"80'

•spkd3:dig3,
' dig3+GL,
1 hundred,
1 hundred+wr
'same3:dig2,
1 dig2+GL,

digl,
digl+GL,

ptyand: and,
and+wr,

same4:dig2,
ptyc:dig2+GL

digl,
digl+GL,

ptyb:dig2,
dig2+GL,

digl,
digl+GL,

D2 = 0?"

Dl = 0?

continue;
call pl(announ); "Announce D3"
continue;
continue; "Hundred..."
if (not intr) then goto pl(same3);
continue;
cmp tm(0F#h) to pl(00#h);
if (not equal) then goto pl(ptyand
continue;
continue;
cmp tm(0F#h) to pl(00#h);
if (not equal) then goto pl(spkand);
goto pl(hrtz);
continue;
continue;
if (not intr) then goto pl(same4);
continue;
cmp tm(0F#h) to pl(01#h); "D2 = 1?"
if (not equal) then goto pl(ptyb);
continue;
call pl(BCD4); "Announce Dl"
goto pl(hrtz);
continue; "Announce D2"
call pl(BCD3b);
continue;
continue;
cmp tm(0F#h) to pl(00#h); "Dl = 0?"
if (equal) then goto pl(hrtz);
call pl(announ); "Announce Dl"
goto pl(hrtz);

ROUTINES BCD3 AND BCD3b

"80"BCD3:
"81" ten+GL,
"82"BCD3b:
"83" twenty+GL,
"84"
"85" thirty+GL,
"86"
"87" forty+GL,
"88"
"89" fifty+GL,
"90"
"91" sixty+GL,
"92"
"93"seventy+GL,
"94"
"95" eighty+GL,
"96" ninety+GL,

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then

, cmp tm(0F#h) to
if (equal) then
goto pl(n90);

pl(01#h);
goto pl(nlO);
pl(02#h);
goto pl(n20);
pl (03#h);
goto pl(n30) ;
pl(04#h) ;
goto pl(n40) ;
pl(05#h) ;
goto pl(n50);
pl(06#h);
goto pl(n60);
pl(07#h) ;
goto pl(n70);
pl(08#h);
goto pl(n80);

2 8 0 5 . Test and Measurement Circuits

"97"nl0:ten+wr,
"98"n20:twenty+wr,
"99"n30:thirty+wr,
"100"n40:forty+wr,
"101"n50:fifty+wr,
"102"n60:sixty+wr,
"103"n70:seventy+wr
"104"n80: eighty+wr,
"105"n90:ninety+wr,
"106"xb:
"107"

goto pl(xb);
goto pl(xb);
goto pl(xb);
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
goto pl(xb)
, if (not intr
, ret;

then goto pl(xb)

ROUTINE BCD4

"108'
"109'
"110'
"111'
"112'
"113'
"114'
"115'
"116'
"117'
"118'
"119'
"120'
"121·
"122'
"123'
"124'
"125'
"126'
"127'
"128'
"129'
"130'
"131'
"132'
"133'
"134'
"135'

"136'
"137'
"138'
"139'
"140'
"141'
"142'
"143'
"144'

' BCD4: ,cmp tm(0F#h) to pl (00#h
' ten+GL, if (equal) then goto pl

,emp tm(0F#h) to pl(01#h
' eleven+GL, if (equal) then goto pl

,cmp tm(0F#h) to pl(02#h
' twelve+GL, if (equal) then goto pl

,cmp tm(0F#h) to pl (03#h
1 thirteen+GL, if (equal) then goto pl

,cmp tm(0F#h) to pl(04#h
'fourteen+GL, if (equal) then goto pl
' ,cmp tm(0F#h) to pl(05#h
'fifteen+GL, if (equal) then goto pl

,cmp tm(0F#h) to pl(06#h
'sixteen+GL, if (equal) then goto pl

,cmp tm(0F#h) to pl(07#h
'seventeen+GL,if (equal) then goto pl
' ,cmp tm(0F#h) to pl(08#h
'eighteen+GL, if (equal) then goto pl
'nineteen+GL, goto pl(nl9);

(nlO);
) ;

(nil);
) ;

(nl2);
) ;
(nl3);
) ;

(nl4);
) ;

(nl5);
) ;

(nl6);
) ;

(nl7);
) ;
(nl8);

'nil:eleven+wr,
'nl2:twelve+wr,
'nl3:thirteen+wr,
'nl4:fourteen+wr,
'nl5:fifteen+wr,
'nl6:sixteen+wr,
'nl7:seventeen+wr,
'nl8:eighteen+wr,
'nl9:nineteen+wr,

announ:
'n0:zero+wr,
nl:one+wr,
n2:two+wr,
n3:three+wr,
n4:four+wr,
'n5:five+wr,
'n6:six+wr,
'n7:seven+wr,

goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)

, goto tm(0F#h) ;
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl(finish)
goto pl (finish)
goto pl(finish)
goto pl(finish)
goto pl (f inish)

5.14 A Liquid-Level Enunciator 2 8 1

"145"n8:eight+wr,
"146"n9:nine+wr,

"147"finish:
"148"

goto pl(f inish);
goto pl(f inish);

,if (not intr) then goto pl(finish)
, ret;

"149"HZ:m,
"150" P+wr,
•151"
"152"FF:F,
"153" F+wr,
"154"
"155"KHZ:U,
"156" U+wr,
"157"
"158"MHZ:million
"159"stop:wr,

continue;
continue;

,if (intr)
continue;
continue;
,if (intr)
continue;
continue,
,if (intr)
,goto pl(KHZ)
ret;

"Milli amperes"

then goto pl(stop) else wait;

then goto pl (stop) else wait;

then goto pl(FF) else wait;

"160"
END.

. org 511#d
,goto pl(start)

5.14 Designing α Liquid-Level4

Annunciator

A chemist might find that a liquid-level annunciator circuit comes in handy to
detect the liquid level of chemical-reactor vessels in his lab. The annunciator
circuit contains a speech processor and loudspeaker that gives an audible re­
port of the level of liquid in a vessel each time the user presses the read
switch, SI. For example, for a liquid-level input of nine, the loudspeaker an­
nounces "nine."

Measuring liquid level requires only one chip, IC7, a 74HC147 10-to-4-line
priority encoder (see Figure 5.21). Each of its nine inputs is connected to a
level-sensor electrode in the vessel, and each input has a 20K pull-up resistor
(Rl to R9) to provide a logic one when its level-sensor electrode is dry. All the
electrodes deliver logic one inputs when the vessel is empty; logic zeros when
it is full.

When the user pushes switch SI, a quad clocked-D latch CD4042 (ICI)
latches the chip's encoded outputs and triggers IC2b—half of a CMOS dual
CD4520 up-counter configured as a flip-flop. The inverted outputs from the
latch (/Ql to /Q4) deliver positive-acting logic, liquid-level values to the
upper-address inputs of the 27C16 EPROM (A4 to A7). The other half of the

4Reprinted with permission from Electronic Design, Vol. 37, no. 4, February 23, 1989.
Copyright 1989, Penton Publishing.

2 8 2 5 . Test and Measurement Circuits

+ 0 1 7805 Regulator
"9 Vdc I —

Liquid

F i g u r e 5.21 The annunciator's circuit loudspeaker gives an audible report of a ves­
sel's liquid when SI is pressed.

CD4520 counter (IC2a) scans the lower-address memory locations (Al to A3)
in sequence.

After the user closes SI, setting the Ql output of IC2b high, each negative-
going output pulse from Nand gate IC6 to the speech processor's address-load
input (/ALD) loads the processor with the currently addressed EPROM data.
This block of EPROM memory data delivers a preprogrammed sequence of
instructions to the speech processor IC4, an SP0256-AL2. For example,
when the liquid level reaches five (ABCD = 0101 from IC7), the loudspeaker
announces the number "five."

The processor, while delivering speech, holds its standby output (/SBY)
low for an interval appropriate to that particular allophone. The low /SBY re­
sets the Nand gate output to deliver a positive-going output. Starting with a
zero count, the positive-going output of the Nand gate advances counter IC2
one step, following the closure of SI.

Each audible report requires one to seven allophones. Following each re­
port, the last two hex-data instructions in the program, 4 and 44, reset the
speech processor internally. Also, by its output 06, the EPROM resets counter
IC2 and flip-flop IC2b, making the circuit ready for the next reading.

C H A P T E R 6

Speech-Synthesized Burglar Alarms

6.1 Designing α Burglar Alarm with
Artificial Voice

The features found in most alarm systems for home or car usage can be built
around one field programmable controller, a speech synthesizer, and several
optocouplers. The vocal warning alarm described in this section takes ad­
vantage of the allophone-based speech processor SP0256-AL2 to warn the
trespasser.

Figure 6.1 shows the entire circuit for the burglar alarm where a hidden
switch (SI) inside the car or the house turns on the entire system. As can be
seen, the performance of the alarm is based on the program stored in the FPC
Am29CPL152. Figure 6.2 shows the flowchart indicating the steps that must
be followed to detect a possible intrusion in the protected area.

We will design the alarm circuit to detect when a normally closed switch
(S2) is open momentarily; therefore, the first step for the alarm is to check if
the sensor is in the closed position. If so, the FPC will make the speech pro­
cessor announce the message, "Check sensors..." repetitively until the prob­
lem has been fixed. When this happens, the operator will turn off the alarm
before starting to adjust the input sensor. On the other hand, if the sensors are
properly adjusted, when the alarm is turned on, the circuit inhibits it for 12 s
before becoming active to let the user exit and close the door without prob­
lems. This delay is indicated in the flowchart of Figure 6.2 with the label
"r ick." The 12 s delay is controlled by the routine located in lines 14 to 16 in
Table 6.1.

Now the alarm can detect, for example, the opening of a door or window

2 8 3

2 8 4 6. Speech-Synthesized Burglar Alarms

Ν. C.
B e η s o r

10K
" 0 . 1 uF

+5V

To LPF and
p S audio

amp!î fier

22DF

^ M 7

F i g u r e 6.1 Circuitry for the compact burglar alarm with artificial voice that uses the
allophone-based speech processor SP0256-AL2.

by a negative pulse generated by the optocoupler H11L1GE with an appropri­
ately attached (NC) sensor switch. The function of the optocoupler is to iso­
late the hardwire from the FPC to avoid problems of electrical noise caused by
the long wire that is connected to the sensor.

After the 12 s delay, the FPC will be waiting for the testable input TO to go
to a logic low (see line 17 of Table 6.1). Let's suppose that someone attempts
to open the door of the protected premises (or move a protected car, if that is
where the alarm is installed). The normally closed sensor (S2) would now
cause a logic low at the output of the optocoupler H11L1GE. This logic low
causes the program to jump to line 18, enabling the speech processor to issue
the message, "You have ten seconds."

