DESIGNING WITH
SPEECH PROCESSING
CHIPS

Ricardo Jiménez

{ Iy “’J ‘i‘k i B

Designing
with Speech
Processing Chips

Ricardo Jiménez
BESTNET Telecommunications

Calexico, California

ACADEMIC PRESS, INC.

Harcourt Brace Jovanovich, Publishers
San Diego New York Boston London
Sydney Tokyo Toronto

This book is printed on acid-free paper.

Copyright © 1991 by ACADEMIC PRESS, INC.

All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopy, recording, or
any information storage and retrieval system, without permission in writing
from the publisher.

ACADEMIC PRESS, INC.
San Diego, California 92101

United Kingdom Edition published by
Academic Press Limited
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Jiménez, Ricardo.
Designing with speech processing chips / Ricardo Jiménez.
p. cm.
ISBN 0-12-385348-6
1. Integrated circuits--Design and construction--Data processing.
2. Speech processing systems. 3. Computer-aided design. L Title.
1. Title: Speech processing chips.
TK7874.J56 1991
621.39'9--dc20 90-49691
CIp

PRINTED IN THE UNITED STATES OF AMERICA
91 92 93 9 8 7 6 5 4 3 2 1

This book is dedicated
fo my wife Patricia

Preface

The speech processing chip is a relatively new and complex device that ap-
peared in the late 1970s. This book provides the theory and the basic design
tools needed to utilize speech processing chips more effectively in electronic
circuit design. It presents design examples for a wide range of real-world ap-
plications and information on interconnection of these components into func-
tional equipment for instrumentation, data processing, inventory display, and
control systems. Special emphasis is placed on those circuits with the most
potential for future development, LSI and VLSI devices. Popular commer-
cially available products are used throughout as illustrative examples, and the
important characteristics of the devices are summarized for each functional
category.

The book goes far beyond the presentation of block diagrams, micro-
controller architecture, and software programming. It shows a step-by-step
development of hardware and software, how to combine them most effec-
tively, and how to interface speech processors with input devices, such as sen-
sors or data sources, and output devices, such as relay actuators, thyristors, or
display devices.

In this book, practicing design and system engineers, technicians, engi-
neering students, and other interested readers will find a comprehensive over-
view of the entire topic of speech processing chips. The book also describes
popular, commercially available circuits for each functional category pre-
sented and discusses specific applications in sufficient depth to interest the ex-
perienced designer. Engineering students will be able to follow the book if
they have been exposed to courses on circuit design theory, logical circuits,
and integrated circuits.

As with my other publications, I wanted this to be a book that was organized

xii Preface

and used from a practical viewpoint. Throughout the book emphasis is placed
on using the popular CMOS and HCMOS ICs of each functional category as
illustrative examples.

Speech processing chips for electronic and other applications are available
at low cost. The progress made in the manufacture and supply of these chips
expands enormously the opportunities to design and build highly effective
equipment and systems. This book shows how to make use of these develop-
ments. The reader is shown step-by-step how to build both simple and sophis-
ticated projects with all the necessary details. Many proven examples are
included throughout the book for industrial, laboratory, health care, and
home use.

The information needed to follow the many design examples in this book is
given in a simple, direct manner with supporting flowcharts and tables. Once
this know-how is acquired, you will be able to build systems with artificial
voice with less effort and less time than ever before.

The book is divided into seven chapters. Chapter 1 introduces the different
speech processing techniques, describes how the basic speech processor inte-
grated circuit works, and presents IC pin comparisons of the different pack-
ages. It also includes the basic datasheet for the device.

Chapter 2 explains how a speech processor can be used in applications for
which it was not originally intended—how this basically digital device can be
used as a variety of different logic devices. Chapter 3 provides help under-
standing analog-to-digital converter families and their respective advantages
and limitations. After reading these three chapters, you should come away
with a fundamental understanding of what a speech processor is and how to
use it.

To write information into the specific controller and then announce it, in-
terface devices or systems are required. Chapter 4 shows how such interface
devices can be built with minimal effort and at a cost that is often a small
fraction of the price of commercial products.

Chapter 5 presents a wide selection of test and measurement circuits that
also can be interfaced with a specific application by the user or designer.
These circuits are widely used in data acquisition systems. Chapter 6 presents
different kinds of burglar alarms varying from simple designs to fault-tolerant
systems where failures are critical and not acceptable.

Chapter 7 covers voice recognition techniques as well as devices now avail-
able. Some applications for control systems are also considered.

Acknowledgments

I owe thanks to several people who helped me complete this book.

I would like to thank all the publishers who gave permission to include
material that originally appeared elsewhere. Footnotes to selected articles cite
these original sources.

I am grateful to those instructors from other institutions who reviewed
the manuscript for Academic Press, Inc., and who made many constructive
suggestions.

Thanks also to my research students of the courses ‘““Logical Circuits II,”
“Sequential Systems,” and “Instrumentation” who suffered through the
building and testing process of many of the circuits presented here and in par-
ticular to Ruben Rios, Francisco Meza, Jose J. Lara, Ramiro Jacinto, Ruben
Avalos, Francisco J. Mendoza, Alvaro E. Salgado, Julio Garcia, Rigoberto
Hernandez, and Fabian Muro.

Thanks in particular goes to the Dean of the Technological Institute of
Mexicali, Ramon A. Heredia.

I am also grateful to Marcos Silva, Roberto Dewar, and Dr. Fidel Diaz for
proofreading the manuscript to make it more understandable. Of course, the
patience and love of my wife Patricia was required throughout.

Ricardo Jiménez, E. E.

xiii

Speech Processing Chips

1.1 Introduction to Voice Synthesis
Digital 1Cs

Circuits with artificial voice offer a new dimension of sophistication to almost
any electrical or electronic modern system. Traditionally, magnetic tape re-
cording has been used in applications requiring speech announcements, for
example, telephone announcement systems; a system of this type is costly be-
cause it requires a large number of tapes for different messages. It will not let
you create mixed messages for different situations. Consider the case of a
public service telephone that tells you the time. This device will need 60 dif-
ferent tapes for each hour, not to mention the number of tapes required for a
complete 24-hour day. In contrast, a telephone system that uses artificial voice
stored in digital memories can create different messages by pulling up the dif-
ferent words required to create a specific message. This system requires only a
few chips that will do the work of a large number of tapes.

Let us now consider a talking voltmeter in the range of O to 5 V with a
resolution of 0.1 V. Here, we will need 50 different messages corresponding
to the 50 possible voltage readings. It would be costly and time-consuming to
develop a tape mechanism for this project.

In the past, speech systems were treated as data acquisition circuits, in
which a voice waveform was treated like any other fluctuating voltage input:
The circuit recorded the waveform by periodically taking a sample of the sig-
nal’s voltage through an analog-to-digital (A/D) converter and storing it as a
binary value. (The number of samples needed per second depends upon the
frequency of the input signal.) These digital speech signals were stored as
pulse code modulation (PCM) in semiconductor memories. Once the samples

2 1. Speech Processing Chips

were stored in RAM or ROM, the circuit could recreate the original waveform
by sequentially sending the stored values to a D/A converter at the same rate
as the original sampling. One second of digital voice required from 4 to 32
Kbytes of memory. If the amount of data stored was reduced (compressed)
using a known principle, the restoration of the original sound was called
*“synthesis.”

The synthesis technique provides a dramatic reduction in the amount of
memory required for one second of speech. Memory requirements vary from
400 to 2,000 bits per second, depending on the desired speech attributes and
overall quality. A bad reproduction will sound unnatural or unintelligible. A
speech signal is highly redundant and predictable, and by coding only the
slowly varying coefficients of speech or by dramatic compression of digitized
speech, significant bandwidth reductions in the digitized signal can be ob-
tained. The synthesizer technique becomes practical when it is developed with
VLSI semiconductor technology.

Today, applications for voice synthesis are endless. The following are some
of them: telecommunications; consumer appliances; automotive; counters;
consumer products; instrumentation; teaching aids; clocks; language transla-
tion; annunciators; voice interactive computer terminals; nautical and aero-
nautical instrumentation annunciators; voice back units for banking, weather,
and time announcements; elevators; trains; subway systems; toys and games;
warning systems for fire and police emergency.

In the area of instrumentation, a speech synthesizer is a very important
tool. When a failure is presented in the system being monitored, the speech
synthesizer will immediately start reading the procedures contained in the
manual in order to indicate to the operator how to correct the specific failure.
Great benefits are obtained if a speech synthesizer is installed in power sta-
tions, nuclear plants, or places where the user must monitor a myriad of con-
trols. Here the speech synthesizer augments the operator’s ability to respond
rapidly and correctly when a process has extended its normal limits.

In industry, a speech synthesizer can be used to augment productivity by
giving spoken messages on how to assemble specific products, thereby freeing
a user for other tasks. Here, failure to follow precise directions could lead to
the destruction of equipment or injury to personnel.

The use of vocal warnings on automobiles has been spreading since the
early 1980s to remind the driver of the electrical or mechanical situation of the
vehicle. The same features are also applied to airplanes where the synthetic
speech guides the pilot with directions such as “slow down,” “climb,” or
other appropriate instructions.

The pace of the speech processing field is so rapid that some systems now
under development are excluded from this book. The emphasis of this book is
on designing with the systems now available.

1.2 Synthesis Techniques 3

1.2 Synthesis Techniques

The basic phonological element of speech is the phoneme, which is the name
given to a group of similar sounds in language. A phoneme is acoustically
different depending upon its position within a word. Each of these positional
variants is an allophone of the same phoneme. Phoneme reproduction is a
basic element in any speech synthesizer. The method of ‘‘allophone speech
synthesis” is used to create words or phrases where the user has to think in
terms of sounds, not letters. With this technique you can synthesize an un-
limited vocabulary by using allophones and silences in the appropriate se-
quence. Phonemes, together with speaker inflection and volume, are the fun-
damental building blocks of speech.

The American English language consists of approximately 38 to 40 pho-
nemes: 14 to 16 vowel sounds and 24 consonant sounds. For example, the ini-
tial K sound used in words like “‘comb” sounds slightly different from the Ks
in words like “can’t.” These small variations are due to the vowel which fol-
lows them, in this case, “0” and “a.”” Each phoneme is generated with either
a voiced sound, as in “eye” or an unvoiced sound like the “sh™ in ‘‘shy.”
There are also allophones classified as resonants, voiced fricatives, voiceless
fricatives, voiced stops, voiceless stops, affricates, and nasals.

Voice synthesis methods are divided into three major types: waveform en-
coding, parametric synthesis, and synthesis by rule. Each method is explained
below.

Waveform Coding Methods

This type of voice synthesis includes differential pulse code modulation
(DPCM), adaptive delta modulation (ADM), and adaptive differential PCM
(ADPCM). The original sound wave amplitude is sampled at fixed intervals,
digitized, and the volume of data is then reduced on the basis of the synthesis
principles.

Parametric Synthesis Methods

Characteristic information included in voice waveforms is extracted as pa-
rameters for synthesizing purposes. The partial autocorrelation (PARCOR)
method is a typical example. In this method, models of the human vocaliza-
tion mechanism are used. Voiced and voiceless consonant sounds are discrim-
inated, and voiced sound pitch and amplitude data are extracted together with
filter characteristics of the vocal tract. Voice synthesis is then obtained by
passing these data to hardware consisting of digital filter circuits.

Synthesis by Rule Method

In this synthesis method, groups of phonemes expressed by small quantities of
data are skillfully linked together to reproduce any desired words or phrases,

4 1. Speech Processing Chips

which makes it easy to develop your own set of words or phrases for your
specific application. However, this method lacks the flexibility to create into-
nation, accents, and length of certain sounds in order to get a natural-sounding
voice. This method will be more efficient when vowels and diphthongs with
different accents are contained in the allophone set.

There are two general approaches used to derive synthetic speech: (1) time
domain synthesis and (2) frequency domain synthesis. The first method works
with a synthetic speech waveform representation of the original speech. About
half of the synthetic waveform is silence and is made up of symmetric seg-
ments which range over a very restricted set of amplitude values. In this form,
the synthetic waveform can be stored using only 1% of the bits that are neces-
sary to reproduce the original speech waveform.

Frequency domain synthesis has two main branches: formant synthesis and
linear predictive coding (LPC). Formant synthesis generates speech by re-
producing the spectral shape of the waveform using the formant center fre-
quencies, bandwidths, and the pitch periods as inputs. A frequency region
where the amplitude of a vowel sound is concentrated (i.e., frequency peaks
in the voice spectrum) is known as formant. Figure 1.1 shows an electronic
speech model of the human speech production mechanism. This model is used
in the Signetics speech synthesizer FPC8200.

LPC is based on a mathematical model of the human vocal tract. Pitch,
amplitude, and speech variables are obtained from speech recordings. The
speech data are analyzed and encoded to reproduce input data suitable for the
digital model.

The basic model used in linear predictive analysis is illustrated in Figure
1.2. The two major components are a flat-spectrum excitation source and a
spectral shaping filter H(z).

The excitation source provides a signal u(n) containing a flat spectral enve-
lope that is used to drive the filter H(z), resulting in the synthetic speech out-
put signal S(n). Because the excitation signal has a flat spectrum, the spectral
envelope of the output signal S(n) will have the same shape as the spectrum of
the filter H(z).

In speech synthesis, the parameters of H(z) must be set on a time-varying

An

- - ! 1

S-Formant | 1 Ugsampied |

Filter M Gigital — DAC —
!

Figure 1.1 Electronic speech model of the human speech reproduction mechanism.

1.3 SPO256B/SPO264 Processors 5

Excitation | Spectral Synthetic
4 Shaping ———= S{n}
Signal u(n) | Filter H{z} Speech

Figure 1.2 Speech synthesis model.

basis such that its short-term spectrum is the same as that of the desired short-
term speech spectrum envelope.

1.3 SPO256B/SPO264 Narrator Speech

Synthesis Processors

The SPO256B/SP0264 speech processors use the method of synthesis by
rule. They also support LPC synthesis, formant synthesis, and allophone syn-
thesis. Phoneme synthesis works by combining basic sound elements (pho-
nemes) to form complete words and sentences. This method is suitable when
the type of vocabulary required is not fixed.

Microchip (2355 W. Chandler Blvd., Chandler, AZ 85224-6199), the only
manufacturer of SPO256B/SP0264 speech processors, uses the approach just
described, combining phoneme synthesis with a digital filter. The speech pro-
cessors from Microchip employ formant coding, which is a frequency domain
synthesis that is similar to LPC. These devices model speech as the output of a
series of cascaded resonators.

The speech process is initiated by addressing the ROM address that con-
tains the phoneme desired. A maximum of 256 phonemes can be stored in the
16 Kbits of internal ROM. This device contains a microcontroller and a vocal-
tract model. The vocal-tract model is a digital filter. These processors are
classified as narrators because they use a preprogrammed custom vocabulary,
or phrase set, which is recorded in a serial ROM SPR128 or SPR128B. One of
these memories is directly interfaced with the speech processor (SP). If a par-
allel ROM is desired for recording the phrase set, a parallel-to-serial interface
is required. This is made by using the SPR000, as we will see in Section 1.6.

The SPO256B contains an on-chip controller with 16 Kbit internal ROM,
while the SPO264 has a 64 Kbit memory. Both devices support a controller
for external ROM SPR128A, which is a 128 Kbit ROM. These processors in-
corporate four basic functions:

* A software programmable digital filter that can be made to model a vocal

tract.

A 16K ROM which stores both data and instructions.

* A microcontroller which controls the data flow from the ROM to the dig-
ital filter.

* A pulse width modulator that creates a digital output which is routed to
an external low-pass filter in order to get an analog signal.

6 1. Speech Processing Chips

ROM DT

[a¥
EEROOUT
i
21

Yy

Figure 1.3 Pin configuration of the SPO256B/SP0O264 speech processors.

When amplified, this analog output signal will drive a loud speaker. The
digital output is equivalent to a flat frequency response varying from 0 to 5
kHz, a dynamic range of 42 dB, and a signal-to-noise ratio of approximately
35 dB.

A nice feature of these synthesizers is the natural speech, and the external
ROM directly expandable to a total of 480 K. A version of the SPO256B with
internal preprogrammed ROM is the SPO256-AL2.

Figure 1.3 shows the pin configuration of the SPO256B, which is identical
to the SPO264.

Operation'

The addressing of the SPO256B is controlled by the address pins (A1—AS8),
address load (ALD), and strobe enable (SE). Strobe enable controls the two
modes available for loading an address into the chip.

Mode 0 (SE = 0): The SP latches an address when any one (or more) ad-
dress pin makes a low-to-high transition. All address lines must be returned to
zero prior to entering a new address. In this mode of operation, address zero
(0000 0000) is not a valid address input. This mode of operation is used in
applications consisting of no more than eight words or messages such that
single address line transitions can be made. These words or messages must be
stored using the binary address format 1, 2, 4, 8, 16, . . . , 128.

Mode I (SE = 1): The SPO256B will latch an address specified on the ad-
dress bus (A1-A8) when the /ALD pin is pulsed low. Any address varying
from O to 255 can be loaded using this mode. Specific setup and hold times are
required using this mode.

In order to interface the SP with microprocessors (uP) or microcontrollers
(uC), two interface pins are available. They are load request (/LRQ) and

"This section and the following section, Test Modes, are adapted from Publication #DSS5018A-2,
p. 3. © 1988 Microchip Technology, Inc.

1.3 SPO256B/SPO264 Processors 7

standby (SBY). /LRQ indicates when the input buffer is full. SBY tells the
specific processor that the chip has stopped talking and no new address has
been loaded. When /LRQ is low, a new address may be loaded onto the ad-
dress bus. Pulsing /ALD low will cause the new address to be loaded and
/LRQ to go high. When the address bus is available to accept a new address,
/LRQ goes low again.

The SPO256B can load a new address while it is speaking the last word or
message.

Standby (/SBY) goes low when an address is loaded and stays low while
the chip is talking. SBY can be used to determine the time between address
load requests, which will be variable depending on the length of the word or
message currently being spoken.

Several pins are designated for use with an external ROM. They are ROM
Disable, C1, C2, C3, Serial Out (SER OUT), Serial In (SER IN), and Test.
ROM Disable is tied to a logic zero to enable the external ROM; when left
floating, it disables the external ROM. C1 to C3 are the output control lines
which are synchronous to the ROM clock. ROM CLOCK (pin 26) is a 1.56
MHz clock output used to drive an external serial speech ROM. The operating
frequency of the SPO256B is set by an external 3.12 MHz crystal connected
to OSC1 and OSC2 (pins 27 and 28), respectively. You can also use 3.27 to
3.14 MHz crystals; in this case the voice pitch will be slightly altered.

When C1C2C3 = 000, no operation is executed. When C1C2C3 = 001, the
address shift register load (ASRL) serially shifts out data from the SER OUT
pin as shown in Figure 1.6. The ASRLD loads 16 bits of the ASR with two 8-
bit load sequences followed shortly by a program counter load (PCLD).

When C1C2C3 = 010, the contents of the address shift register are loaded
into the program counter (PC) when 16 ASR loads have occurred.

When C1C2C3 = 011, the data shift register loads the 8-bit data shift regis-
ter with the contents of the ROM pointed to by the current address in the pro-
gram counter. The data shift register will shift out the LSB of the 8 bits and
increment the program counter. With CIC2C3 = 100, data is shifted out of
the data shift register starting with the second LSB (the first LSB is shifted
out with the occurrence of C1C2C3 = 0l11). Seven shifts occur after every
DSRLD.

When C1C2C3 = 101, the stack is loaded with the current value of the PC.
With CIC2C3 = 110, the PC is loaded with the contents of the stack to per-
form the RETURN operation. Finally, C1IC2C3 = 111 will occur when /SBY
RESET and /RESET are pulsed low.

Test Modes

By using the TEST logically anded with the address inputs Al, A2, A3, or
A5, the SPO256B can be interfaced to an SPRO000 (serial-to-parallel ROM)
in order to use an EPROM as the speech data device.

The test modes are controlled by the TEST pin (22). This is achieved by

8 1. Speech Processing Chips

making the TEST pin high within the appropriate address input. The follow-
ing is a list of test modes:

TO=T=+ (Al = A2 =A3=A5=0)

Tl =T x* Al
T2 =T=* A2
T3 =T=A3
T5 =T =*AS

TO makes the SPO256B ignore its internal ROM. In this case, instructions
are supplied serially through pin 21 (SER IN) by using an SPR000. TO may be
entered by wiring TEST to a permanent high and pulsing /RESET. TO will be
entered and all other test modes permanently locked out. Note that the voltage
levels on any address input are irrelevant when this mode is entered.

Tl is used to read out the internal ROM of the SPO256B on pin 12
(SER OUT).

T2 causes the internal serial data bit stream to appear on pin 24 in place of
the normal DIGITAL OUT.

T3 is used with T2. It causes the internal coefficient data ROM to be read
out if the inputs to pin 21 are appropriate.