Because the standby (/SBY) output is normally at a logic high, the instruc­
tions "call pl(read)" located in lines 18 to 37 test the standby output of

6.1 Artificial Voice Burglar Alarm 2 8 5

SP0256-AL2 by default. This set of instructions contain the allophones that
have to be issued. Subroutine "read" sends the data byte zero to make the
SP0256-AL2 start speaking the programmed allophone (see line 49). The in­
struction "if (not sby) then goto pl (sty6)" is used to make the FPC wait for
the SP0256-AL2 to finish speaking each allophone.

When the FPC has completed sending sequentially the allophones for the
message "You have ten seconds," the FPC continues with the program in line
38 (see Table 6.1). Lines 38 to 40 contain the instructions to generate a 12 s
delay. This delay is made by using the largest pause " p a 5 " available in the
speech processor. Pause " p a 5 " makes the speech processor generate a 200 ms
silence. In this form, the instruction "load pl(59)" in line 38 loads the CREG
counter of the FPC with the constant 59 to generate the pause " p a 5 " 60 times;
that is, a 12 s delay. The instruction "while (creg < > 0) loop to pl(stay)" is
responsible for decrementing and testing CREG against zero until the 60 loops
have taken place.

After the 12 s delay, the program activates the siren for 100 s, as can be
seen in lines 41 to 47 of Table 6.1. This long delay is generated by loading the

12 seconds de lay

F i g u r e 6.2 Flowchart for developing the microcode program for the burglar alarm
with artificial voice.

2 8 6 6. Speech-Synthesized Burglar Alarms

T A B L E 6.1
Software Program for the Speech Synthesized Burglar Alarm

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
sby = tl
sensor = t o

"output control bits"
"speech data = 59 allophones plus five pauses"

pa2 = 01#h pa3 = 02#h pa4 = 03#h pa5 -= 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = 08#h PP = 09#h jh - OA#h nnl = OB#h ih = OC#h
tt2 = OD#h rrl = OE#h ax = OF#h mm 10#h ttl = ll#h dhl = 12#h
iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = lA#h hhl = lB#h bbl = lC#h th = lD#h uh
= lE#h uw2 = lF#h aw = 20#h dd2 = 21#h gg3 = 22#h vv
= 23#h ggl = 24#h
sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
Z Z = 2B#h ng = 2C#h 11 = 2D#h W W = 2E#h xr = 2F#h wh = 30#h
yyi = 31#h ch = 32#h erl = 33#h er2 = 34#h ow = 35#h dh2 = 36#h
ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h yr = 3C#h
gg2 = 3D#h el = 3E#h bb2 = 3F#h aid = 100#h
siren = 200#h "P9"
ledl = 400#h; "P10"

TEST-CONDITION = SBY;
DEFAULT_OUTPUT = 0000#h;

BEGIN
"check for open loops"
"l"start: ,if (not sensor) then goto pl(rick);
"2" ch+ledl, call pl(read);"CHECK SENSORS..."
"3" eh+ledl, call pl(read) ;
"4" kkl+ledl, call pl(read);
"5" pa5+ledl, call pl(read);
"6" ss+ledl, call pl(read) ;
"7" eh+ledl, call pl(read) ;
"8" nnl+ledl, call pl(read) ;
"9" ss+ledl, call pl(read) ;
"10" or+ledl, call pl(read);
"11" ss+ledl, call pl(read);
"12" pa5+ledl, call pl(read);
"13" ledl, goto pl(start) ;
"14"rick: ,load pl(59); "12 sec delay to leave"
"15"stayl:pa5, call pl(read); "the house or car"
"16" ,while (creg <> 0) loop to pl(stayl);
"wait for input sensor SI to go low"
"17"waitl: ,if (sensor) then goto pl(waitl);
"18" yyl, call pl(read);"YOU HAVE TEN SECONDS"
"19" ih, call pl(read);
"20" uh, call pl(read) ;

6.1 Artificial Voice Burglar Alarm

"21" pa5, call pl(read) ;
"22" hh2, call pl(read);
"23" ae, call pl(read) ;
"24" w , call pl (read) ;
"25" pa5, call pl(read) ;
"26" tt2, call pl(read) ;
"27" eh, call pl(read);
"28" eh, call pl(read);
"29" nnl, call pl(read);
"30" pa5, call pl(read) ;
"31" ss, call pl(read) ;
"32" ss, call pl(read) ;
"33" eh, call pl(read);
"34" kk3, call pl(read);
"35" nnl, call pl(read);
"36" zz, call pl(read);
"37" pa5, call pl(read);

"38" ,load pl (59); "12 sec delay to turn alarm off"
"39" stay:pa5, call pl(read); "pa5 = 200 mS"
"40" ,while (creg <> 0) loop to pl(stay);

" Routine to activate the siren for 100 seconds

"41" siren, load pl(9);
"42"time: siren, push (CREG); "Push 9#d to TOS"
"43" siren, load pl(49); "Delay = 200ms X 50 = 10 sec.
"44"stay2:siren+pa5, call pl(read2) ;
"45" siren, while (creg <> 0) loop to pl(stay2);
"46" siren, if (sby) then pop to(CREG);
"47" siren, while (creg <> 0) loop to pl(time);
"48" ,goto pl(start);

"subroutine READ"
"49"read: ,continue; "allows sby to go low in 300 ns"
"50"sty6: ,if (not sby) then goto pl(sty6); "reading SBY"
"51" ,ret;

"subroutine READ2"
"52"read2: siren, continue; "allows sby to go low in 300 ns"
"53"stay3: siren, if (not sby) then goto pl(stay3); "reading
SBY"
"54" siren, ret;

.org 127#d
"55" ,goto pl(start);
END.

2 8 8 6. Speech-Synthesized Burglar Alarms

stack with the constant 9. This is achieved with the instructions "load pl(9)"
and "push (creg)," respectively. Instructions in lines 43 to 45 are used to
make the speech processor generate 50 times the pause "pa5" ; that is, a 10 s
delay; for instance, a total delay of 100 s is obtained. While the 100 s delay is
being performed, the output control bit (P9) assigned "siren," located in the
left side of the instructions in lines 41 to 47, is utilized to activate the siren.
The optocoupler 74OL6000 from Microchip is used to isolate the 5 V power
supply from the 12 V line that is used to activate the siren. Transistor TIP120
is the power-switching device that drives the siren which normally consumes
about 0.5 A at 12 Vdc.

Line 48 contains the instruction "goto pl(start)" in order to make the FPC
jump to the instruction with the label "start" located in line one of Table 6.1.
In this form, the FPC is ready to start the process again by monitoring the
normally closed input sensor SI.

In this project, the FPC is clocked by a 1 kHz logic oscillator; that is, each
instruction is performed in 1 ms. You can augment the 1 kHz frequency up
to 30 MHz without altering the functions or delays of the alarm. That is pos­
sible because all the delays are generated by means of the speech processor
SP0256-AL2.

By making use of the unused testable inputs from T2 to T5, the alarm pre­
sented here can be easily configured to also detect normally open (NO) sen­
sors. In addition, you can activate more output devices by using the available
outputs P9 to Ρ15 of the FPC Am29CPL152 by using the appropriate interface
circuitry.

Table 6.2 shows the PROM bit pattern generated by the assembler
ASM14X. As you can see, outputs P0 to P7 are dedicated exclusively to store
the speech data that the SP0256-AL2 requires to produce the messages. Out­
put P9 in Table 6.2 contains a logic 1 in lines 40 to 46 to activate the siren.
You can check this by looking at lines 41 to 47 in the program shown in Table
6.1. The same situation occurs to activate the LED that is connected to output
Ρ10 in Figure 6.1.

T A B L E 6.2

P R O M Bit Contents for the FPC Am29CPL152

PROM Contents:
hex <dec> OE OPCODE POL TEST DATA OUTPUT
000 < 0> [ι : 11001 1 i 0000 0001101 0000000000000000
001 < 1> f 1 ! 11100 0 ! 0001 0110000 0000010000110010
002 < 2> f ι : 11100 ο : 0001 0110000 0000010000000111
003 < 3> f 1 ! 11100 ο : 0001 0110000 0000010000101010
004 < 4> [ι ι 11100 0 ! 0001 0110000 0000010000000100

6.1 Artificial Voi •ice Burglar Alarm 2 8 9

005 < 5> f 1 11100 0 0001 0110000 0000010000110111
006 < 6> f 1 11100 0 0001 0110000 0000010000000111
007 < 7> [1 11100 0 0001 0110000 0000010000001011
008 < 8> [1 11100 0 0001 0110000 0000010000110111
009 < 9> f 1 11100 0 0001 0110000 0000010000111010
00A < 10> [1 11100 0 0001 0110000 0000010000110111
OOB < 11> f 1 11100 0 0001 0110000 0000010000000100
OOC < 12> f 1 11001 0 0001 0000000 0000010000000000
OOD < 13> [1 00100 0 0001 0111011 0000000000000000
OOE < 14> [1 11100 0 0001 0110000 0000000000000100
OOF < 15> [1 01000 1 0111 0001110 0000000000000000
010 < 16> f 1 11001 0 0000 0010000 0000000000000000
Oil < 17> [1 11100 0 0001 0110000 0000000000110001
012 < 18> f 1 11100 0 0001 0110000 0000000000001100
013 < 19> f 1 11100 0 0001 0110000 0000000000011110
014 < 20> [1 11100 0 0001 0110000 0000000000000100
015 < 21> [1 11100 0 0001 0110000 0000000000111001
016 < 22> f 1 11100 0 0001 0110000 0000000000011010
017 < 23> f 1 11100 0 0001 0110000 0000000000100011
018 < 24> [1 11100 0 0001 0110000 0000000000000100
019 < 25> f 1 11100 0 0001 0110000 0000000000001101
01A < 26> f 1 11100 0 0001 0110000 0000000000000111
01B < 27> [1 11100 0 0001 0110000 0000000000000111
01C < 28> f 1 11100 0 0001 0110000 0000000000001011
01D < 29> [1 11100 0 0001 0110000 0000000000000100
01E < 30> f 1 11100 0 0001 0110000 0000000000110111
OIF < 31> f 1 11100 0 0001 0110000 0000000000110111
020 < 32> Γ 1 11100 0 0001 0110000 0000000000000111
021 < 33> f 1 11100 0 0001 0110000 0000000000001000
022 < 34> [1 11100 0 0001 0110000 0000000000001011
023 < 35> f 1 11100 0 0001 0110000 0000000000101011
024 < 36> [1 11100 0 0001 0110000 0000000000000100
025 < 37> [1 00100 0 0001 0111011 0000000000000000
026 < 38> [1 11100 0 0001 0110000 0000000000000100
027 < 39> f 1 01000 1 0111 0100110 0000000000000000
028 < 40> [1 00100 0 0001 0001001 0000001000000000
029 < 41> [1 00101 0 0001 1111111 0000001000000000
02A < 42> [1 00100 0 0001 0110001 0000001000000000
02B < 43> [1 11100 0 0001 0110011 0000001000000100
02C < 44> [1 01000 1 0111 0101011 0000001000000000
02D < 45> [1 10111 0 0001 1111111 0000001000000000
02E < 46> [1 01000 1 0111 0101001 0000001000000000
02F < 47> f 1 11001 0 0001 0000000 0000000000000000
030 < 48> [1 01101 1 1111 1111111 0000000000000000
031 < 49> [1 11001 1 0001 0110001 0000000000000000
032 < 50> [1 00010 0 0001 1111111 0000000000000000
033 < 51> [1 01101 1 1111 1111111 0000001000000000
034 < 52> [1 11001 1 0001 0110100 0000001000000000
035 < 53> f 1 00010 0 0001 1111111 0000001000000000
07F <127> f 1 11001 0 0001 0000000 0000000000000000

2 9 0 6. Speech-Synthesized Burglar Alarms

6.2 Designing a Simple Fault-Tolerant
Burglar Alarm

When a burglar alarm is going to be used to protect expensive equipment,
jewelry, premises, and so on, the probability of failure must be reduced to a
minimum. One of the most annoying features of intrusion alarms is that they
can be tripped by things other than an intrusion, such as failure of a compo­
nent or an integrated circuit. The result is false alarms that are annoying and
sometimes even dangerous. Because it is impossible to have components
which are totally reliable, redundancy techniques must be employed to increase
the probability of system survival or life of the system during the time t.

By using the burglar alarm circuitry of Figure 6.1 in triplicated form at the
subsystem level in order to keep components to a minimum, a high reliability
burglar alarm can be achieved (see Figure 6.3). The correction logic is made
with four majority logic voters VI, V2, V3, and V4 configured for three in­
puts. The voters realize the function v(xyz) = xy + y ζ + xz by using a PAL
programmed to contain a maximum of three voters per chip. The PAL selected
for this function is the PAL16L4. The architecture and program to realize this
voter were taken from Table 5.11. The scheme for the fault-tolerant burglar
alarm is presented in Figure 6.3. Input errors and faults presented in each
voter will be corrected; any single fault of each triplicated module is permit­
ted. For example, if any one of the three normally closed (NC) sensors (SI to
S3) fails to open, voter VI will mask the fault. The voter will respond only
when any two or more sensors are triggered; that is, only when two or more
Nand gates contained in the three optocouplers are presenting a logic zero at
its outputs. Consider the case when a Nand gate contained in the optocoupler
H11L1GE on the top is stuck at zero; such a fault is masked by voter VI to
avoid a failure in the system. In this case, the voter VI will be waiting for
sensors S2 and/or S3 to be triggered to generate a logic low at the respective
output of the other two optocouplers.

Figure 6.3 also shows a TMR clock used for clocking the FPC
Am29CPL152. The TMR clock uses three Schmitt-trigger Nand gates sharing
the same RC network to build a 1 kHz logic oscillator. The output frequency
obtained at the output of voter V2 is routed to a second set of three Nand gates
that function as buffers. The output of this second set of Nand gates is voted
by V3 and then connected to the clock input of the FPC Am29CPL152.

The FPC Am29CPL152 is used to monitor the logical status of voter VI. If
voter VI presents a positive transient pulse at its output, the FPC proceeds to
execute the routine presented in Table 6.1. A small change has been included
in the schematic of Figure 6.3 where the outputs for actuating the siren are
now triplicated. Now, outputs P8, P9, and Ρ10 are used to activate separately
an optocoupler 74OL6000. These optocouplers already contain the constant
current source required for driving the internal LED. The output of these op-

6.2 Simple Fault-Tolerant Burglar Alarm 2 9 1

(IK

ι J γ'

1 V"Î6K

F i g u r e 6.3 Fault-tolerant burglar alarm interfaced to speech processor
SP0256-AL2.

tocouplers is voted by V4 before reaching the set of four transistors TIP 120.
The four transistors TIP120 are configured in series-parallel to withstand a
short or open transistor in this network. The four-transistor network also toler­
ates the following types of faults:

Double shorts: Ql Q2, Q3 Q4
Double opens: Q2 Q4, Q2 Q3, Ql Q4, Ql Q3

2 9 2 6. Speech-Synthesized Burglar Alarms

In this form the burglar alarm also tolerates any single fault in each power
transistor (Ql to Q4) to avoid sounding the siren for a simple bad transistor as
happens in nonfault-tolerant burglar alarms.

6.3 Designing α Vocal Warning Alarm
Using CMOS MSI Chips

By using readily available components, you can build a burglar alarm employ­
ing traditional design techniques with CMOS MSI chips. By programming the
appropriate data into an EPROM memory, you can make your alarm vocalize
the message you want. The circuit presented here is based on the principle
used in Section 2.9 of the book that makes the speech processor speak a se­
quence of numbers that are stored in an EPROM memory.

The burglar alarm presented in Figure 6.4 is programmed to announce two
different messages, each depending on the condition of the alarm. The timing
section of the alarm is made around two Nand gates (1/2 4093) and two timers
(Tl and T2) configured as monostables.

Action begins when switch S2 in Figure 6.4 is set to the ARM position.
Closing this switch turns on dc power to all circuits and causes power-light
emitting diode LED1 to turn on. Once power has been applied to the circuit,
capacitor CI begins to charge exponentially at a rate determined by the
formula

Tl = R1C1 In [Vdd/(Vdd - Vt+)

substituting Vdd = 5 V, and Vt+ = 3.3 V, we get

Tl = 1.08 R1C1

From this formula, it would take approximately 50 s to reach a threshold
level of 3.3 V with the component values specified. When the threshold level
is reached, the output at pin 4 of N2 goes high and enables the reset at pin 4 of
timers Tl and T2. Consequently, you have approximately 30 s to vacate your
premises or vehicle before the alarm sounds.

When the alarm is armed and in standby mode, if any attempt is made to
gain entry by opening a door or window (or move your protected vehicle), it
will cause timer Tl to trigger. When this occurs, timer Tl triggers on and its
output at pin 3 signals Tl to turn on for almost 11 s (given by T2 = 1.1
R2C2). The Tl period is the time you have to disarm the alarm before the
siren sounds. During the 11 s period in which the timer is on, the speech pro­
cessor will be vocalizing the countdown, starting at "nine . . ." and counting
down to . . zero." If the alarm has not been disabled before the count
reaches zero, the output of timer T2 will turn on transistor Ql via optocoupler
4N32 for a period of approximately 220 s (given by T3 = 1.1 R3C3). This is
how long the siren will sound before the alarm shuts off and resets itself.
When monostable timer T2 shuts off, it goes into standby until the next pulse

6.3 A Vocal Warning Alarm 2 9 3

— I 1 ΓΡ3

27K< 27R 1Μ< _ J — + 1 2 V

IK f\

F i g u r e 6.4 Schematic diagram of the speech-synthesized burglar alarm.

(generated again by an intrusion). Note in Figure 6.4 that the siren section of
the circuit is supplied from a 12 V dc source. The latter is obtained from the
+12 V line by passing it through voltage regulator 7812.

In this circuit, we will program the speech processor SP0256-AL2 to vo­
calize two different messages. To do this, we will use the EPROM 27C16.
Nand gate N3 operates as a logic oscillator. The output of this oscillator is fed
to the clock input of dual binary counter CD4520. For each pulse detected at
clock input of CD4520, count up from 0 to η occurs where η is controlled by

2 9 4 6, Speech-Synthesized Burglar Alarms

the output 06 of EPROM 27C16, which resets counter CD4520 every time the
speech processing chip's output at pin 24 ceases sending its message to be
vocalized to the audio-amplifying section of the circuit (not shown). Chapter 2
shows the schematic for the audio amplifier that is currently used by the
SP0256-AL2.

In this project, we use addresses 128 through 172 (80H to ACH) in EPROM
27C16 to store the data for the first message to be vocalized and addresses 256
through 306 to store the data for the second message to be vocalized. By con­
necting seven address outputs of counter CD4520 to the binary address inputs
of EPROM 27C16 as shown, the desired sequential data programmed into the
EPROM can be sent via the output lines (O0 to 05) to the address inputs of
speech processor SP0256-AL2.

Table 6.3 is an example of the data program that can be fed into the
EPROM to make the speech processor vocalize the first message. Most of the
words used in this data program were taken from the technical dictionary pre­
sented in Chapter 2, Section 3. The addresses were calculated according to the

T A B L E 6.3
E P R O M Program for First Message

Hex Hex Hex Hex
address data address data

80 4 96 2
81 31 97 37
82 IF 98 3
83 2 99 D
84 39 9A 16
85 7 9B 3
86 23 9C 3E
87 3 9D 13
88 ID 9E 23
89 34 9F 4
8A 2 AO 4
8B D Al 4
8C 13 A2 9
8D 2 A3 2D
8E 3 A4 13
8F 37 A5 37
90 37 A6 2
91 7 A7 IB
92 2 A8 18
93 2A A9 3B
94 c AA 13
95 Β AB 4

Continued AC 40

6.3 A Vocal Warning Alarm 2 9 5

T A B L E 6.4
E P R O M Program for Second Message

Hex Hex Hex Hex
address data address data

100 38 119 28
101 18 11A 6
102 6 11B 23
103 Β 11C 3
104 2 11D 28
105 14 H E 28
106 2 11F 3A
107 D 120 3
108 2 121 10
109 37 122 Ε
10A 37 123 13
10B 7 124 4
IOC 7 125 D
10D 23 126 D
10E c 127 4
10F Β 128 39
110 2 129 F
111 37 12A F
112 37 12B Β
113 c 12C 4
114 2 12D 2B
115 29 12E 3C
116 37 12F 35
117 3 130 4
118 28 131 2

Continued 132 40

binary weight of the two lines A7 and A8 address inputs of the EPROM
27C16. For example, when pin 1 of EPROM 27C16 is at a logic one, the bi­
nary address is 128. The first message is programmed so that it is stored
in address locations 128 through 201 (see Table 6.3) where the numbers 1
through 4 and 40 reset the speech processing chip and the binary counter, re­
spectively. If address input A8 of EPROM 27C16 is at a logic one, the second
message can be heard starting at address 256 (see Table 6.4).