TS5 causes the internal CE (chip enable) signal to come out on pin 9 (/LRQ)

Electrical Characteristics

Vdd (pin 7) is the power supply for all portions of the SP except the micro-
processor interface logic. VDI (pin 23) is the power supply for the micro-
processor interface logic and controller. When not tied to Vdd, Vdl must
remain high. When the SPO256B is not talking, it is better to put it in the low-
power mode by disconnecting Vdd (pin 7) via a switching relay or transistor.

The SPO256B consumes a total current of 80 to 95 mA in the normal mode
of operation, and a supply current of 25 to 29 mA in the standby mode. Both
modes are required to hold high the /RESET and /SBY inputs.

The /ALD input must be pulsed low for a period of 200 to 960 nanosec-
onds; consequently, 500 ns (or 0.5 us) will be the standard pulse period we’ll
be using in most of the projects presented here. The address pins (A1-A8)
need a minimum period of 160 ns, while /LRQ and SBY use a maximum of
300 ns. These times must be added to the delays caused by the external pe-
ripherals that will be controlling the SPO256B in order to avoid pulsing the
/ALD input when the SPO256B has not yet received the specific speech ad-
dress. Glitches in the address bus also must be considered.

The timing diagram in Figure 1.4 presents the four most important func-
tions that must be controlled. They are A1-AS8, /ALD, /LRQ, and SBY.

The SPO256B can be tested in a stand-alone configuration prior to starting
further developments with microprocessors or data acquisition systems. The

1.3 SPO256B/SPO264 Processors 9

£ 49 ot b L e R
AT-AR TRl —3 i— — te— N
Al-AZ i !
Lo i

1
I i

ALL \

ALD l E — tpwl
i

i
— ~ Ve tndt
LRR A A

i

T .
— |+ tpdg

Figure 1.4 SPO256B timing diagram for the functions /ALD, /LRQ, and /SBY when
an address input (A1-A8) is present.

low-pass filter is formed by two 100K resistors and two 0.0022 wF capacitors;
the output will drive a loudspeaker or headphones when connected to an audio
amplifier. Depending on the applications of the user, the power of such an
operational amplifier can be variable.

In Figure 1.5, XTL is a 3.12 MHz crystal. The resistor connected from pin
2to +5 V in series with the 0.1 uF capacitor forms an RC timing network that
produces a negative transient pulse when power is turned on. Diode IN914 is
necessary only if power is turned off and then on in less than 50 ms. In order
to test this circuit, the user must set a specific address by setting the eight
switches on or off. Address “9,” for example, is given with 00001001. Thus
switches 1 and 4 must be closed in order to give a logic one to the address
inputs Al and A4. The normally open switch connected to /ALD (pin 20)

YO0 VD1

A8
A7
46
A4 3
A3

)

e ey e e ey

Figure 1.5 Stand-alone configuration for the SPO256B.

10 1. Speech Processing Chips

must be momentarily closed. This will cause a negative transient pulse on
/ALD input. The SPO256B will speak the first word or message that is re-
corded in its internal ROM. You can evaluate the complete vocabulary by set-
ting the 256 possible binary combinations at the address inputs. Take into ac-
count that the power supply must be capable of giving off a minimum current
of 100 mA.

For microcomputer interface, the circuit in Figure 1.6 shows a typical mi-
crocontroller (Intel 8748). In this case, the setup and hold times must be com-
plied with by the microcontroller because the speech processor is a relatively
low-speed device. Data acquisition systems will be very useful with this
configuration in applications where speed is not an important factor. For
high-speed circuits it will be necessary to use fast microsequencers, such as
Amd29CPL151/152/154. These devices work with one clock cycle per in-
struction, and the maximum permissible frequency is 30 MHz.

For typical uP/uC interface applications and where extensive vocabularies
(normally more than 32 words or phrases) are necessary, an external ROM
SPRI128A is required. In this case, linear predictive coding is supported by the
SPO256B with the advantage of having a very natural male/female voice. Be-
cause the ROM consumes about 20 mA, and considering the 90 mA con-
sumed by the SPO256B, a 5 V power supply with more than 250 mA is re-
quired for the circuit shown in Figure 1.6.

The uP/uC programs for controlling the address bus, /ALD, SBY, and
/LRQ lines must be capable of monitoring the standby (/SBY) and load re-
quest (/LRQ) inputs in order to send the desired recorded binary data from the

i’]]
- 17T IR
I iLu’ ; i
st iRt or Ta Aol
GUTPUT vbD ¥D1 - st o (D Audie
LiNES o4 1—AT DIGITAL 1 AN .
S ouT =
ouTPUT HALD M i _
- - W = ; 15 111
uFful THPUT SRY] — —
/ Rk cmACAn 71 SERIN
SPO2568 L 142
{HPUT] TRn = 13 SEROUT
LRY 7IROM ENABLE
il - - ’
_TIROM CLK
4 _‘6 4L faks
|28 y
=8 SPR1284
< URESET [122pF! AR
- FESET i
. - — i
25 18BY RST rees fe0f] T o,
TEST Lti ; %
0.1 = 1 27 ‘ 205F| P12

Figure 1.6 SPO2568B interfaced with a microprocessor/microcomputer.

1.5 Serial ROM SPR128A 11

wC/uP. Any 8-bit microprocessor or microcontroller will be suitable for the
tasks mentioned. Details about the serial speech ROM SPR128A are described
in Section 1.5.

1.4 SPO256-AL2 Allophone Speech
Synthesis Processor

The SPO256-AL2, manufactured exclusively by Microchip, is a single chip
speech processor that is preprogrammed with a ROM pattern containing 64
allophones. An unlimited vocabulary in the English language can be achieved
by concatenating user-selected allophones. It is also possible to construct a
limited vocabulary in the Spanish language. The only constraints to obtaining
an unlimited vocabulary are the Spanish “r” and “i”’ sounds which do not
exist in the American English language. This problem can be partially solved
by using synonyms of the selected word.

Fifty-nine discrete speech sounds and five pauses are stored at different ad-
dresses in the SPO256 internal ROM. Addressing these 64 locations requires
six address bits; Al to A6. Address inputs A7 and A8 will remain grounded
for this specific chip.

Allophones

The phoneme is the basic unit of distinctive sound. A phoneme can represent
different sounds, depending upon its position within a word. Each of these
positional variants is an allophone of the same phoneme. This method is
called “‘allophone speech synthesis.” Certain allophones can vary in duration;
for example, in the word ““four” the “f” sound is long compared with the *“f”
sound of the word “fit.”

Phonemes of English

Each language has a set of phonemes which is slightly different from that of
other languages. Table 1.1 shows the allophone set contained in the SPO256-
AL2 internal ROM.

1.5 Serial Speech ROM SPR128A

The SPR128A, manufactured exclusively by Microchip, interfaces directly to
the SPO256A speech processor to provide vocabulary expansion. A maxi-
mum of four SPR128s can be interfaced to the SPO256B without buffering.
The SPR128A is a mask programmable ROM providing 16 Kbytes of mem-
ory. The operating voltage is 4.5 to 7 V. Inputs and outputs are TTL compat-
ible and the serial output has tri-state capability. This low power device con-
sumes only 20 mA and can be powered down when the system is inactive.
The SPR128A is addressed by an internal program counter (PC). The serial
in/parallel out (SIPO) shift register, denoted as ASR, is used to assemble an

12 1. Speech Processing Chips

TABLE 1.1
Allophone Address Table for the SPO256-AL2
Decimal Hexadecimal Sample Duration
address address Allophone word (milliseconds)
0 00 PA1 PAUSE 10
1 01 PA2 PAUSE 30
2 02 PA3 PAUSE 50
3 03 PA4 PAUSE 100
4 04 PAS PAUSE 200
5 05 /0Y/ Boy 420
6 06 /AY/ Sky 260
7 07 * /EH/ End 70
8 08 /KK3/ Comb 120
9 09 /PP/ Pow 210
10 0A /JH/ Dodge 140
11 OB /NN1/ Thin 140
12 oC * /IH/ Sit 70
13 oD /TT2/ To 140
14 OE * /RR1/ Rural 170
15 OF /AX/ Succeed 70
16 10 /MM/ Milk 180
17 11 /TT1/ Part 100
18 12 /DH1/ They 290
19 13 /IY/ See 250
20 14 /EY/ Beige 280
21 15 /DD1/ Could 70
22 16 /UW1/ To 100
23 17 * /AO/ Aught 100
24 18 * /AA/ Hot 100
25 19 /YY2/ Year 180
26 1A * /AE/ Hat 120
27 1B /HH1/ He 130
28 1C /BB1/ Business 80
29 1D /TH/ Thin 180
30 1E * /UH/ Book 100
31 1F /UwW2/ Food 150
32 20 /AW/ Out 370
33 21 /DD2/ Do 160
34 22 /GG3/ whig 140
35 23 /VV/ Vest 190
36 24 /GG1/ Got 80
37 25 /SH/ Ship 160
38 26 /ZH/ Azure 190
39 27 /RR2/ Brain 120
40 28 /FF/ Food 150
41 29 /KK2/ Sky 190
42 2A /KK1/ Can't 160
43 2B /ZZ/ Zoo 210
44 2C /NG/ Anchor 220

1.5 Serial ROM SPR128A 13

45 2D /LL/ Lake 110
46 2E /WW/ wool 180
47 2F /XR/ Repair 360
48 30 /WH/ Whig 200
49 31 /YY1/ Yes 130
50 32 /CH/ Church 190
51 33 /ER1/ Starter 160
52 34 /ER2/ Beer 300
53 35 /OW/ Close 240
54 36 /DH2/ They 240
55 37 /SS/ Vest 90

56 39 /NN2/ No 190
57 39 /HH2/ Hoe 180
58 3A /OR/ Store 330
59 3B /AR/ Alarm 290
60 3C /YR/ Clear 350
61 3D /YY2/ Guest 40

62 3E /EL/ Saddle 190
63 3F /BB2/ Business 50

(Reprinted with permission from Publication #DSS5005A-1. © 1984 Microchip Technology, Inc.)

address to be loaded in parallel into the program counter. The serial input (SE-
RIN) is used to synchronously load the ASR register. The contents of the pro-
gram counter are loaded into a 16-bit return register and can be restored later.
This feature allows the device to return when a JUMP to a different address is
performed. The program counter points to a specific address in the ROM
which gives out parallel data into a shift register (DSR). The DSR shifts out
the ROM data to the serial output pin.

The ROM ENABLE input is an active low select that tri-states the serial
out when brought high. It is used to avoid bus conflict on the serial out pin
during SPRI128A power up. Chip select input CS1 is used to tri-state the serial
output when low. An internal pull-up resistor permits you to leave the pin un-
connected if not being used. /CS2 is an active low select that tri-states the
serial output pin when high. It also contains a pull-down resistor that allows
the pin to float when unconnected. The ROM clock input receives a frequency
of 1.56 MHz from the SPO256B speech processor. The function of the
SPRI128A to be executed is determined by control pins C1, C2, and C3. A
block diagram of SPR128A is shown in Figure 1.7.

The control states of inputs C1, C2, and C3 are now explained. The 16 bit
address specified by the program counter uses the two upper bits (A14, A15) to
select the action to be performed.

Up to four SPR128s can be interfaced directly to SPO256B without buffer-
ing. Figure 1.8 shows how to interface and control two SPR128s using either a
uP or a uC. Figure 1.8 also illustrates the interface of two SPR128As to the
SPO256 speech processor.

1.6 SPRO0O Speech Interface Chip 15

1.6 SPROO0O Parallel-to-Serial Speech
Interface Chip

The SPRO00O, manufactured by Microchip, contains all necessary logic for
data communication between standard ROM, PROM, or EPROM to the
SPO256B speech processor. The communication protocols are controlled by
the speech processor. The SPR0O0O is suitable for SPO256B testing and speech
ROM emulation. Typical testing consists of evaluating a custom vocabulary
by using, for example, 27C16/32/64/ EPROMs. Figure 1.9 shows the SPR0O00
block diagram.

For applications requiring you to bank blocks of memory under external
control, such as a uC/uP, the function pins CS1 and /CS2 must be used. CS1
is an active high-chip select, and will tri-state the serial output when low.
/CS2 is an active low-chip select that will tri-state the output when high. To
simplify chip selecting, address outputs /A1l to /A15 are used to select exter-
nal memories. AQ to A15 are the address outputs to external memory. C1, C2,
and C3 are the decoded control pins to determine device function, which is
controlled by the SPO256B.

The ROM CLOCK input receives a 1.56 MHz frequency from the
SPO256B. The serial input loads the 16-bit address into the device while the
serial out shifts out the data byte. Eight-bit data outputs from external stan-
dard memories are received in SPR0O00’s DO—D7 data inputs.

Figure 1.10 shows the popular 27C64 EPROM interfaced with the
SPO256B via the SPR000.

SERIAL IN

-
LCR | | o] i
A | i ET j——
— 1]
+
RC
[
¥ &
EXTERNAL
WEMORY
Cle—y . > nep
- CONTROL : o
Le— LoGie
Cd—>
7
!
CLOCK

Figure 1.9 Block diagram of SPR0O0O. Reprinted with permission from Publication #DS5007A-1,
p- 1. © 1984 Microchip Technology, Inc.

16 1. Speech Processing Chips

+5v
S ? ? * 1
28[1 | 27 1617 123
vdd vpp PG 00 al Iy o
01 01 2 e
02 03 -
03 |——|03
04 04
727064 05 05 CRGAAM CONIEAR
S5 0G0 SRC2CEE
EPROM 06 B o
07 07
SEROUT SER N
SER (N SER OUT
 |ADDRESS
AT-ATT auT CLOCK = FOM CLOCK
ROMEN ROM EMABLE
fss OFE (E /s
T T T T
422 20 (1 oz
. : . i

Figure 1.10 SPROOO interfacing a parallel 27C64 EPROM with the SPO256B speech
processor.

The SPRO0O operates from 4.5 to 7 V, consuming a current of 40 mA. An
access time of 560 ns is typical to obtain each data byte from the EPROM.

1.7 SDSé624 Speech Synthesis
Development Board

The SDS264 is a development system consisting of a PC board and several
diskettes. The system requires an IBM PC, XT, or AT with a hard disk, a
math coprocessor, and extended memory. This system is a code generator for
the SPO264/SPO256B speech processors and the SPI000LPC synthesis and
recognition processor.

The system has the following features:

* Digitizes analog input speech using a 12-bit onboard A/D converter.

* Analyzes and computes speech synthesis parameters using analysis soft-
ware included with the system.

» Edits speech synthesis parameters by means of a software editing
capability.

* Reviews synthesized data output from the SPO216, SPO264, or SP1000
speech synthesis chips located on the development board.

1.8 Digitalker Kit DT1050 17

» Compresses and formats the synthesized data into the desired bit rate
(1200 to 5000 bps) for downloading to a PROM programmer. This fea-
ture allows you to create special words or phrases for your specific mem-
ories (EPROMs or EEPROMs).

The system also features a natural-sounding voice, variable sampling rates,
and a 500 Hz output bandwidth.

The SDS264 is available from Telinovation, Inc., 447 Salmar Ave., Camp-
bell, CA 95008.

1.8 Digitalker Kit DT1050

The Digitalker system consists of three n-MOS integrated circuits. The main
IC is referred to as the speech processor chip, or SPC. The Digitalker ROMs
store only those speech elements that the ear needs to hear. (The human vocal
tract generates sounds that do not convey any intelligible information.) The
techniques of digitization and compression are used by National Semiconduc-
tor in this system. This is a time-domain synthesis technique that reduces the
amount of information needed to store electronic speech by removing the ex-
cess or redundant data from the speech signal.
The four main schemes that perform the task are:

1. Removing all redundant pitch periods and portions of certain other pitch
periods.

2. Adaptive delta modulation coding, involving storing the arithmetic
differences of successive wave amplitudes. This minimizes memory
requirements.

3. Phase-angle adjustments, which remove the direction component of the
speech waveform.

4. Half-period zeroing, replacing the low-level amplitude portion of a
pitch period with silence. This technique reduces by 50% the amount of
ROM required to store the speech data.

The result of using multiple compression techniques is a system capable of
storing and reconstructing a word or phrase with high quality. The Digitalker
is programmed with control information that instructs it how many times to
repeat a specific waveform. Recordings of actual speech are sampled for digi-
tization at a rate at least twice that of the highest frequency in the waveform
pattern. Inside the SPC (see Figure 1.11) there are a programmable frequency
generator and a variable gain D/A converter to add inflection that makes a
realistic-sounding speech. The ROM set is programmed with a vocabulary
consisting of 136 words, one complete phrase, two tones, and five different
silence durations. Each word or phrase is assigned an 8-bit address. Address
129 (81H) is the “‘ss” sound; it is used after a word to make it plural. The
system is more like a digital recorder that digitizes actual voices, stores, and
then plays back, while the other methods model the vocal tract. The system is

1.8 Digitalker Kit DT1050

19

TABLE 1.2
Master Word List for the Digitalker PROMs
Decimal Decimal
Address word Address word
0 THIS IS DIGITALKER 58 AGAIN
1 ONE 59 AMPERE
2 TWO 60 AND
3 THREE 61 AT
4 FOUR 62 CANCEL
...... 63 CASE
e 64 CENT
18 EIGHTEEN 65 400 Hz TONE
19 NINETEEN 66 80 Hz TONE
20 TWENTY 67 20 ms SILENCE
21 THIRTY 68 40 ms e
22 FORTY 69 80 ms v
23 FIFTY 70 160 ms v
24 SIXTY 71 320 ms H
25 SEVENTY 72 CENTI
26 EIGHTY 73 CHECK
27 NINETY 74 COMMA
28 HUNDRED 75 CONTROL
29 THOUSAND 76 DANGER
30 MILLION 717 DEGREE
31 ZERO 78 DOLLAR
32 A 79 DOWN
33 B 80 EQUAL
34 C 81 ERROR
35 D 82 FEET
36 E 83 FLOW
37 F 84 FUEL
38 G 85 GALLON
39 H 86 GO
40 I 87 GRAM
41 J 88 GREAT
42 K 89 GREATER
43 L 90 HAVE
44 M 91 HIGH
45 N 92 HIGHER
46 (0] 93 HOUR
47 P 94 IN
48 Q 95 INCHES
49 R 96 IS
50 S 97 IT
51 T 98 KILO
52 U 99 LEFT
53 \% 100 LESS
54 w 101 LESSER
55 X 102 LIMIT
56 Y 103 LOwW
57 Z 104 LOWER
Continued Continued

20 1. Speech Processing Chips

105 MARK 124 PULSES
106 METER 125 RATE
107 MILE 126 RE
108 MILLI 127 READY
109 MINUS 128 RIGHT
110 MINUTE 129 SS (Prefix, See Note)
111 NEAR 130 SECOND
112 NUMBER 131 SET
113 OF 132 SPACE
114 OFF 133 SPEED
115 ON 134 STAR
116 ouT 135 START
117 OVER 136 STOP
118 PARENTHESIS 137 THAN
119 PERCENT 138 THE
120 PLEASE 139 TIME
121 PLUS 140 TRY
122 POINT 141 upP
123 POUND 142 VOLT
Continued 143 WEIGHT

Note: “SS™ makes any singular word plural.

(Reprinted with permission from Linear Data Book. 1982, 13-17. © 1980 National Semiconductor
Corporation)

Chip Select (/CS): The speech processor chip (SPC) is selected when /CS is
low. /CS must be low during a command to the SPC, for example, when a
/WR pulse is issued.

Data Bus (SW1-8): 8-bit address which defines any one of 256 speech entry
points (see the master word list in Table 1.2). When not all the words listed are
used, unused inputs must be connected to Vss.

Command Select (CMS): This input specifies the two possible commands
to the SPC. When CMS is zero, it works as a reset interrupt and starts the
speech sequence. When CMS is high, it works as a reset interrupt only.

Write Strobe (/WR): When pulsed low, the address specified in the data bus
is latched into a register. On the rising edge of the /WR, it starts execution of
the command as specified by CMS. If /WR is pulsed low to start a new speech
sequence when the SPC is still executing the last one, the new speech se-
quence will be started immediately. This permits you to cut words or phrases
at any desired point to concatenate a different message or word. (See Fig-
ure 1.11.)

ROM Data (RData 1-8): This is an 8-bit parallel bus for use with an exter-
nal parallel speech ROM.

Interrupt (INTR): A logic 1 output indicates that the SPC is inactive. When
the SPC is executing a speech sequence, INTR goes low. Therefore, /WR can
be pulsed low only when INTR is high.

ROM Address (ADR 0-ADR 13): 14-bit parallel output bus that issues the
address of the speech data to the speech ROM.

22 1. Speech Processing Chips

increments of one. A logic oscillator increments the counter and causes the
write input (/WR) to be pulsed low via the half-monostable formed by N3 (1/3
4093). This low transient pulse causes the MM54104 to start speaking, at first
using a female voice: “This is Digitalker.” All subsequent messages are
spoken using a male voice.

1.9 Toshiba CMOS Speech Synthesis
LSI Devices

The speech synthesis devices from Toshiba appeared in February 1987. These
devices are classified in two branches: ADM (adaptive delta modulation) and
PARCOR (partial autocorrelation).