When the alarm circuit is first turned on, the R4C4 network sends a posi­
tive transient pulse that sets high output Ql of flip-flop FF1. Because this high
is fed to an OR gate configuration made up of two diodes 1N914 (Dl and D2),
the output of these OR-wired diodes enables Nand gate N3 to send the pulse
that appears to the /ALD input of the speech processor and to the clock input
of counter CD4520.

Since the Q output of flip-flop FF1 is at a logic one, the same high logic

2 9 6 6. Speech-Synthesize d Burgla r Alarm s

level i s delivere d t o addres s inpu t A 7 a t pi n 1 o f EPRO M 27C16 ; therefore ,
the EPRO M send s th e dat a store d i n i t startin g a t addres s 12 8 o f EPROM . A t
this point , yo u wil l hea r th e message : "Yo u hav e thirt y second s t o leave .
Please hurry. " Whe n thi s messag e ends , th e EPRO M send s a logi c on e vi a it s
output 0 6 t o th e rese t input s R l an d R 2 o f bot h flip-flop s (FF 1 an d FF2) an d
causes a logi c zer o t o appea r a t th e Q outputs .

Now le t u s suppos e tha t someon e attempt s t o ope n th e doo r o f th e protecte d
area. Th e normall y close d (NC) senso r S I woul d no w trigge r time r T l b y
causing a logi c zer o a t th e outpu t o f th e logi c optocouple r H11L1GE , whic h
generates a negativ e transien t puls e a t th e trigge r inpu t o f time r T l . Time r T l
then sends , throug h th e R3C 3 network , a positiv e transien t puls e t o th e pi n 8
set inpu t o f th e secon d flip-flo p (FF2) . Thi s cause s th e outpu t Q 2 o f FF 2 t o g o
to logi c one , enablin g th e Nan d gat e N3 . Becaus e th e standb y outpu t i s nor ­
mally a t logi c one , th e outpu t o f Nan d gat e N 3 wil l g o t o a logi c zer o t o mak e
the speec h processo r announc e th e first allophone . Whe n th e speec h processo r
is speakin g th e first allophone , th e standb y (/SBY) outpu t goe s t o a logi c zero ,
causing a logi c on e a t th e Nan d gate' s output . Whe n thi s happens , counte r
CD4520 i s incremente d b y on e t o addres s th e nex t sequentia l allophon e tha t
the EPRO M load s int o th e speec h processor . Whe n th e speec h processo r end s
saying th e first allophone , th e standb y outpu t goe s bac k t o a logi c on e an d
causes th e /AL D inpu t t o g o lo w again ; therefore , th e speec h processo r start s
speaking th e allophon e previousl y loade d b y th e EPRO M 27C16 , startin g a t
address 256 . Hence , yo u wil l no w hea r th e secon d message : "Nine , eight ,
seven, six , five, four , three , two , one , zero. "

From th e tim e thi s secon d messag e starts , yo u hav e 1 0 s t o disar m th e alar m
by settin g S 2 t o DISARM ; otherwise , th e sire n wil l sound . Notic e tha t th e
siren i s drive n b y a powe r pair-Darlingto n transisto r TI P 120 . Th e optocouple r
4N32 i s use d t o isolat e th e sire n circui t fro m th e timin g sectio n t o preven t
feedback nois e t o trigge r timer s T l an d T2 .

As ca n b e see n i n Figur e 6.4 , thi s projec t ca n accommodat e normall y
closed sensor s (NC) only . T o instal l normall y ope n sensors , us e th e inpu t net ­
work show n i n Figur e 6.5 .

ûp e n

of t ime r T 1

F i g u r e 6. 5 Networ k fo r normall y ope n sensors .

6.4 Microcontroller-Operated Burglar Alarm 2 9 7

6.4 Designing a Microcontroller-
Operated Burglar Alarm

In this section we will be headed to the development of a burglar alarm using
the microcontroller (μ (ϋ) 8748. We will design the routine that is necessary to
control one of the most commonly used speech processors, the SP0256-AL2
from Microchip.

Figure 6.6 shows the μC 8748 interfaced to SP0256-AL2 to provide full
control of the input and output lines of the speech processor. Table 6.5 pre­
sents the software program and the operative code required to program the
self-contained microcontroller's EPROM. The testable input Tl of the μΟ
8748 will be used to monitor the external switch used for detecting normally
closed (NC) sensors.

S 2 (DPDT)
DISARM

5V

2 0 p F

£ 2 0

• bV +bV

• 12V

H11L1GE_

ÎJ51
norma I ! y
c losed
sensor

F i g u r e 6.6 Microcontroller-operated burglar alarm interfaced to the allophone-
based speech processor SP0256-AL2.

2 9 8 6. Speech-Synthesized Burglar Alarms

T A B L E 6.5
Software Program for the Microcontroller 8748

Add Op Code Mnemonic Comments

Software program for the vocal
warning burglar alarm.

OOH 99 00 ANL Pl, #00H clear port 1
02 9A 00 ANL P2, #00H clear port 2
04 46 12 STRT: JNT1 MSI jump to address MSI if Tl is low
06 BC 2B MOV R4, #2BH 44 allophones are contained in 2nd

message.
08 BD 10 MOV R5, #10H Pointer for ROM in page 3.
OA 14 35 CALL MSG
OC 14 27 CALL DELAY

OD 56 0D NC JT1 ODH wait for Tl to go low
OF BC 30 MOV R4, #3OH load Reg 4 with # of allophones for

message "Nine, eight,.... zero."
11 BD 3D MOV R5, #3DH Pointer for ROM in page 3
13 14 35 CALL MSG
15 8A 01 ORL P2, #01H Siren is activated for 60 seconds.
17 14 27 CALL DELAY
19 14 27 CALL DELAY
IB 9A 00 ANL P2, #00H
ID 04 0D JMP NC

IF BC 30 MSI:MOV R4, #0EH load reg R4 with # of allophones
for 21 BD 00 MOV R5, #00H ; message "Check sensors"
23 14 35 CALL MSG
25 04 04 JMP STRT

27 B8 5C DELAY:MOV RO, #5CH 30 second delay
29 B9 FF T4: MOV Rl, #FFH
2B BA FF T3:MOV R2, #FFH
2D EA 2D T2:DJNZ R2, T2
2F E9 2B DJNZ Rl, T3
31 E8 29 DJNZ RO, T4
34 83 RET

35 FD MSG MOV A, R5 Subroutine for sending alloph.
37 E3 MOV P3 A, <&A move page 3 of ROM to ACC
39 39 OUTL Pl, A load speech data to port 1
3B 90 MOVX («R0, A /WR output is pulsed low
3C 26 3C JNTO 3CH read the SBY status of the SP
3E ID INC R5 inc reg 5 to select new
3F 00 NOP allophone
40 EC 35 DJNZ R4, 35H decrement the number of allophones
42 83 RET

6.4 Microcontroller-Operated Burglar Alarm 2 9 9

300 04
301 32
302 7
303 7
304 2
305 29
306 3
307 37
308 37
309 7
30A 7
30B Β
30C 37
30D 3A
30E 37
30F 4
310 4
311 31
312 IF
313 2
314 39
315 7
316 23
317 3
318 ID
319 34
31A 2
31B D
31C 13
31D 2
31F 3
320 37
321 37
322 7
323 2
324 2A
325 C
326 Β
327 2
328 37
329 3
32A D
32B 16
32C 3
32D 3E
32E 13
32F 23
330 4
331 4

Page 3 of ROM
1st message: "Check sensors'!*

2nd message: "You have thirty
seconds to leave, please hurry"

3 0 0 6. Speech-Synthesized Burglar Alarms

332
333
334
335
336
337
338
339
33A
33B
33C
33D
33E
33F
340
341
342
343
344
345
346
347
348
349
34A
34B
34C
34D
34E
34F
350
351
352
353
354
355
356
357
358
359
35A
35B
35C
35D
35E
35F
360
361
362
363
364

4
9

2D
13
37
2

IB
18
3B
13
4

38
18
6
Β
2

14
2
D
2

37
37
7
7

23
C
D
2

37
37
C
2

29
37
3

28
28
6

23
3

28
28
3A
3

10
Ε
13
4
D
D
4

3rd message: "Nine, eight, seven,"
six, five, four, three, two, one,
zero. "

6.4 Microcontroller-Operated Burglar Alarm 3 0 1

365 39
366 F
367 F
368 Β
369 4
36A 2B
36B 3C
36C 35
36D 4

When the user sets the DPDT switch (S2) to the ARM position, the dc
voltage will be present in the entire system. For instance, the μC 8748 will
automatically initiate executing the control program.

At this point, we want the ^tC program to drive the speech processor by
sending a preprogrammed group of allophones. In this case, we will program
it to speak three messages:

1. "Please check sensors"
2. "You have thirty seconds to leave. Please hurry"
3. "Nine, eight, seven, six, five, four, three, two, one, zero"

The speech data will be programmed in page three of the ^tC's internal
EPROM. We know that page three consists of 256 bytes available for speech
data programmed by the user. In this manner, a maximum of 256 allophones
can be stored for any other set of specific messages. In this case, the three
messages spend a total of 109 bytes.

The following routine corresponds to the flowchart shown in Figure 6.7. It
is a good example of how the μC 8748 is instructed to make the speech pro­
cessor speak four-word numbers. In Figure 6.7, the first upper box clears out­
put ports Pl and P2 of the μΟ 8748. The flowchart then starts asking for the
logic status of the input sensor that is connected to testable input Tl (see Fig­
ure 6.7). If the sensor is well adjusted in normally closed position, the testable
input Tl is held at a logic one. On the other hand, if Tl is low, the program
jumps to label " M S I " to make the speech processor announce the message,
"check sensors." If the program finds that the input sensor is normally closed,
it will load registers R4 and R5 with the number of allophones and the loca­
tion of the second message, respectively. With registers R4 and R5 loaded,
the program calls out the routine that contains the second message, "You have
thirty seconds to leave. Please hurry." Once the second message has been
enunciated, the flowchart calls the routine "DELAY" to generate a 30 s delay
to give the user time to leave and close the door where the sensor is attached.
After the 30 s delay, the program keeps monitoring the logic status of the nor­
mally closed sensor via the testable input T l . Now, when someone attempting

3 0 2 6. Speech-Synthesized Burglar Alarms

R4 = 2BH
R5 = 10H

"You have t hr r t γ seconds to l eave , p lease h u r ry "

30 seconds de lay

À
R4 = 30H
R5 = 3DH

Φ
Nine, e i g h t . . o n e , z e r o . "

P2 = 01H

i-

j 60 Sec de lay

, L—
, P2 = OOH

U . l<
F i g u r e 6.7 Flowchart utilized to develop the routine that controls the micro­
controller-operated burglar alarm.
to break in opens the (NC) sensor momentarily, the routine immediately loads
registers R4 and R5 to start generating the third message, "Zero, nine, eight,
seven, six, five, four, three, two, one, zero." The countdown sequence is to
alert the user that he has 10 s to deactivate the alarm by turning off the hidden
DPDT switch S2. When this message ends, the siren is activated via the out­
put P2.0 for a period of 60 s. The 60 s period is achieved by calling two times
the "DELAY" subroutine.

When the siren is turned off after the 60 s period, the program jumps back
again to keep monitoring the input sensor. In this form, the alarm is ready to
be triggered again in case someone attempts to break in. If your application
requires several (NC) sensors, just connect them in series forming a loop. You
can also monitor several (NC) loops by using the input pins available in port
P2 and BUS. In this manner, you can program the alarm to announce the loop

6.5 Alarm to Monitor Entrance Devices 3 0 3

that has been broken to alert the owner of an unauthorized entrance. The latter
type of alarm is discussed in the following section.

6.5 Designing an Alarm to Monitor
Entrance Devices Independently

The burglar alarm to be described is adapted from the project presented in the
first section of this chapter where an FPC handles all the functions of monitor­
ing and driving the speech processor SP0256-AL2. With a few modifications
to the software program, we will now design a burglar alarm that indicates the
sensor that has been broken by an intrusion. In this manner, the owner of the
house where the alarm is installed will be able to hear warning messages of
which sensor was altered by someone attempting to break in.

Figure 6.8 shows the schematic for this type of burglar alarm. In this case,
we will designate the normally closed (NC) sensor SI as the sensor that has to

norma I i y
c losed
sensor

SA
DISARM

+5V

To LPF and
audio

- amplifier

22pF

22pF

100K f 5 V

—Vv~?
MN914A

10K
T ^ D J uF S i r e n ^ " - - ^

F i g u r e 6.8 Burglar alarm that monitors entrances independently.

3 0 4 6. Speech-Synthesized Burglar Alarms

be installed in the front door. (NC) sensor S2 will be installed in the back
door. Depending on what sensor is triggered, the alarm will enunciate two
messages:

1. "Front door sensor activated."
2. " Β ack door sensor activated. ' '

When the alarm is first turned on by setting the switch SA to the ARM
position, it will check for open sensors first. If sensor SI is found to be open,
the alarm will issue the message, "Check front door sensor." Accordingly,
the message "Check back door sensor" will be announced when sensor S2 is
open.

If both sensors SI and S2 (designated as SENS1 and SENS2 in Table 6.6)
are in normal position, the alarm will keep monitoring the status of both sen­
sors. If sensors SI or S2 are opened momentarily by an intrusion, a logic low
will be detected at the testable inputs TO or Τ1 of the FPC Am29CPL152. The
program of the FPC then detects which sensors were opened and starts an­
nouncing via the speech processor the corresponding message: "Front door
sensor activated" or "Back door sensor activated." When this message ends,
the alarm gives a 12 s delay to allow the owner to disarm the alarm by turning

T A B L E 6.6
Software Program for the Speech Synthesized Burglar Alarm

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
sby = t6
sensl = t o
sens2 = tl

"output control bits"
"speech data = 59 allophones plus five pauses"

pa2 = 01#h pa3 = 02#h pa4 03#h pa5 = 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = 08#h PP = 09#h jh = 0A#h nnl = 0B#h ih = 0C#h
tt2 = 0D#h rrl = 0E#h ax = 0F#h mm = 10#h ttl = ll#h dhl = 12#h
iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = lA#h hhl = lB#h bbl = lC#h th = lD#h uh
= lE#h uw2 = lF#h aw = 20#h dd2 = 21#h gg3 = 22#h vv
= 23#h ggl = 24#h
sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h W W = 2E#h xr = 2F#h wh = 30#h
yyl = 31#h ch = 32#h erl 33#h er2 = 34#h O W = 35#h dh2 = 36#h
ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h yr = 3C#h
gg2 = 3D#h el = 3E#h bb2 = 3F#h aid = 100#h
siren = 200#h;

TEST_CONDITION = SBY;
DEFAULT—OUTPUT = 0000#h;

6.5 Alarm to Monitor Entrance Devices 3 0 5

BEGIN
"check for open loops"

"l"start:
"2"
"3"
"4"
"5"

"6"rick:
"7"stayl:pa5

,cmp tm(000011#b) to pl(03#h);
,if (equal) then goto pl(sty);
,if (sensl) then call pl(front);
,if (sens2) then call pl(back);
,goto pl(start);

,load pl (59); "12 sec delay to leave the house"
call pl(read);

"8" ,while (creg <> 0) loop to pl(stayl);

"wait for input sensors SI or S2 to go low"
"9"sty: ,cmp tm(000011#b) to pl(03#h);
"10" , if (equal) then goto pl(sty);
"11" ,if (sensl) then goto pl(msga);
"12" , if (sens2) then goto pl(msgb);
"13" ,load pl (59); "12 sec delay to turn alarm off"
"14" stay:pa5, call pl(read); "pa5 = 200 mS"
"15" ,while (creg <> 0) loop to pl(stay);

" Routine to activate the siren for 100 seconds

"16" siren,
"17"time: siren,
"18" siren,
"19"stayl:siren+pa5,
"20" siren,
"21" siren,
"22" siren,
"23"

"time to keep the"
"Push 40#d to top of stack"
"Delay = 200ms X 50 = 10 sec.

load pl(9);
push (creg);
load pl(49) ;
call pl(read2) ;
while (creg <> 0) loop to pl(stayl
if (sby) then pop to(CREG);
while (creg <> 0) loop to pl(time)
, goto pl(start);

"subroutine
"24"read:
"25"sty6:
"26"

"subroutine
"27"read2:
"28"stay3:
SBY"
"29"

"30"msga:
"31"msgab:
"32"
"33"
"34"
"35"msgb:
"36"

"37" check:
"38"
"39"
"40"
"41"

,continue; "allows sby to go low in 300 ns"
,if (not sby) then goto pl(sty6); "reading SBY"
, ret;

READ2"
siren, continue; "allows sby to go low in 300 ns"
siren, if (not sby) then goto pl(stay3); "reading

siren, ret;
,call pl(front);
,call pl(door);
, call pl(sensor)
,cal1 pl(activ);
,goto pl(sty);
,call pl(back);
,goto pl(msgab);

ch, call pl(read
eh, call pl (read
kkl, call pl(read
pa5, call pl(read

, ret;

"FRONT...»
"DOOR"
"SENSOR..."
"ACTIVATED"

3 0 6 6. Speech-Synthesized Burglar Alarms

"42" sensor: ss, call pl(read);"SENSORS.."
"43" eh, call pl(read);
"44" nnl, call pl(read);
"45" ss, call pl(read);
"46" or, call pl(read);
"47" ss, call pl(read);
"48" pa5, call pl(read);
"49" ,ret;
"50" front: ff, call pl(read);"FRONT. . "
"51" rr2, call pl(read);
"52" ow, call pl(read);
"53" nnl, call pl(read);
"54" ttl, call pl(read);
"55" pa5, call pl(read);
"56" ,ret;
"57" back: bbl, call pl (read);"BACK. ."
"58" ae, call pl(read);
"59" kk2, call pl(read);
"60" pa5, call pl(read);
"61" ,ret;
"62" activated: ax, call pl(read);
"63" kk3, call pl(read);
"64" tt2, call pl(read);
"65" ih, call pl(read);
"66" w , call pl (read) ;
"67" ey, call pl(read);
"68" rr2, call pl(read);
"69" ddl, call pl(read);
"70" ,ret;
"71" door: dd2, call pl(read);"DOOR.."
"72" or, call pl(read);
"73" pa5, call pl(read);
"74" ,ret;

.org 63#d
"71" ,goto pl (start);
END.

the hidden switch SA to DISARM position. If the switch SA is not set to DIS­
ARM position, the siren will be actuated for a period of 100 s. After this long
interval, the alarm will go back to monitor the status of the sensors in the front
and back door. If these sensors are still open, it will announce the respective
message, and after a 12 s delay, it will activate the siren again. This process is
repeated until sensors SI and/or S2 are found in the closed position.

Because we are using the FPC Am29CPL152, there are five more testable
inputs (T2 to T6) available for monitoring more sensors. These available in­
puts can be used, for example, for detecting the entrance in five different win­
dows. In this case, the user can augment or modify the length of the messages

6.5 Alarm to Monitor Entrance Devices 3 0 7

that have to be announced when someone tries to break in. There is sufficient
memory space in the FPC Am29CPL152 to augment or adapt the program
to your particular application. Table 6.6 shows the entire microcode pro­
gram that controls the vocal warning burglar alarm already described in this
section.

Voice Recognition Chips

7.1 Introduction to Voice-Recognition
Techniques

Speech-recognition systems, the subject of research for more than 20 years,
are becoming more commonplace. Today, many companies offer recognition
systems that allow you to enter data or commands into a computer using the
human voice. Background noise, misunderstood words, or words the unit can­
not identify become an important factor when selecting a speech-recognition
system, for example, when the manufacturer offers only a limited number of
words that can be recognized by the system. The problems associated with
speech recognition make this technology more expensive than its counterpart
(speech synthesis) because of the engineering effort and the technology em­
ployed. Microchip and National Semiconductor offer speech recognition
chips, as do many other companies.

Speech recognition can be applied in the following areas: test stations in
factories, data entry, office automation, and as an aid to the disabled. For ex­
ample, consider the case of a voice-controlled wheelchair where the user gives
spoken commands through a headset microphone. This type of controller will
be explained in detail in Section 4 of this chapter.

Speech-recognition systems are divided into two categories: speaker de­
pendent and speaker independent. In speaker-dependent systems, the user has
to train the device so it can identify words, sounds, or phrases. On the other
hand, speaker-independent products can recognize speakers with different
pitch, accent, or both without any operator training. Speaker-independent
products have the disadvantage of handling a smaller vocabulary for recogni-

3 0 8

7.1 Voice Recognition Techniques 3 0 9

tion. Ideally, a truly general voice-recognition system would be capable of
recognizing a large vocabulary of words, independently of the speaker.

An effective speech-recognition system must be capable of ignoring the
physical factors that cause variations in the speech waveform from speaker to
speaker or even in the same person. The changes contained in a speech wave­
form are related to frequency, relative amplitude, and time duration.