The ADM devices features are for low-cost speech systems, direct record,
and to reproduce speech and sounds. Most of these devices are suitable for
both low- and high-volume user’s applications.

Tables 1.3 and 1.4 show a list of ADM devices. A typical application is
shown in the schematic presented in Figure 1.13.

1.10 TSP5220C Voice Synthesis Chip from

Texas Instruments Inc.

At the present time, Texas Instruments Inc. is offering four voice synthesis
processors: the TSP50C40A, TSP50C50, TSP5110A, and TSP5220C. In this
section, we will describe these devices briefly.

TABLE 1.3
ADM Devices
Bit Rate/
Part Number Function Speech Time Supply Volt
T6668 Recording/Reproduction 8K-32Kbps 4.5-5.7V
DRAM Type
T6831 Recording/Reproduction 5. 5K-16Kbps 4.5-5.7V
SRAM Type
TC8830F Recording/Reproduction 8K-32Kbps 4.5-5.5V
SRAM Type
T6667 Reproduction Only, 5. 5K-16Kbps 3.5-5.7V
Built-in ROM
T6658A Speaker-Dependent 10-40 words 4.5-5.5V

wWord Recognition

(Reprinted with permission from Microcomputer Product Summary, February 1987, 11. © Toshiba Amer-
ica, Inc.)

1.10 TSP5220C Voice Synthesis Chip 23

TABLE 1.4
Two Speech Synthesizers and Two Speech ROMs Belong to the PARCOR
(partial autocorrelation devices)

Part Bit Rate/

Number Function Speech Time Supply Volt

T6803 Speech Synthesis 2.5-9. 8Kbps 3.9-5.7V
Built-in 64K MROM

T6721 Speech Synthesis 2.4-9. 6Kbps 3.5-5.7V

T6772 64K Masked ROM 9-35 Sec 3.5-5.7V

T6884 128K Masked ROM 17-70 Sec 3.5-5.7V

(Reprinted with permission from Microcomputer Product Summary, February 1987, 11. © 1987 Toshiba
America, Inc.)

Speech encoding on all TI voice processors is achieved with LPC coding.
The inputs of these processors contain the codes for 12 synthesis parameters
(pitch, energy, and 10 filter coefficients). These codes are decoded by the
voice processor to give out time-varying signals of the LPC model of the
original voice.

The digital filter of this voice processor receives periodic and random sig-
nals. Periodic inputs are used to reproduce vowels or voiced fricatives (z,

R
T
)}) {wmic) ADM REGISTER
N— —3 | | ANALYSIS & COUNTER
\ SYNTHES S BLOCK
AND 4/0 Y4
FUNCTION | T6668 .
ANP> U/DP
\\
" TIMING D/A
uP/uC CENTRAL CONVERTER
| Creuit

l

FOUR 64K
DRAM aR
FOUR 256K

Figure 1.13 A typical T6668 device application interfaced with an external CPU.
(Reprinted with permission from Microcomputer Product Summary, February 1987, 11. © 1987 Toshiba Amer-
ica, Inc.)

24 1. Speech Processing Chips

b, d). On the other hand, random inputs derive unvoiced sounds, such as s,
f, t, and sh. Two separated sources generate the voiced and unvoiced excita-
tions. The output of the digital-to-analog converter is filtered before driving a
loudspeaker.

Texas Instruments produces the TSP5220C, a speech synthesis device
based on an LPC-10 (linear predictive coding with a 10th-order filter). Its ar-
chitecture allows different storage media for the model of the vocal tract. An
external microcontroller can also be interfaced to the TSP5220C to select the
digital data.

To operate the TSP5220C in a voice synthesizer system, the following de-
vices are required:

1. Storage device (ROM, RAM or TSP6100) for TSP5220C input data.

2. uP/uC to direct the TSP5220C modes of operation. Simple digital logic
can also be used to work as a host controller.

3. A low-pass filter to remove high-frequency switching noise from the
output signal of the TSP5220C.

4. An audio amplifier and a speaker.

The TSP5220C features a low data rate (1000 to 17000 bps), a 4 or 5 kHz
voice input bandwidth, an 8-bit digital-to-analog converter, and a pitch-
excited LPC-10 synthesis algorithm. Voice data input can be selected through
an 8-bit data bus or a serial interface for use with a TSP6100 masked ROM.

Theory of Operation

An external host controller (wP/uC) can be used to issue commands and filter
parameters to produce synthetic speech. Figure 1.14 shows a block diagram of
the TSP5220C voice synthesizer.

The input and output structure is described as follows:

D0-D7: Memory data bus interface for use with the external host control-
ler. This is achieved by controlling the inputs /READ (/R), /WRITE (/W),
and monitoring the outputs interrupt (/INT) and ready (/READY).

ADDI, ADD2, ADD4, and ADDS8/SER IN: These are the address outputs to
the external voice synthesis memory. The pin function ADD 8/SER IN can
also be used as a serial data input. Note that ADDI is the least significant bit
while ADDS is the MSB when both ADDI to ADDS are used as addressing
inputs to a vocabulary ROM (TSP6100) series. Clock and control signals MO,
M1 are provided for memory control.

Memory Data Bus

The 8-bit data bus used for interface with an external controller can receive
data into the command or FIFO registers by pulsing the write input (/W) low.
By pulsing the read command low, data are read from the data or status regis-
ters to the external host controller.

1.10 TSP5220C Voice Synthesis Chip 25

R INPUT/ INT
- CUTPUT READY
W~ CONTROL
—_— ROMCLE.
oe-t7 M e
| COMMAND
REGISTER —“
D? STATUS SPEECH ——_‘—u‘l
DS REGISTER DATA
05 MEMOR Y -
. conTROL = ADDT.Z8
——= | oo ADDB/SERIN
Z DATA ADDE
~ REGISTER .
nopy | 16-BYTE DATA SPEECH || N SPEAKER
LI eiro | sereco| | st [0
L2 BUFFER SI7ER
SERIAL CUT

Figure 1.14 TSP5220C block diagrcnm. (Reprinted with permission from Texas Instruments Inc.
© 1986)

The four registers used to interface to the external memory data are the
command register, FIFO register, data register, and status registers (flags).

The command register is formed by an 8-bit latch which is controlled from
an external controller. The FIFO register is a 16-byte register that receives, via
the memory data bus, speech data from the bus controller. Also, speech data
are serially given to the speech synthesizer. The data register is an 8-bit SI/PO
latch that receives serial speech data from a TSP6100 ROM. These data are
routed to a parallel byte-wide bus for access with the memory data bus for
output to the external controller. The 3-bit status register contains data on the
status of the TSP5220C. The status word is put onto the memory data bus so
that it can be accessed by an external host controller. The status register can
be read by taking the Read (/R) input low. When this happens, the TSP5220C
sends status data to the memory data bus. When the data are stable, the
/READY signal goes low. A 12 us time delay is required before applying an-
other write or read command. The 8-bit memory data bus has internal pull up
resistors.

Figure 1.15 illustrates the TSP5220C system using the TSP6100 ROM for
speech data interfaced with an Intel microcontroller 8748.

With this ROM (TSP6100), the TSP 5220C can “‘talk” about 200 words in
more than 100 seconds. The TMS5220C can access a maximum of sixteen
128K memories. A complete voice synthesis system can be assembled from
three ICs, a speaker, and a microcontroller (see Figure 1.15).

26 1. Speech Processing Chips

ANALCG
QUTPUT
ROMCLK CLK
MO M
M1 M1
ADD1-ADDB ADD1-ADDB
TSPB100
T5P5220C
— s [
INT] INT F—— | 1 Ports
READY 0 . < aovailable
. e on P2 N for user
0O-07 R RD RD —

WR ucaz4ad

P1.0-P1.7

Figure 1.15 TSP5220C speech synthesizer system controlled by a uC.

1.11 CMOS ADPCM Speech Synthesizers
and Recorders from Oki
Semiconductor

Oki Semiconductor produces different types of speech synthesizers and re-
corders of the series 52XX and 62XX. In order to develop speech synthesis
systems for specific applications, Oki Semiconductor offers on a loan basis
the speech analyzer OSA-1 and other support tools. The OSA-1 system allows
the user to make straight/compressed adaptive differential PCM (ADPCM)
data for the speech synthesizers MSM6243 and MSM6212 by applying an in-
put voice via a microphone or a tape deck player. The user can also change the
degree of compression for voice analysis purposes. The ADPCM-analyzed
output data can be downloaded into an EPROM via an RS232 interface.

Speech analyzers can be built around the MSMS5218RS to generate the
ADPCM data on a real-time basis by applying the necessary input voice.
These speech data can be stored as ROM data for the simulator MSM5248.

The simulator MSM5248 contains the same functions as the chip MSM5248
and is able to synthesize the same quality voice. There are two more simu-
lators available: the MSM6243 and the MSM6212.

The speech synthesizer MSMS5205, for example, is an integrated circuit

1.11 CMOS ADPCM Synthesizers and Recorders 27

which accepts ADPCM data. It contains a synthesis stage that expands the 3-
or 4-bit ADPCM data to 12-bit PCM data and a stage that converts the PCM
data to analog signals via a 10-bit D/A converter. The sampling frequency can
be selected by inputs S1 and S2 in steps of 2 kHz (4, 6, and 8 kHz) when a
384 kHz crystal is used in conjunction with two timing capacitors of 220 pF.

The MSM5205 device operates from a 5 V power supply with an operating
temperature range of —30°C to +70°C. Figure 1.16 shows the functional
block diagram.

The MSMS5218 is a speech analysis/synthesis IC that enables the user to
develop his own speech analysis and synthesis systems. The data compres-
sion is also made by ADPCM. This device also synthesizes PCM data from
ADPCM data. The PCM data are accessible directly or in analog form via the
internal 10-bit D/A converter. The MSM5218 also features variable sampling
frequency (4, 6, and 8 kHz), handshaking signals for synchronous operation
with an external A/D converter, and its typical power comsumption is 15 mW.
It is available in 24-pin plastic DIP and 32-pin plastic flat.

The MSM5248 is an ADPCM voice synthesizer with 48 Kbits of internal
ROM for the user’s program. Its sampling frequency is 5.46 kHz when con-
trolled by a 32.768 kHz crystal. The chip supports a maximum length of
speech of 3 seconds with a limit of seven words selectable by the user. For
applications requiring more vocabulary, the speech synthesizer MSM6243,
which contains 192 Kbits of ROM, can support a maximum of 124 words. The
maximum speaking time of compressed ADPCM data for the MSM6243 is 20
seconds, while the MSM6212 has a maximum speaking time of 40 seconds.
The MSM6212 contains 288 Kbits of internal ROM.

0321 . 4
P 4 bit - . <LReset
2 : / ADPCM synthesis st ;
312 input 5| ADPCM synthesis stage - ‘
00 register i <+4B/3B
: |
XT — 12
— 1 05C N
(T — |]
, Timing L 12 bit 10 10 bit DA OUT
51 i circuit = shift i 0/4
. -~ register ¢
S
K —e—

I ¢$ __________________

Figure 1.16 Functional block diagram of the MSM5205 speech synthesis IC. (Oki
Voice Synthesis LSI Data Book, July 1989, 29. © 1989, Oki Electric Industry Co., Ltd. Reprinted with
permission.)

1.12 Samsung Synthesizers ICs 29

Oki Semiconductor also produces two types of solid state recorders, the
MSM6258 and the MSM6258V. Both devices contain an ADPCM speech
processor implemented in CMOS technology for low power consumption.

A/D and D/A converters are contained in both chips and can be looped to
connect external devices. They also feature a voice detector circuit and a
phrase selector accepting analog or PCM data input and processing analog
or PCM data output, a static RAM interface accepting a maximum of 128
Kbytes, and a static RAM interface for a maximum of two megabytes. Three
sampling frequencies are possible; 4.0, 5.3, and 8.0 kHz (@4.096 MHz)
clock. It contains recording and playback outputs and seven phrase channels
with individual lengths.

It is available in two versions: for stand-alone operation and for MPU inter-
face (8-bit), as illustrated in Figures 1.17 and 1.18, respectively.

Both devices operate with a single power supply of +5 V (10%) with a
current consumption of 4 mA (@4.096 MHz) or 10 wA during standby condi-
tion for SRAM interface. The stand-alone version comes in a 60-pin plastic
Flat or 68-pin PLCC. The MPU interface version comes in a 44-pin plastic flat
or 40-pin plastic DIP.

1.12 Samsung Voice Synthesizers ICs

The KS59XXX series of speech synthesizers are developed by Samsung
Semiconductor and Telecommunications Co., Ltd.(SST). These devices are
classified as KS5901A, KS5902XX, KS5911, and KS5912XX, using the
encoded reproduction algorithm LPC. Speech is compressed by processing
an externally provided variable bit stream of encoded LPC speech data.
The result is then converted to an audible output with an on-chip 9-bit D/A
converter.

Table 1.5 shows the principal characteristics of the four kinds of speech
synthesizers available from SST.

TABLE 1.5
Characteristics of the Four Kinds of Speech Synthesizers from SST
(Reprinted with permission of Samsung Semiconductor and Telecommunication)

Features KS5901A KS5902XX KS5911 KS5912XX
Synthesis
Method LPC LPC ADM ADM
Operating
Voltage 5V 5V 5V 5V
Oscillation 640KHz 2.56 MHz 640 KHz 640 KHz

Frequency (X-Tal 0SC) (X-Tal 0SC) (RC 0SC) (RC 0OSC)

30 1. Speech Processing Chips

Sampling
Frequency 8 KHz 8 KHz 8,11,16,32 KHz 8,11,16,32 KHz
Bit Rate 2.4~9.6 Kbps 2.4~9.6 Kbps 8,11,16,32 Kbps 8,11,16,32 Kbps
Control Mode CPU/Manual CPU/Manual Talk-Back/ Manual
/Auto Manual

Data ROM External ROM Internal ROM External RAM Internal ROM
(or RAMO Max. 64KBytes 48KBits 64K/256DRAMX 4 64KBits
Speech Times Max. 4 Min. Max. 20 Sec. Max. 2 Min. Max. 8 Sec.
D/A Converter
Bits 9 Bits 9 Bits 10 Bits 10 Bits
PKG 60 FQP 24 DIP 48 FQP 16 DIP
Applications Sound Toy Talk-Back Toy

Information Simple Sound A/M Natural

A/M Information Sound Effect

The talk-back speech synthesis system shown in Figure 1.19, for example,
is composed of the following three chips.

1. KS5911A: CMOS speech synthesizer
2. PROM: External 8-bit DRAM memory.
3. LM386: Low-power audio amplifier.

References

Sclater, Neil.: Introduction to Electronic Speech Synthesis. Blacksburg, Howard & Sams
& CO. Inc.

Oki Voice Synthesis LSI Data Book. (First Edition, Aug. 1987)

TSP5220 Speech Synthesis Manual, 1987. Texas Instruments

Stout, David F.: Microprocessor Applications Handbook. McGraw-Hill Book Company

Kevin Leary and David Morgan: Fast and accurate analysis with LPC gives a DSP chip speech-
processing power. Electronic Design.

SPO256B Narrator Speech Processor, (DS50018A-1)

SPO264 Narrator Speech Processor, (DS50012C-1)

SPR128A/128B 128K Bit Serial Speech ROM, (DS500006C-1)

SPO256-AL2 Narrator Speech Processor, (DS50005A-1)

-1988 Microchip Technology Inc.

References

: +5V
i : OV (Digital Ground)

’47 : Analog Ground

31

3.9KQ 3.9KQ

0.014F

-]
0.47uF ==
Iy
MIC TF TuF \
it P
® F— MR —
1 | \
36 35 34 33 32 31 30 29 28 27 26 25 |
z - o = °o - a9 o - o
25 8 589 82 <« << |
g ‘__9 L o< > |
0. 14F s |
! 37 Veer As 24 Ao Vee |-
38 Vson As 23 [‘
77 nc{ 39 sToP As 22 A Ar
NC-{40 TEST A; 21
LJa, As b—
NC-{ 41 START As 20
42 EXT KS5911 Dour 19
L—JA; Din f—14+
o0—{ 43 AauTO -CLOCK 18 -NC 256K
—— 44 -WE -CASs 17 |-NC As Dout
——1 45 -RAS -CAS; 16 |-NC
O—] 46 256K -CAS; 15 - NC Ae BAS
é{ 47 Rour -CAS, 14 }——
™
148 Ry 13 f-NC Ao WE
— o = [V
SgcyfE £:20¢; o
v 2 2 aoa a @ T @ a Vss CAS hH
1 2 3 4 5 6 7 8 9 10 1112
1 T T T T T
0 Q O 0L QO |
z z z zz 2z 2z m]
$J

Figure 1.19 KS5911 Block diagram interfaced with an external controller. (Samsung
Semiconductor Product Guide, 1990, p. 207. Reprinted with permission.)

Experimenting with Speech Processors

2.1 Evaluating the Allophone Addresses
for the SPO256-AL2

Before applying the speech processor SPO256-AL2 in a variety of circuits,
the user should know how every allophone sounds to have an idea of how to
concatenate the right allophone using the basic linguistic rules described in
Chapter 1. The allophone set is shown in Table 1.1 of Section 1.4. Please have
it at hand when you start this circuit, so you can recognize each allophone.

The speech processor SPO256-AL2 is used here to read the allophones that
are contained on its own 64K ROM. The first requirement is to apply a power-
up reset pulse to the 8-bit binary counter CD4520 and to the dual BCD counter
CD4518, IC1 and IC4 respectively (see Figure 2.1). This procedure will en-
sure that both counters will start with a count of zero.

Binary counter IC1 provides the addresses sequentially to the speech pro-
cessor. IC4 works like a mirror of IC1 by counting the same clock pulses, but
in BCD code. The positive reset pulse required by IC1 and IC4 is supplied by
the R1 C1 network, and the negative reset pulse for the speech processor is
supplied by the R2 C2 network.

When the START switch is pressed, the speech processor vocalizes the first
allophone ““AY” and continues with the next allophones in sequential order.

The standby (SBY) output is normally in the high state and will go low
when the /ALD input is pulsed low. That is, the SBY output stays low until the
chip stops vocalizing a particular allophone. A high standby output enables
the Nand gate IC2a for a new input command. There are no timing problems
using the Nand gate since only when the speech processor is ready to accept a
new /ALD pulse will the Nand gate be enabled for transmitting a new pulse.

32

34 2. Experimenting with Speech Processors

the dual BCD counter 4518, which is used to observe the decimal address of
the allophone that is currently being vocalized. The BCD output of CD4518 is
fed to a pair of CD4543s (BCD to seven segment decoder-drivers). The pair of
CD4543s drive the two-digit liquid crystal display LCD002. Nand gate IC2b
and associated components form a 100-Hz logic oscillator whose output fre-
quency controls the LCD’s back plane input as well as the phase input (pin 6
of CD4543) of the two decoders.

The period of the reset pulses can be obtained by assuming that the reset
inputs have threshold levels of one-half of Vdd; that is, 2.5 V.

For the network R1 C1: T = R1 Cl In [5/2.5] = 0.7 RI C1

T = 0.7 (100K) (0.1«F) = 7 ms
And for the R2 C2 network we get:

T=R2C2In[5/(5—-2.5]=0.7R3C3
T=7ms

The timing diagram in Figure 2.2 shows the most important waveforms of
the circuit presented in Figure 2.1. Note that the reset pulse applied to IC1 and
IC4 is given by the voltage in resistor Rl which is

V(RI) = (Vdd/R)e ~VR¢

The reset pulse applied to the speech processor is given by the voltage in
capacitor C2 which is:

V(C2) = Vdd(l — e kC)

The propagation times tphl and tplh are both equal to 300 ns, and they cor-
respond to the time that the Schmitt trigger Nand gate takes to respond to a
given input.

The next step for this circuit is to create words and phrases that can be
vocalized correctly with this processor; this is achieved by adding an EPROM
memory between IC1 and IC3 with a previously tested program. This circuit is
shown in Figure 2.3.

This circuit can be tested by recording the data shown in Table 2.1 in the
EPROM. These data correspond to the words “zero, one, two, three.”

A variation of the circuit presented in Figure 2.1 is to set the flip-flop de-
vice when the power is turned on to enable the speech processor to give
spoken instructions for a specific task routine. When the instructions are over,
the O6 output of EPROM 2764 resets the flip-flop (4013) and the binary
counter (4040). This is achieved by programming 40H after the last speech
data, where 40H corresponds to a binary output (01000000). The timing dia-
gram in Figure 2.4 shows the pulse generated by EPROM 2764 at the end of a
complete message.

2.1 Evaluating Allophone Addresses 35

SV
Vdd | oft
Reset
IC1 & 1C4 \
b
Reset e
IC3
Start
Switch off on
tphl —» K— ~ glplh
_ i T [
ALD tplh —HKg— tphi= & |
s
~ first second [T
SBY allophene }al lophone]
i St
Figure 2.2 Timing diagram for circuit in Figure 2.1.
‘ - +5V
L RS .
0. 1uF 0.1uF
P R A e F A R
at A0 00 F———At
: : : : ' : 7
X X : . : : To | i
4040 : YR | sPozsE-AL2 | gppqor hos?
: ' : ' : audio Amp
: : _ 05 AB o
' : CE|27 1|a7
Q12 A1
OE|22 1048 100K
A12|2 2
GND |14 L 25
= 3 10.1 uF
20 |1 l22 -
14 =
1
! 2

T /4 cosss

2
Nl

Figure 2.3 Circuit fo create custom words or phrases with the speech processor
SPO256-AL2.

36 2. Experimenting with Speech Processors

TABLE 2.1
EPROM Program for the Words “Zero, One, Two, Three.”
Hex Hex Hex Hex
Address Data Address Data
0 4 9 4
1 2B A D
2 3C zero B 1F two
3 35 C 4
4 4 D 1D
5 39 E E three
6 one F 13
7 10 04 pause
8 B 11 40 reset pulse
Continued
oY
vdd | off
Reset \
4040 & 4013
/N
SET
0 30005 — je—
30005 —> | — 60005 k-
—_—] i f
ALD 600nS —> Ee— 600nS | k- |
300nS —) k— b i
, S first !—*] lost
SBY allophone | lal lophene | |
OUTPUT '
06 600nS {‘(7

Figure 2.4 Timing diagram for circuit of Figure 2.3.

2.2 SPO256-AL2—-PC/XT Interface 37

2.2 Interfacing the SPO256-AL2
with a PC/XT

By using the GWBASIC version 3.21, the parallel port of a PC/XT IBM-
compatible computer can be accessed to control the most important functions
of the speech processor SPO256-AL2. This way, you will be able to practice
with the allophone set to create your own custom vocabulary for a specific
application.

Figure 2.5 shows the schematic diagram for interfacing the speech pro-
cessor with the parallel port of the TANDY 1000SL microcomputer. The con-
nector is a 36-pin card edge type. Notice that the speech processor has the
strobe enable input (SE) tied to ground, which disables the /ALD input (pin
20) of the SPO256-AL2. The speech processor is used in MODE 0, requiring
you to apply zeroes at the address inputs (A1—-A6) of the speech processor
after a specific address has been issued.

The computer controls the SPO256-AL2 with simple GWBASIC instruc-
tions. In this project, a TANDY 1000SL microcomputer is used to control the
speech processor via the parallel printer port. The following program allows
you to evaluate the 59 allophones available (see Table 2.2).

Another application for your computer is to make it speak a specific mes-
sage when you instruct it to do so. This will be used in programs written in
GWBASIC. By calling the message routine you will hear your prerecorded
message or group of messages. Table 2.3 shows a program to make your com-
puter speak the message “‘try again.”

The previous routines have as many applications as the scope of your

]2 12 To LPF ond
2 3 }ZAE %_:;audig _
DY fo0psL 3 : B Zamplifier
o 4 ~] g ivasling ”
PARALLEL PORT 5 § }irzg 42 8 L;%PF
I 2168 L. 11'\ MH
B LAl =214 MHz
82 D4 b
45y |18 7 27 K
23 20pF +
g i 100K oY
G| 2 B RST LT VA
Q‘ ™ S £ !
BIReT NG 144
V12T oo T

Figure 2.5 Schematic diagram for the interface of a PC-compatible computer with
the speech processor SPO256-AL2.

38

2. Experimenting with Speech Processors

TABLE 2.2
Routine to Evaluate the Set of Allophones and Pauses
of the Speech Processor SPO256-AL2.

10 'Evaluating the set of allophones.
20 FOR A = 0 TO 63
30 OUT 32, A 'output port is loaded with the value of A
40 OUT 32, 0 'output port is loaded with zeroes to start the
42 'speech utterance, SBY = 0
50 PB = INP(127) 'reads the 7-bits
60 F = PB AND 64 'reads bit 7 only (SBY)
70 IF F<>64 THEN 50 'If SBY=0 continue reading SBY, else goto 80
80 NEXT A 'increment value of A
90 OUuUT 32,1
95 END
TABLE 2.3

Use this BASIC Routine and You Will Hear the Message “Try Again”
10 'try again
20 FOR J =1 TO 9
22 READ A
30 OUT 32, A ‘output port is loaded with the value of A
40 OUT 32, O 'output port is loaded with zeroes to start the
42 'speech utterance, SBY = 0
50 PB = INP(127) 'reads the 7-bits
60 F = PB AND 64 'reads bit 7 only (SBY)
70 IF F<>64 THEN 50 'If SBY=0 continue reading SBY, else goto 80
80 NEXT J 'increment value of A
90 DATA 13,39,6,4,24,36,7,11,4
95 END

imagination can reach. You may try, for example, to create a routine for a
talking clock program.

23

Interfacing a Speech Synthesizer'
to a Commodore 64 Computer

The versatility of a Commodore 64 computer can be enhanced by adding a
speech processor. In this section we will interface the allophone-based speech
processor SPO256-AL2 to the parallel user port of a Commodore 64 computer

'Source: Reprinted and adapted with permission from Computer Digest, August 1986. ©
Copyright Gernsback Publications, Inc., 1986.

2.3 Synthesizer/Computer Interface 39

in order to create several software programs to control the speech processor
efficiently.

Figure 2.6 shows the schematic diagram for interfacing the speech pro-
cessor SPO256-AL2 to the Commodore 64 and to the audio amplifier LM386.
The user port must be configurated with lines PBO to PBS as outputs. Lines
PB6 and PB7 will be configurated as inputs. This is achieved with the state-
ment “POKE 56579,63,” where PBO to PB5 send a specified address to the
speech processor IC1 (see Figure 2.6,) and PB6 receives the logic status of the
STANDBY output (pin 8 of IC1). In this case, the speech processor is config-
ured in MODE 0; for every speech datum issued by the computer, output lines
PBO to PB6 will go to a low state. In this manner, the speech processor will
enunciate the assigned allophone. Then the computer will start reading the
user port in order to know the STANDBY status (PB6), which tells the com-
puter when the speech processor is ready to be triggered again. The instruc-
tion “PEEK(56577)” reads the user port, but we need to read PB6 only,
which represents the decimal number 64. This is made by masking the user
port with the AND function. If PB6 is a logic one, the computer sends a new
address.

We will now proceed to evaluate the set of allophones of the SPO256-AL2
by using the routine shown in Table 2.4. The FOR-NEXT loop (line 30) is
used to increment the value of A from 0 to 63. The purpose is to use the vari-
able A in the POKE statement (line 40) in order to address each allophone.
The instruction “POKE 56577,0 clears and prepares the user port for the

COMMODORE 64
USER PORT
c 1 33K 33K 10uF
FB0 At % +
" N B i
3 0227,
PB3 - ﬁiﬁ SPO256- 220F = uF ’:‘L\ 02208
PBS J 13A6 —L N 10ufF
L
PB7'——]_ A7 &=3.12 MHz 10K
= __F AB 2_{ ¢ VOLUME

CONTROL

8 4L
PBBZ LT e 2298 I A
5v 73 b 100K 3V
RST L
14 19 cavoor 129 - 100
GND SE SBYRST T 0 P uF
V122 por 7]§ L 10

Figure 2.6 Schematic diagram of the circuit that interfaces the SPO256-AL2 to a
Commodore 64 computer.

40 2. Experimenting with Speech Processors

TABLE 2.4
Software Program to Evaluate
the 59 Available Allophones

10 REM ALLOPHONES EVALUATION
12 REM BY R. JIMENEZ AND ADRIAN VALLE
20 POKE 56579, 63

30 FOR A=0 TO 64:PRINT A

40 POKE 56577, A

50 POKE 56577,0

60 PB = PEEK(56577)

70 F=PBAND64

80 IF F<>64 THEN 60

90 NEXT A

100 POKE 56577,1

120 END

next data. The PEEK statement (line 60) reads the user port, storing its value
in the variable PB. Then PB is compared with the number 64 on the IF state-
ment (line 80). If F is not equal to 64, the speech synthesizer is not ready to
receive new data, and the computer goes back to line 60 automatically; other-
wise, new data are sent. The statement “POKE 56577,1”” makes the speech

TABLE 2.5
Software Program to Make the Computer
Say the Words ““I Am a Talking Computer”

10 REM I'M A TALKING COMPUTER
60 POKE 56579, 63

65 FOR J=1 TO 27

70 READ A

80 POKE 56577,A

85 POKE 56577,0

90 PB=PEEK (56577)

94 F=PB AND 64

96 IF F<>64 THEN 90

100 NEXT J

102 DATA 24,6, 1:REM I

104 DATA 7,7,16, 2: REM AM
106 DATA 24, 2:REM A

108 DATA 13, 23,23,2,42,12, 44, 1: REM TALKING

110 DATA 42,15,16,9,49,22,13,51,1,4, : REM COMPUTER
160 RESTORE

170 FOR T=1 TO 500:NEXTT: GOTO 65

200 END

2.3 Synthesizer/Computer Interface a

processor stop saying the last allophone. If you wish to listen to the allophones
slowly, just press the (CTRL) control key.

Table 2.5 shows a program which makes the speech synthesizer say the
sentence “‘l am a talking computer.” This program works like the first one
(Table 2.4), using the same instruction to write and read by means of the user
port. The only difference is that the data (lines 103—-110) are going to be sent

TABLE 2.6
This Program Will Cause Your Computer
to Clearly Speak Each Number When
the Appropriate Number Key Is Pressed

12 NUMBERS

15 REM BY R. JIMENEZ AND A. VALLE
50 PRINT" (SC)"

60 POKE 56579, 63

65 FOR I=0 TO 9

70 READ A(I)

75 FOR J=1 TO A(I)

78 READ B(I,J)

100 NEXT J,1

110 DATA 4,43,60,53, 4: REM ZERO
112 DATA 5,57,15,15,11,4:REM ONE
114 DATA 3,13,31,4:REM TWO
116 DATA 4,29,14,19,4:REM THREE
118 DATA 4, 40, 40, 58, 4: REM FOUR
120 DATA 5,40,40,6,35,4:REM FIVE

122 DATA 8,55,55,12,12,2,41,55,4: REM SIX
124 DATA 8,55,55,7,7,35,12,11, 4:REM SEVEN
126 DATA 4,20,2,13,4:REM EIGHT
128 DATA 5,56,24,6,11,4, :REM NINE
150 V. = V+1

160 IF V=10 THEN V=0 : PRINT " (SC)"

170 PRINT " VALUE OF X(";V;")";

200 GET C$: IF C$=" " THEN 200

205 C = ASC(C3)

210 IF C<48 OR C>57 THEN 200

215 C = C-48 : PRINT C

217 POKE 56577,0

220 FOR I=1 TO A(C)

230 POKE 56577, B(C,I)

240 POKE 56577, 0

250 PB=PEEK (56577)

260 F=PB AND 64

270 IF F<>64 THEN 250

280 NEXT I: POKE 56577,1

290 GOTO 150

300 END

42 2. Experimenting with Speech Processors

with the READ statement (line 70). Note that the data are written in decimal
numbers. The words used in this sentence were taken from the dictionary in-
cluded with the SPO256-AL2 package.

Table 2.6 shows a routine that can be used for data processing. This routine
makes the speech synthesizer say numbers from 0 to 9 when you press the
respective key number. Lines 65 to 100 are used exclusively to assign the data
found in lines 100 to 128 to the dimensioned variables A(I) and B(I,J). Here
you can see how A(I) contains the data that the speech synthesizer will use to
pronounce a particular word. In this case, 10 numbers can be pronounced. For
example, A(I) holds the number 4 when the variable ““I”” has a value of 0. And
the statement READ (line 70) is executed by the computer. This means that
the word ““‘zero” will be spoken by the speech synthesizer by just sending the
four data contained in the vector B(1,J) for values of “I” equal to zero with
“J” varying 1to 4.

The FOR-NEXT loops are used as auxiliaries to the statement READ. Ob-
serve how A(I) holds the first data to be used as a variable of the statement
FOR (line 75) to read the exact quantity of data for each spoken number. Data
from lines 110 to 128 are the decimal number values that we need to make the
speech synthesizer talk. Vector A(I) will store the first data contained in such
lines (4, 5, 3,4, 4, 5, 8, 8,4, 5) which, as we said before, indicates the data
contained in the vector B(I,J), respectively. For example, the data of line 110
form the word “ZZ YR OW PAS5” where the respective data are 43, 60, 53,
and 4.

Lines 150 to 215 give an example of how to make the speech synthesizer
more versatile. The screen will display “VALUE of X(V)?” where “V” var-
ies from 0 to 9. The A(C) works as a variable in line 220 of the statement
FOR, which means that “I”” varies from 1 to the A(C) value where “C” indi-
cates the number that will be spoken. Line 217 POKE:s a zero so that the new
data can be accepted without problems. Line 240 serves the same purpose,
and lines 250 to 270 are used to read, as was explained before, the STANDBY
condition.

2.4 Generating a Technical Vocabulary
for the SPO256-AL2

Because most of the projects in this book require technical words for measur-
ing many kinds of variables, it is a good beginning to have these words ready
in hex code. An EPROM or a microcontroller needs the hex code to give out
the desired speech entry points to the speech processor. The column contain-
ing the allophones will be used in two projects presented in Section 10 of this
chapter as well as in most of the circuits used in the following chapters.

Table 2.7 presents the most widely used words as well as the respective hex
code and allophones.

2.4 Generating a Technical Vocabulary

43

Technical Vocabulary in Hex Code with the Respective Allophones

Word Hex Code Allophones

Zero 2B, 3C, 35 ZZ,YR, OW

One 39,F,F,B WW, AX, AX, NN1

Two D, 1F TT2, UW2

Three 10,E, 13 TH, RR1, IY

Four 28,28, 3A FF,FF, OR

Five 28,28,6,23 FF,FF,AY, VV

Six 317,317,C, 2,29, 37 SS, SS, IH, IH, PA3,KK2, SS

Seven 37,37,7,7,23,7,B SS, SS, EH, EH, VV, EH, NN1

Eight 14,2,D EY, PA3, TT2

Nine 38,18,6,B NN2, AA, AY,NN1

Ten D,07,07,B TTZ2, EH, EH, NN1

Eleven c,2p0,7,7,23,C,B IH, LL, EH, EH, VV,EH, NN1

Twelve D, 30,7,7,2D, 23 TT2, WH, EH, EH, LL, VWV

Thirteen 1D, 33,1,2,D,13,B TH, ER1, PA2,PA3, TT2, 1Y, NN1

Fourteen 28,3A,1,2,D,13,B FF, OR, PA2,PA3, TT2, IY,NN1

Fifteen 28,C,28,2,D,13,B FF, IH,FF,PA2, TT2, IY,NN1

Sixteen 37,37,C,2,29,37,2,D, SS, IH,PA2,KK2,SS, PA2, TT2,
13,B IY,NN1

Seventeen 37,37,7,23,1D,B,2,D, SS, EH, VV, TH, NN1, PA2, TT2,
13,B, IY,NN1

Eighteen 14,2,D,13,B EY,PA2, TT2, IY,NN1

Nineteen B,6,B,2,D,13,B NN1, AY,NN1,PA3,TT2, 1Y, NN1

Twenty D,30,7,7,B,2,D,13 TT2,WH, EH, NN1, PA3, TT2, IY

Thirty 1D, 34, 2D, 13 TH, ER2, PA3, TT2, IY

Forty 28,3A,2,D,13 FF, OR, PA3, TT2, 1Y

Fifty 28,28,C,28,2,D,13 FF,FF, IH, FF,PA3, TT2, IY

Sixty 37,37,C,2,29,37,1, SS, SS, IH, PA3,KK2, SS, PA2,
D, 13 TT2, 1Y

Seventy 37,37,17,23,C,B, 2, SS, SS,EH, NV, IH, NN1, PA3,
D, 13 TT2, 1Y

Eighty 14,2,D,13 EY,PA3,TT2, IY

Ninety B,6,11,2,D,13 NN1, AY, NN1, PA3, TT2, 1Y

Hundred 39,F,F,B, 1,21, HH2, AX, AX, NN1, PA2,DD2,
27,C,C,1,15 RR2, IH, IH, PA1,DD1

Thousand 1D, 18, 2D, 2B, 1,B, 15 TH, AA, ZZ, TH, PA2,NN1,DD1

Million 10,C,C, 2D, 31,F,B MM, IH, IH,LL, Y1, AX,NN1

And 18,B, 15 AA,NN1,DD1

Ampere 18,10,9,34 AA, MM, PP, ER2

Cent 37,37,7,B,11 SS, SS,EH,NN1, TT1

Centi 37,37,7,B,C SS, SS,EH,NN1, TH

Check 32,7,7,2,29 CH, EH, EHPA3, KK2

Danger 21,7,B,19,33 DD2, EH,NN1, YY2, ER1

Degree 21,C,24,27,C DD2, IH, GG1,RR2, TH

Dollar 21,F, 20,33 DD2, AX, LL, ER1

Equal

1Y,PA2,PA3,KK3, WH, AX, EL,

44

Error 7,2F, 3A

Feet 28,C,11
Farads 28,F,27,F,37
Fuel 28,13,2D
Gallon 24,F,2D,35,B
Go 24,35

Gram 24,27,1A,10
High 39,6

Higher 39,6,33

Hour 20,33

Inches 13,B,25,7,37
Is C,37,37

It C,11

Kilo 2A,13,2D, 35
Less 2D, 7,37,37
Lesser 2D,7,37,33
Limit 2D,C,10,C, 11
Low 2D, 35

Lower 2D, 35,33
Milli 10,C, 2D, C
Micro 10,6,8,27,35
Minus 10,6,B,F, 37
Minute 10,C,B,C, 2D
Number 38,F, 10, 3F, 33
of f 18, 28,28

On 18,B,

Percent 9,33,37,17,38,11
Pico 9,C, 8,35
Please 9,2D, 13,37
Point 9,5,B,11
Pulses 9, 1E, 2D, 37,17, 37
Rate E, 14,11

Ready E,7,7,1,21,2D
Right E, 6,11

RPM 3B,9,13,7,10
Set 37,7,D

Speed 37,2,9,C,21
Stop 37,37,11,18,9
Than 36,1A,18

The 36, 1A

Time D,18,6,10
Try D,27,6

TemperatureD, 7,10, 9, 33, 25, 34
volt 23,35,2D,11

2, Experimenting with Speech Processors

EH, XR, OR

FF, IH, TT1
FF,AX,RR2, AX, DD1, SS
FF,1Y,LL

GG1, AX, LL, OW, NN1
GG1, OW
GG1,RR2, AE, MM

HH2, AY

HH2, AY, ER1

AW, ER1
IY,NN1, SH, EH, SS

IH, SS, SS

IH, TT1

KK1, IY, LL, OW
LL,EH, SS, SS
LL,EH, DD, ER1

LL, IH, MM, C, TT1

LL, OW

LL, OW, ER1

MM, IH, LL, IH

MM, AY,KK3, RR2, OW
MM, AY, NN1, AX, SS

MM, IH, NN1, IH, PA3, TT2
NN2, AX, MM, BB2, ER1
AA,FF,FF

AA NN1
PP,ER1,SS,EH,NN2, TT1
PP, IH, KK3, OW
PP,LL, 1Y, SS

PP, OY,NN1, TT1

PP, UH, LL, SS,EH, SS
RR1,EY, TT1
RR1,EH, EH, PA1,DD2, IY
RR,AY, TT

AR, PP, 1Y,EH, MM

SS, EH, TT2

SS, PA1, PP, IH, DD2
SS, SS, TT1, AA, PP
DH2, AE, NN1

DH2, AE
TTZ2, AA, AY, MM
TT2,RR2, AY

TT2, EH, MM, PP, ER1, SH, ER2
VV,OW,LL, TT1

46 2. Experimenting with Speech Processors

A light beam striking the photocell causes the V1 voltage to stay at a logic
high (4.5 V). When a person crossing breaks the light beam momentarily, the
photocell changes its resistance to a higher value (megohms); consequently, the
voltage V1 drops below the negative threshold level (Vt— = 1.8 V) of Nand
gate IC4a. This in turn triggers the real monostable formed by Nand Gates IC4a
and IC4b. The monostable sends a positive transient pulse, which triggers flip-
flop IC2 to enable Nand gate IC4c. The IC4c Nand gate initiates the speech
processing sequence produced by the speech processor (IC6) in conjunction
with the EPROM memory (IC3) and the binary counter 74HC4040 (IC1).

As we already know, the /SBY output stays high when the speech pro-
cessor is in the standby mode. This output is routed to the input of Nand gate
IC4c. When IC4c is enabled by the flip-flop output, this Nand gate (IC4c)
pulses the /ALD input low, causing the generation of the first allophone. Bear
in mind that when an allophone starts, the /SBY output goes to a logic zero,
causing the Nand gate output (IC4c) to return to a logic one. This way, the
/ALD input is pulsed low until the speech processor accepts such input and
starts generating the first speech-command sequence (allophone or pause).