Figure 7.1 shows a block diagram containing the steps commonly used in
most voice-recognition systems. A powerful microprocessor can realize the
functions contained in the block diagram, that is:

• Conversion of the voiced input analog signal into a digital form by
sampling.

• Compression or selection of relevant data for subsequent processing.
• Computation of the boundaries of the word.
• Detection of patterns within the word.
• Pattern classification.
• Association of pattern sequences with words in the vocabulary.

The input stage must be formed by a microphone preamplifier in series
with a low-pass filter used to attenuate frequencies above 8 kHz. The A/D
converter transforms the voice input to a digital representation with respect to
a period of time. The processor will now detect maximum and minimum sig­
nal peaks and stores their amplitude and the time interval between peaks. The
selected data are compressed in order to decide whether or not they constitute
a pattern in order to generate parameters based upon the type of pattern.
Finally, the host computer uses the sequence of parameters to determine
which word has been spoken. Depending on the application of the speech-
recognition system, the real system will be controlled once the spoken word
has been recognized.

The sampling rate and the desired time resolution will determine the speed
requirement and the number of bits of the A/D converter. The flash converter
technique is fast enough for sampling speech. Because a minimum sampling
rate of 6 kHz is required, the conversion time must be equal to or less than
166.7 ^ s .

Delta modulation (DM) must be used to reduce the amount of data to avoid
overloading a processor. This approach encodes the differential change in the

On-1 ι ne !
^ t o r o g e j

F i g u r e 7.1 Block diagram of a common speech-recognition system.

3 1 0 7. Voice Recognition Chips

/ / '

Clock

π
κ JLTUUL

F i g u r e 7.2 Waveform sampling by delta modulation.

signal magnitude between sampling intervals. If the differential is less than
a preset value, no data are recorded; therefore, this technique reduces the
amount of data for slowly varying signals. Because voice waveforms contain
much redundant data, long periods of silence are interspersed with sounds that
vary in pitch slowly. The DM process assumes that the input voice waveform
has a fairly uniform and predictable slope. Rather than storing 8- or 12-bit
data for each sample, a DM stores only a single bit. When the processor
samples the input signal from the A/D converter, it compares the current read­
ing to the preceding sample. If the amplitude of the new sample is greater, the
processor stores a bit value of 1. Conversely, if the new sample is less, a 0 will
be stored. Figure 7.2 shows how this works.

In practice, a DM can be implemented with an integrator having a constant
input with reversible polarity. The precision of this method depends upon the
clock rate and the magnitude of the integrated voltage. This way, the amount
of data can be reduced significantly, as low as 2 kbyte/s for speech signals.
One disadvantage of this technique is that only a single bit changes between
samples. The sampling rate must be fast enough that no significant informa­
tion is lost from the input signal.

The technique called differential pulse-code modulation (DPCM) permits
more than a single bit of difference between stored samples; therefore, it per­
mits more variation in the input waveform before severe distortion sets in.
(See Figure 7.3)

F i g u r e 7.3 Waveform sampling by differential pulse-code modulation (DPCM).

7.2 Word-Recognizer VCP200 3 1 1

Today, some of the fastest flash A/D converters have sample rates between
100 and 500 MHz.

Neural networks are particularly suited to applications in pattern recogni­
tion such as speech processing, image recognition, and robot control. A neu­
ral network can be used to detect the presence of speech in noise. Reference 2
refers to an article that presents neural networks as an alternative approach to
determine the feature sets (collections of signals attributes) that correspond to
particular speech characteristics. These feature sets are used in recognizing,
compressing, or otherwise processing speech signals.

Linear predictive coding (LPC) is an important factor for synthesizing, re­
cognizing, and coding speech. The LPC technique reduces the algorithms and
filter structures needed to generate synthesized speech. In speech recognition,
the LPC parameters contain reliable and repeatable features with which to
identify sounds and words.

For the reader interested in the techniques generally employed in speech
recognition, References 1 to 3 at the end of this chapter are an excellent
source.

7.2 The Word-Recognizer VCP200

In this section we will see the word-recognizer VCP200 that is distributed by
Radio Shack stores. The purpose is to understand its principle and modes of
operation in order to interface it to different control systems.

The VCP200 is a speaker-independent IC that recognizes a limited number
of words spoken by an operator. It recognizes the spoken words by breaking
them into broad phoneme classes and then identifying predetermined strings
of these classes. The VCP200 realizes the following functions:

• Performs spectral analysis of the incoming voice signal over the range of
300 to 5500 Hz.

• Determines the membership of phoneme classes by evaluation on spec­
tral shape.

• Forms strings of these classes.
• Compares the strings to the stored strings of selected words.

The VCP200 recognizes the selected spoken commands in real time.
There are two recognition modes for the VCP200: command mode and

yes-no/on-off mode. In the command mode, it recognizes five words:

1. Go
2. Stop
3. Left turn
4. Turn right
5. Reverse

3 1 2 7. Voice Recognition Chips

In the yes-no/on-off mode it recognizes two words:

1.
2.

Yes
No

or

1.
2.

On
Off

Figure 7.4 shows the pin configuration of the VCP200. When a spoken
word is recognized by the VCP200, the respective output for that word pro­
vides a latched logic low. In the yes-no/on-off mode, pin 10 of the VCP200
(REVERSE/NOT SURE) indicates when a word has not been recognized.

Figure 7.5 shows the typical circuit used for interfacing a microphone to
the VCP200. The audio amplifier is designed to deliver extremely square-
wave pulses representing the analog voice input of the microphone. The gain
and frequency characteristics of the amplifier can be adjusted according to the
following situation:

1. If the ambient noise level is low, augment the gain of the amplifier
by selecting the following resistor values: Rf = 30K, Rb = 10K,
Rc = 10K.

2. If background noise such as caused by fans, motors, or air conditioning
is present, adjust the input amplifier's gain, so that the output signal at
the second amplifier does not exceed 1 V peak-to-peak with no speech
input.

The performance of the microphone depends on its location relative to the
person speaking. Notice that high-frequency loss above 4 kHz occurs when
the distance of the microphone to the operator increases. To avoid high-fre­
quency loss, a headset microphone is recommended. The VCP200 is designed
to ignore some words not contained in its vocabulary by discriminating among

Ground — 1
Vcc — 2
vcc '3

Xtcf — 4
Extol ^ 5

2 0 —
19—
1 8 —
1 7 —
1 6 —
1 5 —
14—
1 3 —
12—
11 —

RESET
Yes-No, On-Off Mode
Ground
Vcc
Vcc
N,C Ground — 6
LEFT TURN Audio In 7

TURN RiQHT/YES-QFF — 9
REVERSE/NOT SURE —11<

G0/NQ-0N — 8 N.C.
STOP

10

F i g u r e 7.4 Pin configuration of the word-recognizer VCP200.

7.2 Word-Recognizer V C P 2 0 0 3 1 3

470K

47pF

F i g u r e 7,5 Schematic for interfacing a microphone to the word-recognizer V C P 2 0 0 .
(Adapted from Semiconductor Reference Guide, 1988, p. 70. © 1988 Radio Shack, A Division of Tandy
Corporation)

the self-contained words; therefore, words must be pronounced properly. Be­
cause the VCP200 is speaker-independent, there is a high probability that it
can recognize anyone who can pronounce the words properly. There are a few
pointers to help the VCP200 understand the speaker better; they are contained
in the instruction manual in the IC package.

The VCP200 operates with a single 5-V dc power supply with a tempera­
ture range of 0° to 70°C. Once you have constructed the working circuit of
Figure 7.5, there are many applications you can make by using the appropri­
ate interface and control circuit. Sections 3 and 4 of this chapter present two
important designs you can build.

3 1 4 7. Voice Recognition Chips

7.3 Voice-Recognizer VCP200 Controls
Direct Current Motor

Figure 7.6 shows an interesting application for the word-recognizer VCP200
that was explained in the previous section. We will demonstrate how the
VCP200 can be utilized for controlling a dc motor with the appropriate
interface.

When the Figure 7.6 circuit is first turned on, a negative transient pulse is
applied to the /RESET input (pin 20 of VCP200) via the timing network
formed by R1C1. To control the dc motor Ml , four transistors in criss-cross
configuration are needed. In this case, four TIP 120 power Darlington tran­
sistors were selected; thus, a motor with a maximum current consumption of
6 A can be controlled.

The word-recognizer VCP200 will be used in the COMMAND mode. This
way, we will use two outputs of the VCP200 to control the motor and one

Rf=470K

κ β ν β r s e \ j j ι

F i g u r e 7.6 Schematic that makes up the voice-operated motor control.

7.4 Controlling Direct Current Motors 3 1 5

T A B L E 7.1
Outputs Generated by the Word-Recognizer VCP200

Needed to Control a Direct Current Motor

Command GO ! REVERSE ! STOP !Ql Q2 Q3 Q4

STOP H H L OFF OFF OFF OFF

GO L H H ON ON OFF OFF

REVERSE H L H OFF OFF ON ON

output for indicating the STOP position. The output GO is utilized to actuate
the motor in the forward direction. The output REVERSE is used to power the
motor in the reverse direction. In this form, to actuate or stop the motor the
operator needs to pronounce only three commands: GO, REVERSE, and
STOP. Table 7.1 shows the logic level outputs that are generated by the
VCP200 when a spoken command is pronounced by an operator. Table 7.1
shows that transistors Ql and Q2 actuate the motor in the forward direction,
while transistors Q3 and Q4 control the motor in the reverse direction. Notice
that not all four transistors can be turned on at the same time because a short
would occur in the 12 V dc power supply. Two pair-Darlington optocouplers
are required to actuate each pair of transistors. The optocoupler helps to keep
the control circuit isolated from the 12 V power supply which will operate the
motor in the presence of the noise generated by the motor M.

To start the motor, the operator will pronounce the direction that he needs;
that is, GO or REVERSE. Once the motor is running in the forward direction,
for example, he will have to stop the motor by pronouncing the STOP com­
mand before attempting to pronounce the word REVERSE to change the mo­
tion of the motor.

If you need to control several dc motors by voice commands, the circuit
presented in the following section contains all the necessary hardware and
software to achieve that specific task.

7.4 How to Control Direct Current Motors
with α Word Recognizer and a
Speech Synthesizer

An application which involves voice recognition and speech synthesis is
now to be described. The circuit shown in Figure 7.7 controls two dc motors,
Ml and M2, using the word-recognizer VCP200 interfaced to an FPC. The
FPC controls the direction of both dc motors and the speech processor
SP0256-AL2.

3 1 6 7. Voice Recognition Chips

F i g u r e 7,7 Schematic for the dc motor controller that employs a word-recognizer
VCP200 and a speech processor SP0256-AL2.