The binary counter (74HC4040) is used here as an 11-bit EPROM scanner.
When the first person has broken the light beam, for example, counter (IC1)
starts being clocked by Nand gate IC4c via Nand gate IC4d. When the first
speech sequence has been completed, EPROM 2716 sends a positive pulse
(via output O6) to reset flip-flop IC2, thus disabling Nand gate IC4c and the
speech processor. At this point, counter ICI stops the binary counting se-
quence on the decimal number ““5” because the first word “one” contains
four allophones, a 200 ms pause, and the hex number 40H that gives a logic
one at the output O6 of IC3 to reset flip-flop 4013 (IC2). Because flip-flop
4013 needs only a positive transient reset pulse, output O6 of the EPROM is
first routed to a pair of inverters that form a buffer. The RC network connected
at the output of Nand gate IC5d provides the required transient pulse to reset
IC2; therefore, flip-flop IC3 is ready to be triggered again.

When a second person breaks the light beam, counter IC1 will start the
counting sequence at number six (location six of the EPROM). This process is
repeated until the last speech sequence occurs, then we add a pause, and the
hex number COH gives a logic one at the outputs O6 and O7 of the EPROM.
In this form, the binary counter 74HC4040 and the flip-flop 4013 receive sepa-
rately a reset pulse in order to restart the entire system. Table 2.8 shows a part
of the speech data table necessary to concatenate the allophones. The com-
plete table depends on the maximum number of persons that you wish to de-
tect. Note that the maximum possible number in this configuration is 200. If
you want to increase the range, augment the EPROM capacity by adding an
EPROM 2732, 2764, or higher.

When all the speech data are over, outputs O6 and O7 of EPROM 2764
reset the flip-flop (4013) and the binary counter (4040). This is achieved by

2.6 Hex Code for a Four-Bit Input 47

TABLE 2.8
Allophone Sequence for the EPROM IC3 of Figure 2.7

Hex Hex
Address Data

0 4

1 2B

2 3C "zero"

3 35

4 4 "pause"

5 40 "reset"

6 39

7 F "one"

8 F

9 B

A 4 "pause"

B 40 "reset"

C D

D 1F two

E 4

F 40

10 1D

11 E three

12 13

13 04 pause

N-1 04 last pause

N co (resets IC1 and IC2; 08-01
= 1100 0000)

programming COH after the last speech data where COH corresponds to a bin-
ary output (11000000).

A different use for this circuit is when the operator needs spoken instruc-
tion just when the circuit is first turned on. In this case the flip-flop 4013 must
be set by a network that is activated by the power-up transition.

2.6 Circuit Vocalizes Hex Code
for a 4-Bit Input

The circuit shown in Figure 2.8 synthesizes audible words for hexadecimal
codes corresponding to the binary input on lines A, B, C, and D. When you
press the test switch, the input present on lines ABCD is stored in the quad

48

2. Experimenting with Speech Processors

a5V
1o
TOJ;F 16 2 1 |28 |27 7119 |23
R 1C20 AQ 00 Al 24
QR Tyj2 4520 [f S —
T—)ALS To low poss
eyl (c4 : SP0256-AL2 filter and
= 27C16 : audio Amp.
- *P“——! 06 05 AB P
A
71 Ll CE|27 11|A7
B 13l 4042 ': OE |22 10]A8
o R
N oNo 14 [
L
JB18 Js[s 8
) 20 |1 |22
svm ‘
1 14 =
s | g pe
N 1can 77 1C1a
1/2 4520 = 1/4 CD4093
P
2 1]
g =
TEST
H 0.1uF LI

5 4
| T
§4]K IC1b
L 1/4 C04093

Figure 2.8 Circuit for vocalizing the 4-bit hex code input.

latch (IC3). This is caused by the output Q of IC2b, which is a BCD counter
configured as a flip-flop.

Pressing the TEST switch to take a reading causes a 4 ms negative pulse to
the 4520 (IC2b) flip-flop provided by the Nand gate IC1b, which is configured
as a half-monostable. The negative edge of this pulse latches the 4-bit data
input into the latch 4042. When this transient pulse ends, the positive edge
transition clocks counter 4520, causing a logic one at the Q output. Thus, the
BCD data are applied to the EPROM’s upper address inputs A4 to A7. This
action selects a block of memory within the EPROM. The high state of the
Q output of IC2b has the function of enabling the inverter formed by Nand
gate ICla.

As you can see, the SBY output of IC5 is always in a logic one when the
speech processor is not talking; therefore, the output of ICla goes to a logic
zero. When this pulse stays low for 900 ns, the speech processor accepts the

2.7 Eight-Bit Binary Input 49

input and starts speaking the first allophone that was previously addressed by
IC3. At this time the SBY output goes to a logic zero, causing the Nand gate
output to go high; it is the positive edge transition that clocks counter IC2a.
This means that, while the speech processor is saying the first allophone, the
EPROM memory is addressing the second allophone to the speech processor
waiting to be loaded by the next /ALD pulse. It is clear that counter IC2a
scans those memory locations in sequence by driving the lower address bits
A0 to A3. As a result, the EPROM delivers a preprogrammed sequence of
instructions to the speech processor.

Since four bits (A0 to A3) are controlling the sequence of data, a maximum
of 16 allophones is allowed at each block of memory. In this case the blocks of
memory start in the following decimal locations: 16, 32, 48, 64, 80, 96, 128,
144, 160, 176, 192, 208, 224, and 240. This can be seen in Table 2.9, where
the speech data for programming the EPROM are ready to use by selecting the
hex address and the hex code.

The power-up reset pulse to counters IC2a and IC2b is given by the R1 C1
network, which provides a positive transient pulse to allow a zero state before
beginning the operation of the whole circuit.

Following each report, the hex data instructions 4 and 44 reset the speech
processor (internally) and gates IC2a and IC2b via output O6. This output can
be buffered using the two remaining Schmitt trigger Nand gates (IClc and
IC1d) if counter 4520 is not reset properly. Diode D1 at the output O6 of IC4
prevents the output stage from receiving the power-up reset positive pulse
caused by the R1 CI network. Otherwise, this pulse would destroy the NMOS
output transistor contained in the EPROM.

2.7 Circuit Vocalizes 8-Bit Binary Input

The method of vocalizing a binary code used here is similar to the one ex-
plained in Section 2.6, except for a few enhancements that will be explained
in this section.

To read an 8-bit binary input with the speech processor, the circuit shown
in Figure 2.9 uses an 8-bit latch 74HC373 (IC4), which stores the binary input
on lines D1 to D8.

When power is first turned on, the power-up reset network (R1 C1) gives a
positive transient pulse that resets IC3 and the half-monostable formed by
Nand gates IC2b and IC2c. IC1 is a D-type flip-flop that is clocked by the half-
monostable circuit at the negative edge transition.

To start the circuit, press the TEST switch to generate a positive transient
pulse; this pulse will latch the 8-bit data input. IC4 has a propagation time of
15 ns to present the data to the EPROM address inputs (A5 to Al2). The
EPROM used here (27C64-3) will take 300 ns to deliver the data output to the
speech processor address inputs Al to A6. By adding the time of each event
we get 315 nanoseconds. If we consider the propagation time (tp) of the Nand

50 2. Experimenting with Speech Processors

TABLE 2.9
EPROM Program to be Loaded in EPROM 27C16

Hex Hex Hex Hex
Address Data Address Data

00 4 72 7

01 2B 73 7

02 3C "ZERO" 74 23

03 35 5 C

04 4 76 B

05 44 1 4

10 39 78 44

11 F 80 14

12 F "ONE" 81 C "EIGHT"

13 B 82 D

14 4 83 4

15 44 84 44

20 D 90 38

21 1F "TWO" 91 18 "NINE"

22 4 92 6

23 44 93 B

30 1D 94 4

31 E "THREE" 95 44

32 13 AO 14 "A"

33 4 Al 4

34 44 A2 44

40 28 BO 3F

41 28 "FOUR" B1 17 "B"

42 3A B2 4

43 4 B3 44

44 44 co 37

50 28 C1 37 "c"

51 28 "FIVE" c2 17

52 6 C3 4

53 23 C4 44

54 4 DO 21

55 44 D1 17 "D"

60 37 D2 4

61 37 "SIX" D3 44

62 C EO 17 "E"

63 C E1l 4

64 2 E2 44

65 29 FO 7

66 37 F1 7 "EF"

67 4 F2 28

68 44 F3 28

70 37 F4 4 (RESETS ICS5)

71 37 "SEVEN" F5 44 (RESETS IC2a & IC2b)
Continued

2.7 Eight-Bit Binary Input 51
Y
Lo
0 16 2 1 (28 |27 7 (19 |23
R I3 AQ 0o AAT 24
10@1 7 st " : BNTe —
> [A4 :) To Tow pass
o F Ic5 - o SPO25B-ALZ | fi|ter ond
= 27c64 : audio Amp.
i s 06 05 AB
01 ! o s
i 1C4 L1y AS CEf27 1147
: 74HC373 [T otz FAS
08 L a12[2
1 T o[l T
16]5 T8
n 1]2
5v%
P 1 [0 L
QR 14 Q
IC1
Z’JS 1/2 4013 3
- T i
=
11 ’
& 1C2b
<
mK?_ S
| 61
H | <
e 0.21
TEST ;_\: u
SDW
1C2c Lf
<
:}/__101'\.

Figure 2.9 Circuit for the 8-bit vocalizer.

gate IC2b, we will have a total propagation time of 615 nanoseconds. It is,
therefore, a smart choice to latch the 8-bit data input first and then get a small
delay time to activate the flip-flop 4013 to give the first allophone time to be
loaded; otherwise the first allophone will not be heard when the /ALD input is

pulsed low. Sometimes glitches are still in process at the EPROM output, in-
* creasing the chances of hearing only garbage. In that case the circuit must be
restarted. To solve this problem, the monostable formed by IC2b and IC2c is
used. When the TEST switch is pressed, the negative edge transition of IC2¢
latches the 8-bit data input (D1 to D8). When the transient pulse of IC2¢ goes

52 2. Experimenting with Speech Processors

TABLE 2.10
Allophone Table Showing Ten Cases for Elaborating the Entire Table
Hex Hex
Address Data word
0 2B, 3C, 35, 4, 44 Zero

20 39,F,F,B, 4,44 One

40 D, 1F, 4,44 Two

60 10,E, 13,4, 44 Three

140 D,7,7,B Ten

280 D,30,7,7,B,2,D,13 Twenty

B40 39,F,F,B,2,39,F,F,B,1,21,27,C,C, 1,15 One Hundred
1900 D,1F.4,39,F,F,B,1,21,27,C,C,1,15,4,44 Two Hundred
1F00 D, 1F,4,39,F,F,B, 1,21,27,C,C,1,15,18,B, Two Hundred And

15, 2,28,28,C,28,23,D,13,2,28,28,6,23,4,44 Fifty Five.

back to a logic one, the positive edge clocks flip-flop 4013 that in turn enables
the speech processor via the Nand gate 1C2a.

The main difference between this circuit and the one in Section 2.6 is that
there are five bits for scanning a maximum of 32 instructions, including
pauses and reset bytes. Therefore, the blocks of memory fall in multiples of
32, 64, 96, and so on, depending upon the value of the input data on lines D1
to D8. The difficult part in implementing this circuit is to develop the hex data
for the EPROM. But always bear in mind that here we are using maximum
software with minimum hardware, which has the advantage of reducing costs
of layout for pc board assembling. To help you understand how these data are
formed, Table 2.10 shows a set of 10 different readings for some typical cases.

2.8 Improved Technique Vocalizes
Binary Code for 8-Bit Input

So far our discussions have been primarily directed toward the use of an
EPROM; however, the use of two smaller EPROMs in series reduces memory
data and the time required for programming. The schematic is illustrated in
Figure 2.10.

54 2. Experimenting with Speech Processors

pronounce contain five words (e.g., “two hundred and fifty one”). Thus
EPROM IC4 must be able to provide a maximum of five instructions. Even
when three bits of counter 4520 (IC3b) are sufficient to scan the five instruc-
tions required, four bits are connected in this diagram to have the capacity of
addressing a maximum of 16 words per message. Every word can be as long
as 13 allophones, as determined by counter 4520 (IC3a). The upper address
bits of the first EPROM (IC8) are controlled by an 8-bit transparent latch
74CH373 (IC1). These bits will address the starting point of a block of mem-
ory within the EPROM (IC4).

On the other hand, counter 4520 (IC3) will scan the lower address bits of
IC5, which contain the data to concatenate the allophones in sequence. Figure
2.11 shows the timing diagram for the complete circuit.

It is necessary to explain how to develop the hexadecimal programs for
both EPROMS in order to understand how the circuit works. First, we will see
two examples using the timing diagram illustrated in Figure 2.11.

Once the circuit is turned on, press the normally open switch (S1) to set the
D-type flip-flop. This causes a logic zero on /Q and a logic high on Q output
after 2.2 us. The negative edge of /Q latches the 8-bit data input (D1 to D8)

Q J
]

=

” TVte
= s

i %l_’:(SOOnS s0ens—]_fe—

“————allophone—> €—allaphone -~=*

O _9_ le— 300nS 300nS = e

74HC3T3 A

> &—15n3 :
e K o
LTS 450053 <
27C16 X e
& 45003 300nS—> €
IC3a A K
300n5 — <— 250nS—> <«
—>' ¢ 850n3 3
1C3b o

Figure 2.11 Timing diagram for the circuit shown in Figure 2.10.

2.8 Improved Technique for Eight-Bit Input 55

that are controlling the upper address bits of EPROM 27C32 (IC4). For ex-
ample, if the 8-bit data input contains the binary number Q8—Q1 = 0000
0001, EPROM IC4 receives only a logic one at the address input A4; there-
fore, this EPROM goes to address 16 (10#h) where the data stored must corre-
spond, in this case, to hex number 01#h. Now, the second EPROM (IC5) also
receives the address sixteen (10#h). All this takes about 915 ns. Nand gate
(IC1a) is still waiting to receive a voltage equal to or greater than 3.3 V (Vt+
= 3.3 V @ 5 V). This time delay is given by the following equation:

t = RC In [Vdd/(Vdd — Vt+)] = 1.1 RC

where R = 1K
C = 0.0022 uF

With these RC values, Nand gate ICla will be triggered by the Q output
after 2.2 us (2200 ns). This delay is inserted to give sufficient time to both
EPROM s to find the first block of memory. After the 2.2 us delay, Nand gate
ICla pulses low the /ALD input, and after 300 ns the speech processor begins
to announce the first allophone. This 300 ns delay is caused by the standby
(SBY) output which is also controlling Nand gate IC1a. Because of the propa-
gation time delay of 300 ns caused by Nand gate ICla, the /ALD input is held
low for an interval of 600 ns. It is here when the output of Nand gate ICla
goes to a logic one which also clocks counter IC3a (1/2 4520), while the
speech processor is still speaking the first allophone. Thus counter 1C3a is
now addressing the second data byte because it has incremented the lower ad-
dress bits to Q4—Q1 = 0001. Accordingly, when the speech processor com-
pletes the first allophone, the SBY output goes back to a logic one, causing
Nand gate ICla to pulse the /ALD input low that will clock counter IC3a again
after 600 ns. This process is repeated until the last allophone is heard. At this
point, we have to store a pause (pal to paS) to make the speech processor stop
talking. In the next byte of EPROM ICS5, we have to store the hex code 44H
(01000100) to provide a logic one at the EPROM’s output 06. This will cause a
positive voltage at the output 06 (pin 16 of ICS5) that will reset binary counter
IC3a and will clock counter IC3b. The time interval of the said pulse will be
given by the propagation time of IC3a plus ICS; that is, 850 ns. When this
happens, counter IC3b is now incremented to the binary count Q4-Ql =
0001, which generates the next sequentially address ““17.” This address is
given by A4 = Al = 1 with all other address inputs equal to zero. Therefore,
we store the number 80#h = 1000 0000#b in this new address that will give a
positive transient voltage of 850 ns at the output 07 (pin 17 of IC4). This pulse
resets binary counter IC3b (1/2 4520) and flip-flop 4013. Now the speech pro-
cessor is disabled and the 8-bit latch (74HC373) is enabled. The circuit is
now ready to be triggered again by momentarily pressing the normally open
switch S1.

In the case previously explained, the circuit announced the single number

56 2. Experimenting with Speech Processors

TABLE 2.11
Five Typical Cases for the Words Zero, One, Two, Twenty, Twenty One
27C32 27C16
Q7 Q6 Q5 Q4 Q3 Q2 Q1 Count Hex Hex Count Hex Hex

A10A9 A8 A7 A6 A5 A4 A3-AO0 Add Data A9 A8 A7 A6 A5 A4 A3-A0 Add Data

0O 0 0 O O O 0 0000 00 00 0O 0 0 O O 0 0000 00 00
0 0 0 0O O O 1 0000 10 01 0O 0 0O O 0 1 0000 10 2B
0O 0 0 O O 1 0 0000 20 02 0O 0 0 0 1 0 0000 20 39
0O 0 1 0 1 0 0 0000 140 14 0O 1 0 1 0 0 0000 140 OD
0O 0 1 0 1 0 1 0000 150 14 0O 0 0O 0O O O 0000 140 00
0 0 1 0 1 0 1 0001 151 01 0 1 0 1 0 1 0000 10 00

3

one.” When the circuit has to enunciate a composed number like ““twenty
one,” the process is a little different. In that case, EPROM 27C32 (IC4) must
contain three data bytes necessary to find the two messages “twenty” and
“one,” and the data byte that resets IC3b and IC2.

By looking at the program of the controlling EPROM (IC4), you will see
how composed numbers are formed by calling the correct messages located at
specific addresses in EPROM 27C16 (ICS). Notice that EPROM 27C16 may
also contain any specific message you want to add after a digital reading. You
can call, for example, the word ““volt” after the announced reading to indicate
to the user the type of variable he is measuring.

Table 2.11 shows five typical and useful cases of the EPROM programs. As
you can see, the 8-bit data input (Q1 to Q8) corresponds to EPROM IC4 inputs
(A4 to All). Note that A1l is not represented for Q8 because of space limita-
tions. The word COUNT represents the 4-bit counter (IC3b) that is interfaced
to the lower address inputs of EPROM 27C32 (IC4). In contrast, IC3a is the
other 4-bit counter used to scan each allophone.

You can use this circuit as a functional box to the different projects pre-
sented in the following chapters. As you can see, Table 2.12 contains only the
control program for composed numbers within the range of “zero” to “fifty
nine.” But you can increase the range to create the maximum number of ““two
hundred and fifty five” due to the 8-bit data inputs that we are applying. The
user can continue writing the program depending upon the application in
mind. It is important to note that you can also change the scale of readings.
For example, you may need to announce readings in the range of “‘zero” to
“twenty five point five”” (0.0 to 25.5) with a resolution of 0.1, or readings
from ““zero point zero zero” to “‘two point fifty five”” (0.00 to 2.55) with a

2.8 Improved Technique for Eight-Bit Input

57

TABLE 2.12
EPROM Program for EPROM 27C16 (IC5)
Hex Hex
Address Data Word
00 2B, 3C,35,4,4 Zero
10 39,F,F,B, 4,44 One
20 2B, 3C,35,4,44 Two
30 10,E,13,4,44 Three
60 28,28,3A,4,44 Four
70 28,28,6,23,4,44 Five
80 37,37,C,2,29,37,4,44 Six
90 37,37,7,7,23,7,B,4,44 Seven
AO 14,2,D,4, 44 Eight
BO 38,18,6,B,4, 44 Nine
co D,07,07,B, 4,44 Ten
DO c,2D,7,7,23,C,B,4,44 Eleven
EO D,30,7,7,2D,23,4,44 twelve
FO 1D, 33,1,2,D,13,B, 4, 44 thirteen
100 28,3A,1,2,D,13,B,4,44 Fourteen
110 28,C,28,2,D,13,B,4,44 Fifteen
120 37,37,C,2,29,37,2,D, Sixteen
13,B,4, 44
130 37,37,7,23,1D,B, 2,D, Seventeen
13,B, 4,44
140 14,2,D,13,B, 4,44 Eighteen
150 B,6,B,2,D,13,B,4,44 Nineteen
160 D,30,7,7,B,2,D,13,4, 44 Twenty
170 1D, 34,2D, 13,4, 44 Thirty
180 28,3A,2,D,13,4,44 Forty
190 28,28,C,28,2,D,13,4, 44 Fifty
1A0 317,37,C,2,29,37,1, Sixty
D,13,4, 44
1BO 37,37,7,23,C,B, 2, Seventy
D, 13,4, 44
1COo 14,2,D,13,4, 44 Eighty
1D0 B,6,11,2,D,13,4, 44 Ninety
1E0 39,F,F,B,1,21,4,44 Hundred
1FO0 9,5,B,11,4, 44 Point
200 1D, 18,2D,2B,1,B,15,4,44 Thousand
210 10,C,C, 2D, 31,F,B, 4, 44 Million
220 18,B,15,4,44 And
230 7,2F,3A,4,44 Error
240 28,F,27,F, 37,4, 44 Farads
250 10,C,2D,C, 4, 44 Milli
260 10,6,8,27,35,4,44 Micro
270 10,C,B,C, 2D, 4, 44 Minute
280 9,C,8,35,4,44 Pico
290 23,35,2D,11,4,44 Volt

58 2. Experimenting with Speech Processors

resolution of 0.01. In both cases, EPROM IC5 remains unaltered; that is, with
the same program, but you will have to program the controlling EPROM (I1C4)
to fit the scale with which you are working. (See Table 2.13.) The time re-
quired for programming EPROM IC4 is greatly reduced in comparison to the
program employed in Section 2.7.