The purpose of adding speech synthesis to this motor controller is to indi­
cate to the operator what motor he wants to actuate. To achieve a full con­
trol of each motor, six commands will be accepted by the word-recognizer
VCP200. When pin 19 of the VCP200 is set to a logic zero by the FPC, the
words the VCP200 recognizes are: GO, LEFT TURN, TURN RIGHT, and
STOP. When pin 19 of the VCP200 is set to a logic high by the output Ρ15 of
the FPC, the VCP200 recognizes the words YES and NO. Figure 7.8 shows
the flowchart used to write the microcode program for the FCP Am29CPL154
that is presented in Table 7.2.

7.4 Controlling Direct Current Motors 3 1 7

F i g u r e 7.8 Flowchart employed by the FPC Am29CPL154 to control two dc motors
by voice commands.

The flowchart in Figure 7.8 starts by applying a reset pulse to the quad tri-
state R/S latch CD4043. This reset pulse avoids turning a motor when the en­
tire circuit is first turned on. Then the SP0256-AL2 will issue the message
"Motor one, yes or no . . ." to indicate to the operator if he wants to actuate
motor Ml . If so, he has to speak the word "Yes." Now the program will be
waiting for one of the three possible answers of the operator: Left Turn, Turn
Right, and Stop. Depending on the word pronounced by the operator, motor
Ml will be actuated. If the voice recognizer VCP200 is not sure of the word
pronounced by the operator, the SP0256-AL2 will say the message "Not

3 1 8 7. Voice Recognition Chips

T A B L E 7.2
Software Program for the FPC Am29CPL154 to Control Two Direct Current Motors

DEVICE (CPL154)

DEFAULT = 1;

DEFINE "test inputs"
SBY = T3
GO = TO
LEFTTURN = Tl
TURNRIGHT = T2
STOP = T4

"output control bits"
"speech data = 59 allophones plus
01#h pa3 = 02#h pa4 = 03#h pa5 pa2

eh = 07#h
tt2 = OD#h
iy = 13#h
yy2 = 19#h
= lE#h uw2
= 23#h ggl =
sh = 25#h
zz = 2B#h
yyl = 31#h
ss = 37#h
gg2 = 3D#h

kk3
rrl
ey

08#h
OE#h
14#h

ae = lA#h
= lF#h aw
24#h
zh = 26#h
ng = 2C#h
ch = 32#h

nn2 = 38#h
el = 3E#h

pp = 09#h jh
ax = OF#h mm

ddl = 15#h uwl
hhl = lB#h bbl

20#h dd2 =

rr2 = 27#h ff
11 = 2D#h ww

erl = 33#h er2
hh2 = 39#h or
bb2 = 3F#h aid

five pauses"
= 04#h oy = 05#h ay = 06#h

= OA#h nnl = 0B#h ih = OC#h
= 10#h ttl = ll#h dhl = 12#h
= 16#h ao = 17#h aa = 18#h
= lC#h th = lD#h uh
21#h gg3 = 22#h vv

= 28#h kk2 = 29#h kkl = 2A#h
= 2E#h xr = 2F#h wh = 30#h
= 34#h ow = 35#h dh2 = 36#h
= 3A#h ar = 3B#h yr = 3C#h
= 100#h

"Output control bits
M1RIGHT = 200#h "P9"
MlLEFT = = 100#h "P8"
M2RIGHT = 800#h "Pll
M2LEFT = = 400#h "P10
M0DE1 = 8000#h "Yes
LATCH= 1000#h; "P12

TEST-CONDITION
DEFAULT-OUTPUT

No are recognized by the VCP200"
"P12 loads data into Latch 4042"

SBY;
0000#h;

"The SP asks for the motor to be actuated"
"2"start : LATCH, continue; "Clears Latch
"3" ,call pl(msgmtr);
II 4 » W W , call pl(read) "One...? "
"5" ax, call pl(read)
"6" ax, call pl(read)
"7" nnl, call pl(read)
"8" pa5, call pl(read)
„ 9 „ pa5, call pl(read)
"10" ,call pl(msgyn ; "Yes or No..

" This routine is executed for 6 seconds "
"11" ,load pl (24); '5-sec delay"

7.4 Controlling Direct Current Motors 3 1 9

"12"stay:pa5, call pl(read);
"13" model, continue;
"14" model, if (GO) then goto pl (M0T2) ; 11 If no then.
"15" ,while (creg <> 0) loop to pl(stay);

"16"
"17"
"18"
"19"
"20"

, if (LEFTTURN) then goto pl(MOT1L);
, If (TURNRIGHT) then goto pl(M0T1R) ;
, if (STOP) then goto pl(M0T2);
, call pl(msgnts); "Not Sure"
, goto pl(start);

"21" , load pl(24); "5-sec delay"
"22"stayl:pa5, call pl (read);
" 23"MOT2:model, continue;
"24" model, if (GO) then goto pl(start) ;"If not then.
"25" ,while (creg <> 0) loop to pl(stayl) ;

"26"
"27"
"28"
"29"
"30"

"subroutine
"31"read:
"32"sty6:
"33"

, if (LEFTTURN) then goto pl(M0T2L);
, if (TURNRIGHT) then goto pl(MOT2R)
, if (STOP) then goto pl(start);
, call pl(msgnts);
, goto pl(start);

, continue;
, if (not sby)
, ret;

"subroutine READ2"
"34"read2: continue; "allows s
"35"stay3: > if (not sby) then gotc

"36" , ret;
"37"M0T1L: mlleft, continue;
"38" ,goto pl(MOT2);
"39"M0T1R: mlright, continue;
"40" , goto pl(M0T2);
"41"MOT2L: m2left, continue;
"42" , goto pl(mstop)
"43"M0T2R: m2right, continue;
"44" , goto pl(mstop)
"45"MSTOP: tt2, call pl (read);
"46" uw2, call pl (read);
"47" pa3, call pl (read);
"48" ss, call pl (read);
"49" ss, call pl(read) ;
"50" ttl, call pl (read);
"51" aa, call pl (read);
"52" PP, call pl (read);
"53" pa3, call pl (read);
"54" mm, call pl (read)
"55" ax, call pl (read);
"56" tt2, call pl(read)·
"57" ow, call pl (read)
"58" erl, call pl (read);
"59" pa3, call pl (read)

"allows sby to go low in 300 ns"
then goto pl(sty6); "reading SBY"

"reading SBY"

"To stop motors say"
"the word STOP "

3 2 0 7· Voice Recognition Chips

"60" ss, call pl (read);
"61" ey, call pl(read);
"62" pa2, call pl(read);
"63" dh2, call pl(read);
"64" ae, call pl(read);
"65" pa2, call pl(read);
"66" pa3, call pl(read);
"67" wh, call pl(read);
"68" or, call pl(read);
"69" dd2, call pl(read);
"70" pa3, call pl(read);
"71" ss, call pl(read);
"72" ttl, call pl(read);
"73" aa, call pl (read);
"74" pp, call pl(read);
"75" pa3, call pl(read);
"76" , if (STOP) then goto pl(start) else wait;
"77"msgmtr: mm, call pl(read);" MOTOR ..."
"78" ow, call pl(read);
"79" erl, call pl(read);
"80" or, call pl(read);
"81" pa5, call pl(read);
"82" ,ret;

"83"msgyn: yy2, call pl(read);"YES..."
"84" eh, call pl(read);
"85" eh, call pl(read);
"86" ss, call pl(read);
"87" pa4, call pl(read);
"88" ow, call pl(read);"OR..."
"89" or, call pl(read);
"90" pa4, call pl(read);
"91" nn2, call pl(read);"NO..."
"92" ax, call pl(read);
"93" ow, call pl(read);
"94" pa5, call pl(read);
"95" ,ret;
"96"msgnts: nn2, call pl(read);"NOT SURE.."
"97" ax, call pl(read);
"98" ow, call pl(read);
"99" ttl, call pl(read);
"99" pa4, call pl(read);
"100" sh, call pl(read);
"101" uh, call pl(read);
"102" rr2, call pl(read);
"103" pa5, call pl(read);
"100" ,ret;

.org 511#d
"96" ,goto pl(start);
END.

7.5 Voice Recognition Device SP1000 3 2 1

Sure." This way, the operator knows he has to again pronounce the word to
actuate or stop motor Ml . Because the outputs P8 to Pl l are used to control
both motors by means of a quad latch CD4043, each control output has to be
actuated for only one clock cycle.

When the VPC200 recognizes a word to actuate or stop motor Ml , it jumps
to the same type of questions but now with respect to motor M2. Once motor
M2 has been actuated, the SP0256-AL2 says the message ' T o stop motors
say the word stop." At this point, the FPC will be waiting for the word "Stop"
in order to know when to stop both motors Ml and M2.

The program can also be applied to actuate another couple of motors by
means of the four unused FPC outputs (P12 to P15). Alternating current
motors can also be controlled by using the appropriate optical interface.

7.5 Voice-Recognition Synthesis
Device SP1000

The single-chip voice recognition and synthesis device SP1000 recognizes
speech in real time and synthesizes it. This chip manages both recognition and
synthesis with just one reconfigurable filter.

Figure 7.9 shows the block diagram of the SP1000. The SP1000 from Mi­
crochip, an η-channel MOS integrated circuit that operates on a 5-V supply,
performs LPC feature extraction on the incoming audio signal. It digitizes the
spoken word and feeds it to an LPC lattice analysis filter at a data rate of 50 to
100 kbits/s. Switched into the analysis mode, the filter relies on a hard-wired
feedback-control loop contained in its arithmetic and logic unit to send it the
speech signal's feature data. It uses these data to adapt itself and represent the
changing features of the incoming word samples. With its ALU, it calculates
LPC filter coefficients, performing data compression in real time with no need
to resort to memory. The compressed data in the form of LPC features travels
at a slowed rate of 2 to 3 kbits/s from the SP1000 to the microprocessor, which
compares the extracted features with templates stored in either random access
or mask ROM. The addition of more memory is up to the user.

The SP1000 contains an adaptive filter that has a feedback control scheme
and does not need extensive memory. Standard LPC schemes use covariance
or autocorrelation, either of which needs at least 3 kilobits of memory to rec­
ognize words. On the other hand, the SP1000 requires only 300 bits of on­
board memory.

For recognition, the SP1000 calculates the abstract mathematical interval
of the test word's features from the template's features. That means detecting
end points, providing a parametric representation of the speech signal in the
form of LPC features, measuring frame-to-frame distance, and performing
dynamic time warping (a technique to identify variables such as the same
word spoken differently by the same person). The LPC analyzer is basically a

3 2 2 7. Voice Recognition Chips

ADDCE*

ADDCLKs

ADC -

DATA

F i g u r e 7.9 Block diagram of the SP1000 voice-recognition/synthesis device. (Re­
printed with permission from Publication #DS5001B-2, p. 2. © 1983 Microchip Technology, Inc.)