The circuit presented in this section can be simplified by using a micro-
controller or a microsequencer; these topics will be treated in detail in the fol-
lowing section and chapters.

TABLE 2.13
Program in Hex Code for EPROM 27C32 (I1C4)

Hex Hex Hex Hex
Address Data Address Data

00 00 "zero" 100 10

01 80 "Reset" 101 80

10 01 "one" 110 11

11 80 "Reset" 111 80

20 02 "two" 120 12

21 80 "Reset" 121 80

30 03 "three" 130 13 "nineteen"
31 80 : 131 80 "Reset"
40 04 : 140 14 "twenty"
41 80 : 141 80 "Reset"
50 05 . 150 14 "twenty"
51 80 . 151 01 one"

60 06 . 152 80 "Reset"
61 80 . 160 14 "twenty-
70 07 . 161 02 two"

71 80 . 162 80 "Reset"
80 08 . 170 14 "twenty-
81 80 . 171 03 three"
90 09 . 172 80 "Reset"
91 80 . 180 14

AO 0A "ten" 181 04

Al 80 "Reset" 182 80

BO 0B . 190 14

B1 80 . 191 05

Cco oC . 192 80

C1 80 . 1A0 14

DO 0D 1A1 06

D1 80 1A2 80

EO OE 1BO 14

E1l 80 1B1 07

FO OF 1B2 80

F1 80 1C0 14
Continued Continued

2.8 Improved Technique for Eight-Bit Input

1C1
1Cc2
1D0
1D1
1D2
1E0
1E1
1F0
1F1
1F2
200
201
202
210
211
212

240
241
242
250
251
252
260
261
262
270
271
272
280
281
290
291
292
2A0
2A1
2A2
2B0
2B1
2B2
2C0
Continued

08
80
14
09
80
15
80
15
01
80
15
02
80
15
03
80
15
04
80
15
05
80
15
06
80
15
07
80
15
08
80
15
09
80
16
80
16
01
80
16
02
80
16
03
80
16

"thirty"

"forty"
"Reset"
"forty-
one"
"Reset"

2C1
2C2
2D0
2D1
2D2
2E0
2E1
2E2
2F0
2F1
2F2
300
301

04
80
16
05
80
16
06
80
16
07
80
16
08
80
16
09
80
17
80
17
01
80
17
02
80
17
03
80
17
04
80
17
05
80
17
06
80
17
07
80
17
08
80
17
09
80

"fifty"
"Reset"
"fifty-

one"

"fifty-
nine"
"Reset"

59

60 2. Experimenting with Speech Processors

2.9 Microcontroller Routine Handles
the Basic Functions of a
Speech Processor

In this section we will be headed to the development of the routines necessary
to drive the two most commonly used speech processors (SPO256-AL2 from
Microchip and DT1050 from National Semiconductor) by using the versatile
microcontroller (uC) 8748.

A brief description of the 8748 architecture will be helpful to start develop-
ing the program.

8748 Architecture

The functional blocks of the 8748 family are now described. The arithmetic
section is for basic data manipulation and is divided in the following blocks:
arithmetic logic unit (ALU), accumulator, carry flag, and instruction decoder.
The program memory is stored in the resident EPROM memory, which is
formed by 1024 bytes for the uC 8748 and 2048 bytes for the wC 8749. There
are 27 /O lines grouped as three ports of eight lines each. TO, T1, and INT
serve as inputs and are testable with the conditional JUMP instruction without
needing to load an input port into the accumulator. Finally, a timer/counter is
also contained to aid the user in counting external events or generate accurate
time delays without disturbing the processor for these functions. For complete
and detailed information about the uC 8748 or uC 8749, consult the reference
section at the end of this chapter.

Figure 2.12 shows the nC 8748 interfaced with the SPO256-AL2 to pro-
vide full control of the input and output lines of the speech processor. Input T1
will be the external switch that initiates the speech processing sequence; there-
fore, the uC 8748 will be reading the logical value of input T1. When the user
presses the test switch, a logic high will be present momentarily at the input
T1, causing the uC to initiate the control program.

At this point, we want the uC program to drive the speech processor by
sending a preprogrammed group of allophones. In this case, we will program
it to hear the words “‘one, two, three, and four.” The speech data will be pro-
grammed in page three of the uC’s internal EPROM. We know that page three
consists of 256 bytes available for speech data programmed by the user. In this
manner, a maximum of 256 allophones can be stored for any other specific
application you may have in mind. In this example, the four words occupy 17
bytes (11H hexadecimal). The flowchart illustrated in Figure 2.13 shows the
steps that must be executed to control the speech processor with the uC 8748.

The following routine (see Table 2.14) corresponds to the flowchart shown
in Figure 2.13. It is a good example of how the uC 8748 is instructed to make
the speech processor speak four word numbers.

In the software program shown in Table 2. 14, the instruction that pulses the

2.9 Basic Functions of a Speech Processor 61

5V
20pF , 0 s 7 e |23
a . o
6 MHz 5 P1. 115 16,2 >l Fier
N 13 P12 5% opozse SmprrEres
ot P13 L A S T
20pF P1.4 A5 ‘ = 5
4 = |32 13 X
N P1.5 A6 é
70 RST _ 20 — 3.12 MHz
1k 20 R 2 SUALD 1
| GND 1 8 —
R 0 SBY 22pF =
v uC8748 s 100K $5V
100K 3 ReT ” A '/\\'ﬁ
}}—— T1 ZaveeT
SBIRST NG 144
- 1122 -0 1uF
N.C. VRIT
LswiTeH K= d

Figure 2.12 SPO256-AL2 controlled by the 1C8748.

write output (/WR) low is MOVX (@RO, A. This negative transient pulse
stays low for 5 us when a 6 MHz crystal is used. At this point, the speech
processor starts the first speech sequence, causing the standby output (/SBY)
to go low while the speech processor is speaking the first utterance. Our next
instruction must read the STANDBY status; this is made using the JNTO in-
struction. When TO goes to a logic high, the program jumps to the next in-
struction. In order to hear the next allophone, seven instructions must be exe-
cuted to bring out the respective speech data. This process causes a total delay
of 22.5 ws; that is, 0.0225 ms for listening to the next allophone. This short
delay will not affect the natural sound because the duration of the allophones
varies from 10 to 420 ms. The routine must search for the next speech data if
you want to reduce the 22.5 us delay, and have it ready it to load it into the
speech processor before reading the STANDBY status. This new method is
shown in the program in Table 2.15. Register R4 is used as a counter that is
decremented every time the speech processor speaks a new allophone. This is
performed by the DINZ instruction on address 21H. There is also register RS
which is incremented in order to find the next allophone on page three of
ROM. The instruction to find the next allophone is “MOVP3 A, @A” located
on address 19H.

The enhanced routine shown in Table 2.15 reduces the 22.5 us delay to 7.5
us by introducing the instructions: “INC RS,” “MOV A, R5,” and “MOVP3
A, @A,” then proceeding to read the SBY status of the speech processor.
(There is plenty of time to do this because the speech processor is a relatively
slow device compared with the uC 8748.)

62

2, Experimenting with Speech Processors

YES T1=07
NO

= 00H
P2 = OOH

NO YES

N 2

NO

RS = RS + 1

AN

Figure 2.13 Flowchart for the control routine of the uC 8748.

TABLE 2.14
Software for the £C8748 Interfaced with the SPO256-AL2
Add Op Code Mnemonic Comments
O0H 04 05 JMP O05H ;jump to address 5
05 46 05 JNT1 O5H ;jump to address 5 if T1 is low
o7 04 10 JMP 10H ;jump to address 10H
10 99 00 ANL P1, #OOH ;clear port 1
12 9A 00 ANL P2, #OOH ;clear port 2
14 BC 11 MOV R4, #11H ;load Reg 4 with the # of
;allophones
16 BD 00 MOV R5, #O0OH ;clear register 5

2.9 Basic Functions of a Speech Processor 63

18
19
1A
1B
1C
1E
1F
20

21

300
301
302
303
304
305
306
307
308
309
30A
30B
30C
30D
30E
30F

FD MOV A, RS ;move reg 5 to ACC

E3 MOV P3 A, @A ,move page 3 of ROM to ACC

39 OUTL P1, A ;load speech data to port 1

90 MOVX @RO, A ; /WR output is pulsed low

26 1C JNTO 1CH ;read the SBY status of the SP

1D INC R5 ;inc reg 5 to select new

00 NOP ; allophone

EC 18 DJNZ R4, 18H ;decrement the number of
;allophones

04 05 JMP O5H ;jump to address OSH

04 ; speech data stored in page 3

2B ;consisting of the words one,

3C ; two, three, four.

35 ;pause (pa3) is added between

04 ;each word.

39

OF

OF

0B

04

oD

1F

04

1D

OE

13

04

The following timing diagram (see Figure 2.14) corresponds to the pro-
gram shown in Table 2.15. The program starts when the normally closed
switch is opened momentarily. After 11 instructions (27.5 ws), the first al-
lophone will be heard. The /ALD waveform illustrates the 7.5 us time delay
before listening to the next allophone (speech data).

NC ’ 3
SWITCH "CLOSED| OPEN

o . Cle-sus T ke-5uS-
A : \._j >7.5k
SBy - © | st allophone 2nd allophene

A1-AE)(b

Figure 2.14 Timing diagram for the program of Table 2.15.

64

2. Experimenting with Speech Processors

TABLE 2.15
Enhanced Software for the uC8748 Interfaced with the SPO256-AL2

Add Op Code Mnemonic Comments

00 27 CLR A ;clear accumulator

01 04 05 JMP 05H ;80 to address 5

05 46 05 JNT1 O05H ;jump to 05H if T1 is low

07 04 10 JMP 10H ;80 to address 10H

10 99 00 ANL P1, #OOH ;clear port 1

12 9A 00 ANL P2, #OOH ;clear port 2

14 BC 11 MOV R4, #11H ;reg 4 is loaded for 17
;allophones

16 BD 00 MOV R5, #O00H ;clear reg 5

18 39 OUTL P1, A ; load speech data to port 1

19 90 MOVX «RO, A ;pulse low the /WR output

1A 1D INC R5 ;increment reg 5 to select next
; allophone

1B FD MOV A, R5 ;increment ACC to search next
; speech data

1C E3 MOVP3 A, «A ; load new allophone to ACC

1D 26 JNTO 1DH ;test SBY input

1F EC 18 DJNZ R4, 18 ;decrement R4 and test for zero

21 04 00 JMP OOH ;go to address 0O0OH

300 04 ; speech data stored in page 3

301 2B ;consisting of the words one,

302 3C ;two, three, four.

303 35

304 04

305 39

306 OF

307 OF

308 OB

309 04

30A OD

30B 1F

30C 03

30D 1D

30E OE

30F 13

310 04

In the following chapters, we will be using this routine for more complex
applications. The microcontroller 8748 is a powerful device that can be ap-
plied in almost any kind of instrumentation system. It is now a cheap and
commercially available device that you can find through most mail-order
distributors.

2.10 FPC Am29CPL100 Drives the SPO256-AL2 65

2,10 Field Programmable Controller
Am29CPL100 Drives the Speech
Processor SPO256-AL2

The Advanced Micro Devices Am29PL100 is a family of compatible field pro-
grammable controller (FPC) devices that permits the designer to implement
complex state machines and controllers by programming a specific sequence
of instructions in its internal PROM or EPROM. Using these devices results in
a savings of board area, power, and critical design time.

The Am29PL100 family members are shown in Table 2.16.

This single-chip CMOS device contains a set of powerful instructions that
allow conditional branching, conditional looping, conditional subroutine call,
and multiway branch. Engineers can develop optimal solutions with the com-
puting power to control peripherals, instead of using SSI and MSI devices. All
Am29CPL100 devices integrate the elements of an intelligent controller into a
single chip. These flexible field programmable controllers replace multiple
chip alternatives consisting of several programmable and MSI devices, or
costly ASIC devices. In this section we will see how FPCs simplify a speech
processor’s control.

Figure 2.15 shows the simplified block diagram of the FPC Am29CPL151.
Table 2.17 shows the instruction set. The Am29CPL100 architecture is com-
posed of three basic functional blocks:

* Address sequencer. Controls the sequence in which instructions are
fetched from program memory.

* Program memory. Field programmable controllers feature on-chip pro-
gram memory for minimum chip count and maximum system speed.
Memory size ranges from 64 to 512 words for handling even the most
complex controls algorithms. Memory output is fed to the pipeline
register.

* Pipeline Register. A portion of the pipeline register’s contents provides
the outputs that control other devices in the system. The other portion of
the register is fed back to the address sequencer.

TABLE 2.16
Am29PI100 Family Members
Part Memory Words Inputs Outputs Instructions Clock Rate
Am29CPL151 EPROM 64 7 16 29 30 MHz
Am29CPL152 EPROM 64 8 16 28 25 MHz
Am29CPL154 EPROM 64 8 16 28 25 MHz

(Copyright © Advanced Micro Devices. Inc. October 1988. Publication #10389A p. 1. Reprinted
with permission of copyright owner. All rights reserved.)

66 2. Experimenting with Speech Processors

Decrementer
(CREG-1)

o Rl | M Internal ! Counter (PC)
g. X Reset E
" : [Count Register I "
Test Inputs ncrementer
T[5:0]"** (CREG) (PC + 1)
coe

6

Branch Control Detect

F:b Logic (GOTO)

(SREG)

Condition Code
Select Logic

Program Memory
(64 x 32)

32 r———‘—G

Instruction [} T

= o
g Pipeline Register -t i spo*

Decode
i
Instruction g
Decode Logic 16 8 2] 3
1 6
MUX EXP
15
y
~ 00 0
ZERO™ SDI* DCLK® P[15:8] P[76]"* P[5:0]
oumu‘s 10135-006A

* These pins available only in SSR mode.
* These pins available only in normal mode.
* Each of the T[5:0), RESET, and CC inputs can be individually regi d or left gi d as a prog| ble option.

Figure 2.15 Block diagram of the FPC Am29CPL151. (Copyright © Advanced Micro De-
vices, Inc. June 1988. Publication #10135 p. 7. Reprinted with permission of copyright owner. All rights
reserved.)

The Am29CPL100 FPC structure is a cross between a state machine and a
microcontroller, giving it a combination of high-speed operation with the con-
venience of programming using an instruction set. Microcode features a wide
instruction word that allows operations to be performed in parallel instead of
sequentially, as in microcontrollers. This results in higher performance, but
without added design complexity. Using AMD’s FPC assembler (ASM14X),
code is written in high-level language constructs, using symbolic values for
addresses and 1/0.

As a first approach, we will use the Am29CPL151 to control the speech

2.10 FPC Am29CPL100 Drives the SPO256-AL2

TABLE 2.17
Am29CPL141/CPL151 Microprogram Instruction Set
opcode mnemonics Assembler statement
(1) * 19 GOTOPL IF (cond) THEN GOTO PL (data)
(2) * OF GOTOTM IF (cond) THEN GOTO TM (data)
(3) 0B GOTOPLZ IF (CREG = 0) THEN GOTO PL(data)
or 0B GOTOPLZ IF (CREG = 0) THEN
GOTO PL(data) AND CLEAR-EQ
(4) * 18 FORK IF (cond) THEN GOTO PL(data)
ELSE GOTO (SREG)
(5) * 1C CALPL IF (cond) THEN CALL PL(data)
(6) * 1D CALPLN IF (cond) THEN CALL PL(data), NESTED
(7)* 1E CALTM IF (cond) THEN CALL TM(data)
(8) * 1F CALTMN IF (cond) THEN CALL TM(data),NESTED
(9) 04 LDPL IF (cond) THEN LOAD PL(data)
(10) 05 LDPLN IF (cond) THEN LOAD PL(data), NESTED
(11) 06 LDTM IF (cond) THEN LOAD TM(data)
(12) 07 LDTMN IF (cond) THEN LOAD TM(data),NESTED
(13) 15 PSH IF (cond) THEN PUSH
(14) 17 PSHN IF (cond) THEN PUSH, NESTED
(15) 14 PSHPL IF (cond) THEN PUSH, LOAD PL(data)
(16) 16 PSHTM IF (cond) THEN PUSH, LOAD TM(data)
(17) 02 RET IF (cond) THEN RET
(18) 03 RETN IF (cond) THEN RET, NESTED
(19) 00 RETPL IF (cond) THEN RET, LOAD PL (data)
(20) 01 RETPLN IF (cond) THEN
RET NESTED, LOAD PL(data)
(21) 09 DEC IF (cond) THEN DEC
(22) ocC DECPL WHILE (CREG <> 0) WAIT
ELSE LOAD PL(data)
(23) OE DECTM WHILE (CREG <> 0) WAIT
ELSE LOAD TM (data)
(24) * 1B DECGOPL IF (cond) THEN GOTO PL(data)
ELSE WHILE (CREG <> 0)
WAIT
(25) * 1A WAIT IF (cond) THEN GOTO PL(data)
ELSE WAIT
(26) 08 LPPL WHILE (CREG <> 0) LOOP TO PL(data)
or 08 LPPL WHILE (CREG <> 0)
LOOP TO PL(data) AND CLEAR-EQ
27) 0A LPPLN WHILE (CREG <> 0) LOOP TO PL(data)
ELSE NEST
or 0A LPPLN WHILE (CREG <> 0)
LOOP TO PL(data) AND CLEAR-EQ
ELSE NEST
(28) oD CONT CONTINUE
(29) 10 - 13 CMP CMP TM(mask) TO PL(constant)

* = If test field selects EQ, and if branch is taken, EQ flag is cleared

(Copyright © Advanced Micro Devices, Inc. June 1988. Publication #10135 pp. 11-18. Reprinted
with permission of copyright owner. All rights reserved.)

68 2. Experimenting with Speech Processors

processor SPO256-AL2 and to make it speak a preprogrammed sequence of
allophones. Figure 2.16 shows the circuitry configuration to achieve this spe-
cific task.

As shown in Figure 2.16, Nand gates ICla and IC1b form a monostable that
gives a positive transient pulse of 0.1 s each time the normally open test
switch is pressed. The timing equation for this monostable is given by

t = RC In [Vdd/Vt—]
Substituting Vdd and Vt—, we get:

t=RC In [5V/1.8V]
t=1.02 RC

In this form, the FPC (IC2) will read the logic high in order to start the
microprogram; otherwise, the program keeps reading the low state of TO. To
send the data that correspond to the allophone table of the speech processor
SPO256-AL2, we will be using 6 of the 16 outputs of the FPC. The fixed
clock frequency of 3.12 MHz used to clock the speech processor is also ap-
plied to the field programmable controller. This is a good way to reduce the
number of components, by not having to build an extra oscillator. You will see
by looking at Figure 2.16 that outputs PO to P7 of IC2 give the desired address
to the speech processor. Considering that the speech processor contains only
63 speech locations, P6 and P7 will be providing a logic zero in this circuit all
the time. Figure 2.17 illustrates the flowchart required to bring out sequen-

+5Y
7 23
Pol2 MM To LPF and
Pq 3 17A2 24 ~, audio
P24 16./-\3 “amplifier
P3 5 15A4 SPO256- 290F
cal6 T4 AL2 e
P5 |1 1346 "
i 8 11 =0 _L)
P8 g 10A.7 53,12 MHz
R A8 v
rell s e L
T B sy , 1ok 5V
14 oot |19 195 et 12 ‘
RsT |12 e RS -,
L 1 ;ﬁ”j
TR NG 144

Figure 2.16 FPC Am29CPL151 interface with the speech processor SPO256-AL2.

2.10 FPC Am29CPL100 Drives the SPO256-AL2 69

= N

5 \READ

N hed

st= 07 PO-F7 = OOH
o

L
<o >

SBY = 17 >——>>{(READ) J%
,. (RETRY

. . P /xl\\ S
BN e
~ e

S~

Figure 2.17 Flowchart to develop the control program of the circuit shown in Fig-
ure 2.16.

tially a certain number of allophones. The process starts when the user presses
the test (tst) switch that causes a logic high at the TO input of the FPC. When
the FPC detects that TO is high, it will jump automatically to the next instruc-
tion; therefore, while the microinstruction asks for the SBY status of the
SPO256-AL2, the first allophone will be issued by the FPC.

It is clear that the SBY output will be in a logic high because the inputs Al
to A8 have not yet been pulsed low; therefore, the program now calls condi-
tionally the “‘read” subroutine which pulses the inputs Al to A8 low. The
/ALD input is disabled because the strobe enable input of the speech processor
is tied to a logic low. In this mode of operation there is an extra byte penalty
for each allophone issued, and pause pal cannot be used. This extra byte, con-
sisting of zeroes at the inputs Al to A8, is supplied with the output “pal” in
subroutine “‘pl(read).” It is better to use this mode of operation because we
have to define the allophone we desire once only. Otherwise, we would define
every allophone twice along with the word *“ald” in the first instruction and
without the word ““ald” in the second instruction, just to indicate that the
/ALD input is pulsed low in the second instruction.

When the inputs Al to A8 receive the byte 00#h, it causes the SBY output
to stay low for an interval appropriate to the first speech data, in this case, the

70 2. Experimenting with Speech Processors

pause paS. The program now proceeds to read the SBY status. When the SBY
output returns to a logic high, the program returns to the next instruction that
contains the second speech entry point. This process will be repeated until the
last speech data has been issued. Then the program will jump conditionally to
the first line with the instruction “‘if (sby) then goto pl(zero)’’; where “‘zero”
is the label of the first instruction. Notice that the particular allophone you
wish to listen to must be specified before each instruction and separated by a
comma. When you need more outputs, they must be specified, for example,
as outputl + output2. This is why the program contains the required allo-
phone or pause to maintain any one or more of the outputs P1 to P8 at a logic
high for every instruction, except when the program goes to the byte ““zero”
(see line 28). Bear in mind that the last speech data must be a pause (pa2 to
paS) in order to stop the processor saying the last allophone.

Table 2.18 shows the ascii file that represents the program for the FPC
Am29CPLI151 that is suitable for our purposes because it supports a maximum
of 64 instructions, while our program spends only 30. To assemble and simu-
late the program with the ASM14X software package, you have to create
a pure ascii file containing the key words DEVICE, DEFAULT, DEFINE,
BEGIN, and END as illustrated in Table 2.18.

TABLE 2.18
Program to Control the Speech Processor with the FPC Am29CPL151

DEVICE (CPL141)

DEFAULT = 1;

DEFINE "test inputs"
tst = t0 "when the n.o. switch is closed t0 goes high"
sby = t1 "STANDBY goes to zero when A1-A8 are zero"

"ouput control bits speech data = 59 allophones plus five pauses"
pal = 00#h pa2 = 01#h pa3 = 02#h pad4 = 03#h pa5 = 04#h
oy 05#h ay = 06#h eh = 07#h kk3 08#h pp = 09#h
jh 0A#h nnl = 0B#h ih = 0C#h tt2 = ob#h rrl = OE#h
ax = OF#h mm = 10#h ttl1 = 11#h dhl = 12#h iy = 13#h
ey = 14#h ddl = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = 1A#h hhl = 1B#h bbl = 1C#h th = 1D#h
uh = 1E#h uw2 = 1F#h aw = 20#h dd2 = 21#h gg3 = 22#h
vv = 23#h ggl = 24#h sh = 25#h zh = 26#h rr2 = 27#h
ff = 28#h kk2 = 29#h kkl = 2A#h zz = 2B#h ng = 2C#h
11 = 2D#h ww = 2E#h Xr = 2F#h wh = 30#h yyl = 31#h
ch = 32#h erl 33#h er2 = 34#h ow = 35#h dh2 = 36#h
ss = 37#h nn2 38#h hh2 = 39#h or = 3A#h ar = 3B#h
yr = 3C#h gg2 = 3D#h el = 3E#h bb2 = 3F#h;

I

2.10 FPC Am29CPL100 Drives the SPO256-AL2 71

BEGIN

"the speech processor announces the words: zero, one, two, three, bye"
"wait for test input to go high -- Strobe Enable = 0 (pin 19)"
"1"zero: pa5, if (not tst) then goto pl(zero);

ng pas, if (sby) then call pl (read); "400 ms pause"
"3 zz, if (sby) then call pl (read); nze"

g yr, if (sby) then call pl (read); "p"

"5 ow, if (sby) then call pl(read); "o"

"e" pas, if (sby) then call pl(read); "400 ms pause"
mn wwW, if (sby) then call pl (read); "etc.,,,"

"g" ax, if (sby) then call pl (read);

"gn ax, if (sby) then call pl (read);

"10" nnl, if (sby) then call pl (read)

"11" pa5s, if (sby) then call pl(read);

nian tt2, if (sby) then call pl (read)

"13" uw2, if (sby) then call pl(read);

"14" pas, if (sby) then call pl (read)

"s" th, if (sby) then call pl (read)

"ie" rril, if (sby) then call pl (read)

" iy, if (sby) then call pl (read);

"ig" pas, if (sby) then call pl (read);

"9 ff, if (sby) then call pl(read);

"2o" ff, if (sby) then call pl(read);

21" or, if (sby) then call pl (read);

"22" pas, if (sby) then call pl (read)

"23" pas, if (sby) then call pl(read)

"24" bb1, if (sby) then call pl (read)

n"2s5" ay, if (sby) then call pl (read)

26" pas, if (sby) then call pl (read)

"2 pa2, if (sby) then goto pl(zero);

"routine for reading the standby status of the speech processor"
"28"read: pal, continue;"allow SBY pin to go low in 300ns"

"29" pal, 1if (not sby) then goto pl(stay); "reading SBY"
"30" pal, if (sby) then ret;
.org 63#d
"31" goto pl(zero);
END.

The program shown in Table 2.18 specifies the device that we are using, in
this case the Am29CPL141, denoted as CPL141. Notice that Figure 2.16 speci-
fies the Am29CPL151 because this is a version with a self-contained EPROM.
The DEFAULT section, equal to 1, means that unspecified fuses will remain
unblown, thus leaving unspecified microcode words and files at a logic level
one. According to the circuit shown in Figure 2.16, the DEFINE section is
where we assign names to the test inputs and output control bits; it is here that
the 5 pauses, 59 allophones, and the /ALD output are assigned with the hexa-
decimal value required for addressing the speech processor correctly. In this

72 2. Experimenting with Speech Processors

manner, we will be applying the allophones or pauses in our main program in
an easy-to-follow format.

The assembler program produces three files; JEDEC, PROM bit, and the
error file. For more information on how to install and run the assembler
(ASM14X) and the simulator (SIM14X), consult the files with the extension
“. TXT” contained in the software package ASM14X from Advanced Micro
Devices. Assembler statements are written using any familiar word processor.
Assembly is done on any personal computer using ASM14X. Error messages
are returned for incorrect syntax. Once the error messages have been elimi-
nated, a JEDEC file is produced with the assembler output. Table 2.19 shows
the JEDEC file that is generated by the assembler program in order to be
downloaded to a standard logic programmer. Table 2.20 illustrates the PROM
bit pattern file. By looking at this PROM bit pattern, you will see that the
outputs and inputs that we specified for controlling the speech processor are
the equivalent outputs but in binary code. Line “28” is responsible for pulsing
low the outputs PO—P7 of the FPC to load a speech entry point.

TABLE 2.19
JEDEC File for the FPC Am29CPL151

[speech3.doc] JEDEC map for device [cpll41]*
L0000 O 00110 111 111111 1111111111111011 *

L0032 00011 110 100100 1111111111111011 *
L0064 00011 110 100100 1111111111010100 *
L0096 00011 110 100100 1111111111000011 *
L0128 00011 110 100100 1111111111001010 *
L0160 00011 110 100100 1111111111111011 *
L0192 00011 110 100100 1111111111010001 *
L0224 00011 110 100100 1111111111110000 *
L0256 00011 110 100100 1111111111110000 *
L0288 00011 110 100100 1111111111110100 *
L0320 00011 110 100100 1111111111111011 *
L0352 00011 110 100100 1111111111110010 *

L0384
L0416
L0448
L0480
L0512
L0544
L0576
L0608
L0640
L0672
L0704
L0736
L0768

*
00011 110 100100 1111111111111011 *
00011 110 100100 1111111111100010 *
00011 110 100100 1111111111110001 *
00011 110 100100 1111111111101100 *
00011 110 100100 1111111111111011 *
00011 110 100100 1111111111010111 *
00011 110 100100 1111111111010111 *
00011 110 100100 1111111111000101 *
00011 110 100100 1111111111111011 *
00011 110 100100 1111111111111011 *
00011 110 100100 1111111111100011 *
00011 110 100100 1111111111111001 *

0
1
1
1
1
1
1
1
1
1
1
1
00011 1 110 100100 1111111111100000
1
1
1
1
1
1
1
1
1
1
1
1

O O 0O 0O OO0 00 0000000000000 OO oo o

2.10 FPC Am29CPL100 Drives the SPO256-AL2

L0800
L0832
L0864
L0896
L0928
L0960
L0992
L1024
L1056
L1088
L1120
L1152
L1184
L1216
L1248
L1280
L1312
L1344
L1376
L1408
L1440
L1472
L1504
L1536
L1568
L1600
L1632
L1664
L1696
L1728
L1760
L1792
L1824
L1856
L1888
L1920
L1952
L1984
L2016
L2048
L2049
L2050
L2051
L2052
L2053
L2054
L2055
L2056
L2057
C4EBT*
21C8

0 00011 1 110 100100 1111111111111011
0 00110 1 110 111111 1111111111111110
0 00110 0 110 100100 1111111111111111
0 11101 1 110 000000 1111111111111111
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000%*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000090000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
00000000000000000000000000000000*
*

*

*

O O 0O 0 0O OO0 O OO0

73

74 2. Experimenting with Speech Processors

TABLE 2.20
PROM Bit Pattern for the FPC Am29CPL151

PROM Contents:

hex <dec> OE OPCODE POL TEST DATA OUTPUT

000 < 0> [11 11001 | 1 i 000 { 000000 { 0000000000000100]
001 < 1> [11 11100 { O i 001 | 011011 | 0000000000000100 |
002 < 2> [17 11100 { O : 001 { 011011 i 0000000000101011 |
003 < 3> [11 11100 ¢ O ¢ 001 ! 011011 i 0000000000111100]
004 < 4> [1 i 11100 { O | 001 | 011011 : 0000000000110101 |
005 < 5> [1 11100 ! 0 i 001 i 011011 i 0000000000000100 |
006 < 6> [1 {11100 ; 0 | 001 : 011011 ; 0000000000101110 |
007 < 7> [1 ! 11100 { O : 001 : 011011 } 0000000000001111 |
008 < 8> [11 11100 : 0 ; 001 : 011011 } 0000000000001111 |
009 < 9> [1. 11100 : 0 ; 001 } 011011 : 0000000000001011]
00A < 10> [11 11100 : 0 i 001 } 011011 } 0000000000000100 |
00B < 11> [11 11100 ; 0 : 001 ; 011011 { 0000000000001101 |
00C < 12> [1 11100 ¢ 0 : 001 ; 011011 | 0000000000011111 |
00D < 13> [11 11100 i 0 | 001 i 011011 ; 0000000000000100 |
00E < 14> [11 11100 | O | 001 ; 011011 ; 0000000000011101 |
OOF < 15> [11 11100 ¢ 0 i 001 | 011011 ; 0000000000001110 |
010 < 16> [11 11100 : 0 } 001 | 011011 | 0000000000010011 |
011 < 17> {1 11100 : 0 . 001 i 011011 | 0000000000000100]
012 < 18> {11 11100 ' 0 i 001 i 011011 } 0000000000101000]
013 < 19> [11 11100 i O i 001 i 011011 { 0000000000101000]
014 < 20> [11 11100 i 0 ; 001 : 011011 i 0000000000111010 |
015 < 21> [11 11100 } 0 | 001 | 011011 i 0000000000000100]
016 < 22> [11 11100 i 0 i 001 | 011011 | 0000000000000100]
017 < 23> [1 3 11100 i 0 i 001 i 011011 ! 0000000000011100 |
018 < 24> {17 11100 ; 0 i 001 i 011011 { 0000000000000110 |
019 < 25> [11 11100 O i 001 i 011011 { 0000000000000100 |
01A < 26> [1 1 11001 ¢ O i 001 i 000000 : 0000000000000001 |
01B < 27> [1 11001 i 1 i 001 | 011011 } 0000000000000000]
01C < 28> [1 00010 ¢ O ; 001 | 111111 { 0000000000000000]

The Am29CPL151 operates at a maximum frequency of 30 MHz, con-
sumes 115 mA, and its operating voltage range is 4.5 to 5.5 V. All the instruc-
tions are executed in one clock cycle. You can modify the program to suit your
specific needs, but remember that a maximum of 64 instructions are allowed
using the Am29CPL151.

Now we will use the field programmable controller Am29CPL152 to make
the speech processor vocalize a BCD code input. Figure 2.18 shows the re-
spective circuit where the Am29CPL152 receives the BCD code input on the
test input lines (TO to T3). The test input line t4 is now used here to read the
STANDBY status (SBY) of the speech processor. Output lines PO to P7 are
configured as the circuit explained before.

76

2. Experimenting with Speech Processors

TABLE 2.21
Program for Controlling the Speech Processor and
Make It Speak the Respective BCD Code Input

DEVICE (CPL142)

DEFAULT = 1;

DEFINE "test inputs"

b1 = to "when the n.o. switch is closed t0 goes high"
b2 = t1 "STANDBY goes to zero when A1-A8 = 00#h"

b3 = t2

b4 = t3

tst = cc

equal = eq

sby = t4

"Ouput control bits. Speech data = 59 allophones plus five pauses"
pal = 00#h pa2 = 0l#h pa3 = 02#h pa4 = 03#h pa5 = 04#h
oy = 05#h ay = 06#h eh = 07#h kk3 = 08#h pp = 09#h
jh = 0A#h nnl = 0B#h ih = 0C#h tt2 = OD#h rrl = OE#h
ax = OF#h mm = 10#h ttl = 11#h dhl = 12#h iy = 13#h
ey = 14#h ddl = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = 1A#h hhi1 = 1B#h bbl = 1C#h th = 1D#h
uh = 1E#h uw2 = 1F#h aw = 20#h dd2 = 21#h gg3 = 22#h
vv = 23#h ggl = 24#h sh = 25#h zh = 26#h rr2 = 27#h
ff = 28#h kk2 = 29#h Kkkl1 = 2A#h zz = 2B#h ng = 2C#h
11 = 2D#h ww = 2E#h xr = 2F#h wh = 30#h yyl = 31#h
ch = 32#h erl = 33#h er2 = 34#h ow = 35#h dh2 = 36#h
ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h
yr = 3C#h gg2 = 3D#h el = 3E#h bb2 = 3F#h,;

BEGIN

"wait for test input to go high. SE = 0 (pin 19 of SP0256-AL2)"
"1"stay:pal, if (not tst) then goto pl(stay);

nan pal, cmp tm(OF#h) to pl(00#h);

"3 pal, if (equal) then goto pl(zero);

4 pal, cmp tm(OF#h) to pl(01#h);

"5 pal, if (equal) then goto pl(one);

"e" pal, cmp tm(OF#h) to pl(02#h);

g pal, if (equal) then goto pl(two);

"g" pal, cmp tm(OF#h) to pl(03#h);

ngn pal, if (equal) then goto pl (thre);

"10" pal, cmp tm(OF#h) to pl(04#h);

"iln pal, if (equal) then goto pl (four);

"i2n pal, cmp tm(OF#h) to pl(05#h);

"13" pal, if (equal) then goto pl(five);

"14" pal, cmp tm(OF#h) to pl(06#h);

"15" pal, if (equal) then goto pl(six);

"ie" pal, cmp tm(OF#h) to pl(07#h);

"7 pal, if (equal) then goto pl(svn);

2.10 FPC Am29CPL100 Drives the SPO256-AL2

"18" pal,
"19" pal,
"20" pal,
"21" pal,
na22" pal,
"23" pal,

"routine for
"24"zero: zz,

ng5n yr,
"26" ow,
naqn pad
n2g" pal

"routine for
"29"one: ww,

"30" ax,

"31" ax,

"3a2" nnl,
"33 pa4,
"34" pal,
"routine for
"35"two: tt2,
"36" uw2,
"37" pa4,
"38" pal,
"routine for
"39"thre: th,
40" rrl
"41n iy,
"4q2" pa4d
n43n pal
"routine for
"44"four: ff,
"45" ff,
"46" or,
ngn pa4d
"48" pal
"routine for
"49"five: ff,
"50" ff,
"51" ay,
"52" vv,
"53" pa4d
n54" pal
"routine for
"55"six:ss,

"56" ss,

"5 ih,

"58" ih,

"59" pa3,
"60" kk2,

cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(0F#h) to
if (equal) then

the word zero"

pl (08#h);

goto pl(eit);
pl (09#h) ;

goto pl(nin);
pl (0A#h);

goto pl(error);

if (sby) then call pl(read);
if (sby) then call pl(read);
if (sby) then call pl (read)
if (sby) then call pl (read)
if (sby) then goto pl(stay);

the word one"

if (sby) then call pl(read)

if (sby) then call pl (read);
if (sby) then call pl (read);
if (sby) then call pl(read);
if (sby) then call pl (read);
if (sby) then goto pl (stay);

the word two"

if (sby) then call pl(read);
if (sby) then call pl (read);
if (sby) then call pl(read);
if (sby) then goto pl (stay);

the word three"

if (sby) then call pl(read);
if (sby) then call pl (read);
if (sby) then call pl(read);
if (sby) then call pl (read);
if (sby) then goto pl (stay);

the word four"

if (sby) then call pl (read)
if (sby) then call pl (read);
if (sby) then call pl (read)
if (sby) then call pl (read);
if (sby) then goto pl (stay);

the word five"

if (sby) then call pl(read);
if (sby) then call pl (read);
if (sby) then call pl(read)
if (sby) then call pl (read);
if (sby) then call pl(read);
if (sby) then goto pl (stay);

the word six"

if (sby) then call pl(read);
if (sby) then call pl (read);
if (sby) then call pl (read);
if (sby) then call pl (read);
if (sby) then call pl(read);
if (sby) then call pl(read);

77

78 2. Experimenting with Speech Processors

"61" ss, if (sby) then call pl (read);
"e2" pa4, if (sby) then call pl (read)
"e3" pal, if (sby) then goto pl(stay);
"routine for the word seven"

"64"svn: ss, if (sby) then call pl (read)
"65" ss, if (sby) then call pl(read);
"66" eh, if (sby) then call pl(read);
"eT" eh, if (sby) then call pl (read);
"68" Vv, if (sby) then call pl (read);
"69" eh, if (sby) then call pl (read);
"0 nnl, if (sby) then call pl(read);
" pa4, if (sby) then call pl (read);
"2 pal, if (sby) then goto pl (stay);
"routine for the word eight"

"73"eit: ey, if (sby) then call pl (read);
"74" pa3, if (sby) then call pl(read);
"5" tt2, if (sby) then call pl(read);
"76" pa4, if (sby) then call pl(read);
" pal, if (sby) then goto pl (stay);
"routine for the word nine"

"78"nin: nn2, if (sby) then call pl(read);
"gn aa, if (sby) then call pl(read);
"80" ay, if (sby) then call pl (read);
"g1l" nnl, if (sby) then call pl(read);
"g2" pa4, if (sby) then call pl(read);
"83" pal, if (sby) then goto pl(stay);

"routine error"
"84"error:eh, 1if (sby) then call pl(read);

"85" xr, if (sby) then call pl(read);
"86" or, if (sby) then call pl (read);
"8 pa4, if (sby) then call pl(read);
"8g8" pal, if (sby) then goto pl(stay);
"subroutine for reading the standby status of the speech processor"
"89"read: pal, if (not sby) then goto pl(read); "reading SBY"
"go" pal, if (sby) then ret;
.org 127#d
"91"pal, if (sby) then goto pl(stay);
END.

that contains the next allophone. This process continues until all the allo-
phones have been issued. Note that the last instruction of each routine sends
the program back for reading the test (tst) switch. If the number ten (1010) is
received at the four inputs (TO to T3), the program goes to a routine that
makes the speech processor announce the message “error.”” The user can add
more instructions if he or she desires to detect the numbers eleven to fif-
teen. Try doing this and assemble your circuit and verify its operation by
building this compact unit. Table 2.22 presents the prom bit pattern for the

2.10 FPC Am29CPL100 Drives the SPO256-AL2 79

Am29CPL152. The JEDEC file is not shown here, but you will get it when
you assemble the file speech 4.doc. The JEDEC file is required for the
EPROM burner and is directly downloaded from your computer. While the
FPCs labeled with the letters PL have a built-in PROM, remember that the
field programmable controllers containing the letters CPL have a built-in
CMOS EPROM.