RECOGNITION
DATA
STORAGE

22pF

7.16 MHz

- O f

SYNTHESIS
DATA
STORAGE 0 . 1 u F -

F i g u r e 7.10 Block diagram for a voice-recognition/synthesis system. (Reprinted with
permission from Publication #DS5001B-2, p. 2. © 1983 Microchip Technology, Inc.)

References 3 2 3

lattice of filters that approximate a series of resonant cavities, thus simulating
the vocal tract.

Synthesis is a simpler operation and proceeds without the feedback-control
mechanism. Standard LPC code stored in memory is read by a micropro­
cessor, which sends the appropriate feature data to the SP1000. Routed
through a standard synthesis circuit and D/A converter on board, the resulting
synthetic speech samples are voiced by a standard speaker.

The SP1000 can be driven by 8-bit standard microprocessors or a micro­
controller's bus, with data lines, address lines, chip select line, and read/write
line. Eight bits of data can be read from, or written to the chip by the pro­
cessor, following standard peripheral protocol. The SP1000 board can be used
in speaker-dependent or speaker-independent systems with connected or un­
connected speech. The designer is not locked into a specific recognition al­
gorithm that may not be suitable for a particular application. Instead, the rec­
ognition algorithm is contained in software resident in the host μ Ρ or /xC and
can be easily upgraded to take advantage of advances in recognition tech­
niques. Figure 7.10 shows a block diagram to obtain a voice-recognition syn­
thesis system with the SP1000.

References

1. Bristow Geoff, ed, Electronic Speech Recognition, McGraw-Hill, New York, 1986.
2. William C. Newman, Neural Networks Detect Speech, Electronic Design, March 22, 1990,

pp. 7 9 - 9 0 . Vol 38. No 6.
3. John A. Gallant. Speech Recognition Products, EDN, January 19, 1989. pp. 112-122.
4. David Quarmby, Signal Processor Chips, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.

Index

Absolute digital displacement transducer, 138
Allophone addresses for the SP0256, 32

evaluation circuit with EPROM, 34
evaluation circuit with MSI, 33

EPROM program, 36
timing diagram, 36

Allophone speech synthesis, 3
AC line frequency cycles meter

design of, 234
input range, 235
software program, 236-237

AC motor-speed controller
artificial voice design, 194
operation, 195
schematic, 194
software program, 196-198

AC talking voltmeter
design of, 230
EPROM program, 231-233
schematic, 231

American English language, 3
Amplifier with programmable gain

inverting amplifier, 123
schematic, 124
software program, 125-126

Am29CPL100
block diagram, 66
family members, 65
instruction set, 67
interface to the SP0256, 68

flow chart, 69

prom bit pattern, 74
software program, 7 0 - 7 1

Analog-to-digital converters
ADC080X series, 8 5 - 8 7
basics of, 85
block diagram, 87
flash converter, 89
functional description, 86
interface digitalker, 90

interface to digitalker, 90
flow charts, 9 1 - 9 3
software program, 9 5 - 9 7

interface to a μC, 98
flow chart, 100-101
software program, 103-106

testing of, 8 7 - 8 8

Barometer
design of, 263

pressure sensor, 263
schematic, 264-265
software program, 265 -269

BCD A/D converter
interface to a SP0256, 139
microcontroller-based design, 140-141

BCD code vocalizer with FPC
software program, 7 6 - 7 8
PROM bit pattern, 78 -81

Burglar alarm
CMOS MSI design, 292

3 2 5

3 2 6 Index

Burglar alarm (continued)
EPROM programs, 294-295
network for N.O. sensors, 296
schematic diagram, 294
timing equations, 293

detects entrance devices, 303
schematic diagram, 303
software program, 3 0 4 - 3 0 6

fault-tolerant design, 290
schematic diagram, 291

FPC-based design, 283
flowchart, 285
PROM bit contents, 287 -288
schematic diagram, 284
software program, 286 -287

μC-based design, 297
flow chart, 302
schematic diagram, 297
software program, 298-301

Capacitance meter
design of a CMOS MSI, 253
schematic 254-255
software program, 257 -263

Clock
design of a talking, 167
schematic diagram, 168-169
software program, 171-174
table of messages, 167

Coffee machine controller
design of a talking, 179
operation, 180
schematic diagram, 181
software program, 182-189

Coin detector
design of a speaking, 174
schematic diagram, 175
software program, 176-179

Converters
A/D (see analog-to-digital), 8 5 - 8 8
BCD A/D interface to SP0256, 139
flash, 88
microcontroller-based design, 140-141

Current meter
design of a DC, 275
schematic diagram, 276
software program, 277-281

Darkroom timer
flow chart, 271

schematic diagram, 270
software program, 272-275

DC voltmeter
FPC-based design, 220
input range, 222
schematic diagram, 221
software program, 225-229

Delta modulation, 309
DPCM, 310

Digitalker DT1050, 17
evaluation circuit, 21
functional description, 18-21
vocabulary, 19

Displacement transducers, 135-136
digital, 136, 138-139
interface to a speech processor, 139
strain gage, 137

Event counter
design of a talking, 45
operation, 46
speech data, 47

Fault-tolerant
burglar alarm, 290
respiratory rate meter, 237

Flash A/D converter, 89
FPC Am29CPL100 (see also Am29CPL100)

interface to the SP0256-AL2, 65
Frequency counter

design of a talking, 200
flow charts, 210-215
input frequencies, 202
schematic diagram, 201
software program, 204 -209

Hexadecimal keyboard encoder, 148-149
simulation program, 154-159
software program, 150-152

Instrumentation amplifier, 127, 131
Interfacing A/D to digitalker, 90

flow charts, 91
software program, 9 5 - 9 7

Interfacing multiple A/Ds, 98
flow chart, 100-101
software program, 103-106

Inverting amplifier, 123

Index 3 2 7

Keyboard encoder, design of a talking,
148-152

Linear predictive coding, 311
Liquid level annunciator, 281

schematic diagram, 282
Logic probe

applications, 123
interface to a speech processor, 119
software program, 121-122

Magnitude comparator, 142
design of a 4-bit, 142

EPROM-based circuit, 147
EPROM program, 148

FPC-based design, 145-146
interface to a speech processor, 144
truth table, 143

Mean time before failure (MTBF), 245
Microcontroller handles speech processor,

6 0 - 6 2
enhanced program, 64
flow chart, 62
software program, 6 2 - 6 3
timing diagram, 63

Moisture meter
design of a, 251
EPROM program, 252
schematic, 251

Multiplexing a speech processor, 81
timing diagram, 83

Neural networks, 311
for speech recognition, 311

Oki semiconductor, speech synthesizers,
2 6 - 2 9

Optocouplers, in burglar alarms, 296

Parallel-to-serial speech
interface chip, 15
interface to SP0256, 16

Phonemes, 3
Pressure sensor, 263

Random number generator
design of a talking, 189

schematic diagram, 190
software program, 191-193

Redundancy, triplicated modular, 246
Reference voltage for A/D, 99
Respiratory rate meter

design of a fault-tolerant, 245
JEDEC file, 250
schematic, 247
TMR voter, 2 4 8 - 2 4 9
triplicated modular redundancy, 246

Respiratory rate monitor, 237
schematic, 238
software program, 2 4 0 - 2 4 4

Samsung voice synthesizers, 29 -31
functional characteristics, 29
typical application, 30

Schmitt trigger, timing circuits, 68, 292
Semaphore

flow direction, 161
interface to a SP, 159
schematic, 160
software program, 162-165
traffic intersection, 160

Speech ROM SPR128A, 11
block diagram, 14
interface to SP0256, 14

Speech signals, 2
Speech synthesis, development board, 16-17
Speech synthesis processors

SP0256/SP0254 , 5
interface to a FPC, 10
interface to a μΡ, 10
interface to a ROM, 10
operation, 6

stand-alone configuration, 9
test modes, 7 - 8
timing diagram, 9

Speech synthesizer
control of two dc motors, 315
flowchart, 317
schematic, 316
software program, 318-320

Speech synthesizers
in airplanes, 2
in automobiles, 2
in industry, 2
instrumentation, 2

Speech systems, of the past, 1
SP0256-AL2

allophones, 12-13

3 2 8 In

SP0256-AL2 (continued)
English phonemes, 11
interface to a C64, 38

software program, 38
interface to a PC/XT, 37

software program, 4 0 - 4 1
Strain gage, 136
Synthesis techniques, 3

Technical vocabulary, SP0256-AL2, 4 2 - 4 4
Texas Instruments TSP5220

theory of operation, 2 3 - 2 4
block diagram, 25
voice synthesis chips, 22

Thermistor linearization, 130
Thermometer

design of a talking, 127
flow chart, 133
instrumentation amplifier, 127, 131
linearization network, 130
schematic diagram, 128, 129
software program, 134-135
temperature readings, 132
thermistor equations, 127

Toshiba speech synthesis, LSI devices, 22
Triplicated modular redundancy, 246

TMR voter, 249 -249

SP1000,321
techniques, 308

Voice synthesis ICs, 1
applications, 1

Voice synthesis methods
frequency domain, 4
LPC, 4
parametric synthesis, 3
synthesis by rule, 3
time domain, 4
waveform encoding, 3

Voice-recognizer controller, 314
schematic diagram, 314
outputs, 315

Voltage comparator
10-step, 113
design equations, 115
going further, 119
interface to a speech, 113
PAL truth table, 114
software program, 116-118

Voltmeter with DT1050, 217
EPROM program, 220
schematic diagram, 219

Voltmeter with SP056-AL2, 216
EPROM program, 218
operation, 216-217

Vocalizer
for BCD code, 76 -81
for 4-bit input, 4 7 - 4 9
for 8-bit input, 4 9 - 5 2
improved technique, 5 2 - 5 9

Voice recognition
applications, 308
delta modulation, 309
differential PCM, 310

LPC, 311
waveform sampling, 310

neural networks, 311
synthesis

applications, 322 -323
block diagram, 322

Waveform sampling, using DPCM, 310
Window comparator

circuit, 110
design of a speaking, 107
PROM bit pattern, 112
software program, 108-109

Word recognizer
application circuit, 315
flow chart, 317
schematic, 316
software program, 318-320

Word recognizer VCP200, 311
application circuit, 313
pin configuration, 312
theory of operation, 311-313

	Blank Page