If you want to design a 5-bit binary input vocalizer, try to design your pro-
gram in a form such that the FPC combines the words. For example, the num-
ber “twenty one” requires the use of two words: “twenty” and ““one.” The

TABLE 2.22
Prom Bit Pattern for the Am29CPL152

PROM Contents:

hex <dec> OE OPCODE POL TEST DATA OUTPUT

000 < 0> [1 1 11001 i 1 §{ 0111 | 0000000 : 0000000000000000]

001 < 1> [1 1 00110 7 O : 0111 i 0001111 i 0000000000000000]
OPCODE CONSTANT DATA

002 < 2> [1. 100 ¢ 0000000 | 0001111 | 0000000000000000]

003 < 3> [11 11001 i O i 1000 } 0011000 : 0000000000000000 |
OPCODE CONSTANT DATA

004 < 4> [13 100 ¢ 0000001 i 0001111 } 0000000000000000]

005 < 5> [1 1 11001 i 0 i 1000 | 0011101 : 0000000000000000 |
OPCODE CONSTANT DATA

006 < 6> [1. 100 : 0000010 | 0001111 i 0000000000000000]

007 < 17> [1 7 11001 ; 0 | 1000 | 0100011 i 0000000000000000 |
OPCODE CONSTANT DATA

008 < 8> [11 100 ¢ 0000011 : 0001111 | 0000000000000000]

009 < 9> [17 11001 i O i 1000 } 0100111 i 0000000000000000 |
OPCODE CONSTANT DATA

00A < 10> [1 100 ¢ 0000100 : 0001111 : 0000000000000000]

00B < 11> [1 1 11001 i 0 { 1000 | 0101100 : 0000000000000000 |
OPCODE CONSTANT DATA

00C < 12> [11 100 ¢ 0000101 [0001111 : 0000000000000000]

00D < 13> [1 1 11001 ¢ 0 i 1000 | 0110001 i 0000000000000000]
OPCODE CONSTANT DATA

00E < 14> [11 100 ¢ 0000110 i 0001111 } 0000000000000000]

OOF < 15> [1711001 i 0 { 1000 : 0110111 ; 0000000000000000]
OPCODE CONSTANT DATA

010 < 16> [11 100 : 0000111 i 0001111 | 0000000000000000]

011 < 17> [17 11001 i O i 1000 | 1000000 : 0000000000000000 |
OPCODE CONSTANT DATA

012 < 18> [11 100 ¢ 0001000 : 0001111 : 0000000000000000 |

013 < 19> [1 ¢ 11001 | O ! 1000 { 1001001 } 0000000000000000]
OPCODE CONSTANT DATA

014 < 20> [1 100 ¢ 0001001 i 0001111 ; 0000000000000000]

015 < 21> [11 11001 { 0 i 1000 } 1001110 i 0000000000000000 |

2. Experimenting with Speech Processors

OPCODE CONSTANT DATA

016 < 22> [1 100 i 0001010 i 0001111 : 0000000000000000 |
017 < 23> [1 1 11001 : 0 i 1000 ; 1010100 ; 0000000000000000 1]
018 < 24> [1 11100 | O i 0100 | 1011001 | 0000000000101011 |
019 < 25> [1 3 11100 i 0 i 0100 i 1011001 | 0000000000111100 |
01A < 26> [1 1 11100 ¢ O i 0100 . 1011001 | 0000000000110101 |
01B < 27> [1 1 11100 i 0 i 0100 : 1011001 : 0000000000000011 |
01C < 28> [1 1 11001 : O i 0100 : 0000000 : 0000000000000000 |
01D < 29> [1} 11100 ¢ O } 0100 | 1011001 : 0000000000101110 |
01E < 30> [1} 11100 ¢ O | 0100 i 1011001 i 0000000000001111 |
01F < 31> [1 1 11100 ; 0 i 0100 i 1011001 : 0000000000001111 |
020 < 32> [1 {11100 ! 0 i 0100 : 1011001 | 0000000000001011 |
021 < 33> [1} 11100 : O i 0100 : 1011001 i 0000000000000011 |
022 < 34> [1 7 11001 ¢ O i 0100 : 0000000 | 0000000000000000 |
023 < 35> [1 1 11100 | 0 i 0100 i 1011001 | 0000000000001101 |
024 < 36> [1 11100 : O i 0100 i 1011001 : 0000000000011111 |
025 < 37> [13 11100 | 0 i 0100 | 1011001 : 0000000000000011 |
026 < 38> [1} 11001 ; 0 i 0100 : 0000000 i 0000000000000000 |
027 < 39> [1} 11100 : 0 i 0100 : 1011001 i 0000000000011101 |
028 < 40> [1 1 11100 i 0 i 0100 : 1011001 : 0000000000001110 |
029 < 41> [1 {11100 ; 0 i 0100 : 1011001 | 0000000000010011

02A < 42> [1} 11100 | O i 0100 i 1011001 . 0000000000000011

02B < 43> [11 11001 ¢ O ¢ 0100 i 0000000 | 0000000000000000 |
02C < 44> [1} 11100 ¢ 0 i 0100 i 1011001 : 0000000000101000 |
02D < 45> [1 ¢ 11100 i/ O i 0100 : 1011001 : 0000000000101000 |
02E < 46> [11 11100 i} 0 i 0100 | 1011001 | 0000000000111010 |
02F < 47> [1 ! 11100 : O i 0100 i 1011001 | 0000000000000011 |
030 < 48> [1) 11001 : O i 0100 i 0000000 | 0000000000000000 |
031 < 49> [1) 11100 } 0 i 0100 i 1011001 i 0000000000101000 |
032 < 50~ [1} 11100 : 0 i 0100 i 1011001 | 0000000000101000 |
033 < 51> [1 1 11100 ¢ 0 i 0100 i 1011001 | 0000000000000110 |
034 < 52> [1 1 11100 } 0 ;, 0100 ; 1011001 i 0000000000100011 |
035 < 53> [14 11100 | 0 ! 0100 i 1011001 : 0000000000000011

036 < 54> [11 11001 i 0 i 0100 | 0000000 i 0000000000000000 |
037 < 55> [1) 11100 : O | 0100 | 1011001 : 0000000000110111]
038 < 56> {11! 11100 . O ! 0100 | 1011001 ; 0000000000110111 |
039 < 57> {11 11100 0 : 0100 : 1011001 i 0000000000001100 |
03A < 58> [1} 11100 : 0 | 0100 i 1011001 i 0000000000001100 |
03B < 59> [1 1 11100 ¢ 0 i 0100 : 1011001 | 0000000000000010 |
03C < 60> [11 11100 | O { 0100 i 1011001 | 0000000000101001 |
03D < 61> [1 1 11100 | O i 0100 : 1011001 | 0000000000110111 |
03E < 62> [1} 11100 ; O i 0100 : 1011001 : 0000000000000011 |
03F < 63> [11 11001 : O i 0100 i 0000000 i 0000000000000000 |
040 < 64> [1 11100 { 0 i 0100 i 1011001 | 0000000000110111 |
041 < 65> [1 1 11100 . 0 i 0100 : 1011001 | 0000000000110111

042 < 66> [1} 11100 : O i 0100 . 1011001 : 0000000000000111

043 < 67> [1 1 11100 } O i 0100 | 1011001 : 0000000000000111 |
044 < 68> [1 1 11100 : O i 0100 i 1011001 : 0000000000100011 |
045 < 69> [1} 11100 ; O : 0100 i 1011001 . 0000000000000111 |
046 < 70> [11 11100 ¢ O i 0100 ' 1011001 | 0000000000001011 |
047 < 71> [1} 11100 { O i 0100 | 1011001 i 0000000000000011 |

2.11 Multiplexing a Speech Processor 81

048 < 72> [1 1 11001 { O } 0100 i 0000000 : 0000000000000000]
049 < 73> [11! 11100 : O { 0100 : 1011001 : 0000000000010100]
04A < 74> [1 1 11100 : 0 : 0100 , 1011001 | 0000000000000010]
04B < 75> [1 1 11100 ' 0 i 0100 : 1011001 , 0000000000001101]
04C < 76> [1} 11100 : 0 i 0100 : 1011001 i 0000000000000011]
04D < 77> [1 1 11001 § 0 i 0100 : 0000000 i 0000000000000000]
04E < 78> [11 11100 : 0 | 0100 | 1011001 : 0000000000111000]
04F < 79> [11 11100 : 0 i 0100 : 1011001 | 0000000000011000]
050 < 80> [11 11100 ¢ O i 0100 | 1011001 : 0000000000000110 |
051 < 81> [1 i 11100 : 0 i 0100 ; 1011001 ! 0000000000001011]
052 < 82> {11 11100 : 0 i 0100 ; 1011001 | 0000000000000011]
053 < 83> [1 1 11001 ¢ O } 0100 i 0000000 | 0000000000000000]
054 < 84> [1 1 11100 : O | 0100 ; 1011001 i 0000000000000111]
055 < 85> [1 i 11100 { O i 0100 | 1011001 : 0000000000101111]
056 < 86> [11 11100 { O i 0100 i 1011001 ; 0000000000111010 |
057 < 87> [1 i 11100 ¢ O { 0100 i 1011001 : 0000000000000011

058 < 88> [1! 11001 ; 0 i 0100 ; 0000000 : 0000000000000000 |
059 < 89> [1 {11001 ¢ 1 | 0100 : 1011001 : 0000000000000000 |
05A < 90> [1 ! 00010 ; O i 0100 ; 1111111 ; 0000000000000000]

use of subroutines containing the basic numbers will help to develop a pro-
gram that compares the magnitude of the digital input in order to determine
the way to make the speech processor announce the correct number. In this
manner, you will save memory space for other possible tasks of your program.

2.11 Multiplexing a Speech Processor
with Different Data Sources

To be able to interface a speech processor with several data sources to read
and vocalize the information, it is necessary to consider the use of multiplex-
ers (MUX). Multiplexing will permit us to use only one speech processor
when we want to measure different types of data sources.

A MUX can be implemented with MSI chips or with programmable logic
(PALs or PLDs). It is up to you to decide the technology that better suits your
specific needs.

For the interpretation of different data sources using a single speech pro-
cessor, the circuit shown in Figure 2.19 provides a solution. The 8-bit data
input sources may represent any physical or electrical measurement that is in
binary code ready to be latched and selected by the 8-bit transparent latches
ICla, IClb, . . . IC1ln (74HC373). It is not necessary to have 8-bit data inputs
in all the latches; 7-bit data inputs or less can be used in this specific circuit. If
this is the case, data lines must be shifted to the next lower address pin of the
EPROM, reducing the size of the EPROM from a 27256, for example, to a
27128, 2764, and so on.

2.11 Multiplexing a Speech Processor 83

of memory starting at location 2 is selected. Once the flip-flop is high,
the SPO256 is enabled to start the timing of the allophone’s sequence. 1C4
(74HC4040) configured as a 5-bit binary counter is reponsible for scanning in
sequence a maximum of 32 speech entry points per reading. This counter is
triggered at the rising edge of the /ALD input signal. In this form, while the
speech processor is speaking the first speech data, counter IC4 is clocked; that
is, it is incremented to give time for the EPROM to access the new speech data
to the input port (Al to A6) of the speech processor.

It is very important to avoid glitches in the input port lines (Al to A6) of the
speech processor when you want to pulse the /ALD input low. That considera-
tion is taken into account here because the SBY output gives a logic low at its
output, indicating that the speech processor is talking. This causes a logic
high at the output of Nand gate IC6a, which in turn clocks counter IC4 via
Nand gate IC6b. Counter IC4 specifies the next address for the EPROM mem-
ory. The propagation time delay caused by Nand gates ICla, IClb, counter
IC4, and the EPROM memory (IC5) is about 1300 ns (see Figure 2.20). After
that short time delay, the circuit will call out readings.

In the same way, the type of circuit that the user selects to control the in-
puts (YO, Y1, and SET) plus the 8-bit data inputs must wait a short time to

3ET

j)

=y

—* F— 30008
]

(ALD) 1c1o | S00mS—> e
SBY ST e s00ns

LATCH —> |¢— 15ns

N
EPROM / :
— <«—100ns

1C1h j 300n3 i%-

74HCA040 ¢

N

— }f‘—wo.—,s

Figure 2.20 Timing diagram for the circuit shown in Figure 2.19.

84 2. Experimenting with Speech Processors

avoid reading glitches from the 8-bit data inputs. In this case, a “Ready” sig-
nal coming from the data source would be very important.

Finally, the new designing tools now available for programmable array
logic (PALs) and generic array logic (GALs) will permit you to achieve the
kind of multiplexer you are looking for. If you include Nand gates and the flip-
flop used in the circuit previously explained, you will save more hardware and
space when building this unit.

References

CMOS Logic Databook. 400039 Rev. 1. National Semiconductor. 1989.

SPO256B Narrator Speech Processor, (DS50018A-1)

SPO256-AL2 Narrator Speech Processor, (DS50005A-1) Microchip Technology Inc. 1989.

MOS Memory Products. Toshiba Semiconductor, Inc. 1987.

Am29CPL100 Family of Field Programmable Controllers. Handbook. Advanced Micro De-
vices. 1988.

Am29CPL141 FPC Data sheet Advanced Micro Devices. 1988.

Am29CPL142 FPC Data sheet Advanced Micro Devices. 1989.

Am29CPL144 FPC Data sheet Advanced Micro Devices. 1989.

8049/8051 Microcontrollers User’s Guide. Signetics. 1989.

GW Basic User’s Manual for TANDY 1000SL. Tandy Corporation. 1989.

Ricardo Jimenez-G., Circuit Vocalizes Hex Code for a 4-bit Input. EDN, March 18, 1987,
pp. 204-206.

Analog Circuits

3.1 Basics of the A/D Converters

Now that digital computers and digital control systems are finding widespread
uses, measuring the natural and artificial variables found in the real world is
becoming less of an analog function. The variables of temperature, pressure,
speed, and so on are natural and artificial variables that occur in quantities that
change continuously. In order to change most variables from an analog do-
main to a digital domain, an interface device is usually required—the analog-
to-digital (A/D) converter.

Essentially, an A/D converter is an encoding device that accepts an analog
signal (Vi) and an analog reference (Vr) as inputs and generates a digital out-
put (Do) which is an effect related to the input.

The design and selection of the best converter for a particular system is by
no means simple. There is usually no single converter that will meet all speci-
fications; however, to obtain optimum performance at minimum size and cost,
the designer must consider factors that are common to all converters: perfor-
mance, speed, reference supplies, power supplies, buffers, and other factors
not considered in this book. Within the framework of these factors, the A/D
converters used in this section were selected as the optimum devices for our
speech synthesis applications based on availability of product and price, and
also because they are the most widely used products by designers.

Analog-to-Digital Converters

National Semiconductor’s low-cost, CMOS 8-bit successive approximation
A/D converters, designated as ADC0800, are compatible with most micro-
processors/microcontrollers, and in most applications they do not require

85

86 3. Analog Circuits

added interfacing logic. These devices operate from a single 5-V supply, and
the conversion time is 100 us. Five accuracies are available in this family of
A/D converters:

ADCO0801 +1/4 LSB full scale adjusted
ADCO0802 +1/2 LSB unadjusted (Vref/2 = 2.500)
ADCO0803 +1/2 LSB adjusted

ADCO0804 +1 LSB unadjusted

ADCO0805 +1 LSB

These converters contain a new differential analog voltage input, which
allows the common-mode rejection to be increased and the analog zero input
voltage value to be offset. In addition, National Semiconductor has 10-bit and
12-bit versions of these A/D converters (ADC) to provide a complete family
of ADC0800 devices. Figure 3.1 shows the pin configuration for the
ADCO080X.

Functional Description

It is our goal in this section to show you how to use the A/D converters (series
ADCO080X). Figure 3.2 shows the logic diagram of the A/D converters of the
series ADCO080X.

Before you start applying these converters to speech processors, it is rec-
ommended that you first test the A/D converter, because you will be able to
test the first phase of your system. The simplest test consists of applying a
known analog input voltage to the converter and using LEDs to display the
resulting digital output code.

Figure 3.3 shows the basic configuration for this test.

The first phase is to test the operation of the circuit illustrated in Figure 3.3
by using a full-scale adjustment. An analog input voltage of 2.55 Vdc should
be applied to the Vin(+) pin with the Vin(—) grounded. The value of the
Vref/2 input voltage should then be adjusted until the digital output code
is just changing from 1111 1110 to 1111 1111. In this case, Vref/2 is set to

s — 20— Ve

RO T2 19— CLK R

wR T3 18 — DBO (LSB)
CLK IN—/74 17 — DB1

INTR—5 A/D 16— DB2
Vin(+) —16 15 — DB3
Vin(-) —17 14 — DB4
AGND —18 13 — DBS
Vre/2 —9 12 }— DB6
OGND —10 11 |— DB7 (MSB)

Figure 3.1 Pin configuration for the ADCO80X.

3.1 Basics of the A/D Converters 87

“START"

Gy FLIP-FLOP r— —
— s 10
FoygE)
CLK A
p_ R cLkq{ e

F 2)
cs

cLk 119)
our

4]
CLK IN‘)

DGTL (10)
GND -
r - c«t 8
—>
Vee (20} ° u
<+ -]
- -
(9) LADDER san <] BT
REF/2 AND | o taten |} SwEr “INTERRUPT"
REGISTER o FLOP
-]
- e R
- < e Rl
LE A
ANLG (8)
GND I o 8 Nt
vee 1
X 3 cLkadcr - H
ne 8L g
q
e D)

3-STATE
OUTPUT
LATCH

Figure 3.2 Logic diagram of the ADC080X family of A/D converters. (Reprinted with
permission from National Semiconductor Corp. © 1980, Linear Data Book, 1982, pp. 8-41.)

1.30 Vdc. The reference voltage Vref/2 of 1.30 Vdc should then be used for
all the tests. This fixed value of Vref/2 provides an LSB value of 0.01 V. The
operating input voltage is from 0 to 2.55 V, with a resolution of 0.01 V. Table
3.1 shows the binary equivalent of six different input voltage readings.

When the circuit of Figure 3.3 is first turned on, the monostable circuit
formed by IC1a and IC1b pulses low the /WR input for an interval of 80 us to
ensure start-up under all possible conditions during the first power-up cycle.
Notice that the monostable lacks power-up reset circuitry which is normally
applied to pin 6 of Nand gate IC1b; due to this fact, the monostable is self-
triggered when the circuit is first turned on.

Now you can apply, for example, an input voltage of 1.00 Vdc and then
press the test switch to pulse the /WR input low. This action causes the /INTR
output to go high. After 100 us the correct output code will be present on
outputs DBO to DB7. These outputs are buffered with Nand gates to provide

88 3. Analog Circuits

7 S 1 W 20 (2)CD4093
a 2/ I e i—icv\m 0RD ;E‘J__\/ H@*'
= S I L
L DA
10K . ADCOB03 _E]—HVJ\L/ '
= ———Vin(+) _E‘E},_/\/\/_f .
} - — 1 A
10K é <—_-L———9 Vref/2 ‘{EHN@
0.1 ROCS DB7 —q_/b—‘ YV yun
T »1012l117]8 300;(3

1

Figure 3.3 Circuitry for testing the ADC0803 converter.

the sink current to drive the eight LEDs. At this time you can check the binary
code with Table 3.1. For interfacing purposes, the output reading in binary
code is ready and correct when the interrupt /INTR output of the A/D con-
verter goes to a logic low.

With respect to the A/D conversion process, the most significant bit is
tested first and, after eight comparisons (64 cycles) a digital 8-bit binary code

TABLE 3.1
Input Voltages and Their Equivalent in Binary Code

Vin(+) | DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO

1. 0.00V i O 0 0 0 0 0 0 0
2. 0.05V . O 0 0 0 0 1 0 1
3. 1.00V i 0 1 1 0 0 1 0 0
4. 2.00 V. 1 1 0 0 1 0 0 0
5. 2.50V i 1 1 1 1 1 0 1 0
6. 2.55 Vi 1 1 1 1 1 1 1 1

3.1 Basics of the A/D Converters 89

is transferred to an output latch; then an interrupt is asserted (/INTR makes a
high-to-low transition). The pin functions assigned as write (/WR) and inter-
rupt (/INTR) will be the most widely used for operation with a micro-
computer-based system.

In applications where the sensor and the A/D converter are using the same
reference, the drift of the reference will not matter, because it will cancel out.

If speed is important, consider the use of ADCs that employ flash conver-
sion techniques. The high speed of this technique lies in the fact that all com-
parators examine the input voltage simultaneously in parallel mode and make
an immediate total conversion. A flash converter has a separate comparator
for each of the possible digital output values. All the comparators receive the
input voltage. Comparators in which the input is above the reference will gen-
erate zeros. The output of all the comparators is fed to an encoder which con-
verts the data to a binary value. This approach is limited by the number of
comparators required. The flash A/D converter does not need a sample-hold
circuit or a D/A converter. An 8-bit resolution converter requires 255 com-
parators (28 — 1). See Figure 3.4 for a block diagram of a typical flash
converter.

If you are planning to use a flash converter for a control system contain-
ing speech synthesis, bear in mind that the speech processor is a relatively
low-speed device compared to the flash converter; consequently, your control

R $ COMPARATORS
[O NN
R ? ’
M.
o o] 3
R < A ouTPUT o DICITAL
< DECODER LATCH > OUTRUT
= NETWORK , AND
R | | ORIVERS
e | 1
A - - I i
S G B | ;
J | i |
. o— —
o -]
r;"‘l{" ;
IPYT —
CLOCK

Figure 3.4 Block diagram of a flash converter.

90 3. Andlog Circuits

system must be able to respond rapidly to take control of the situation, and
then the speech processor will proceed to give the messages required for a
specific situation.

The following sections of this chapter will be using A/D converters and
comparators, which will be interfaced to a controller that will take care of
driving a speech processor.

3.2 Interfacing the ADCO0804 to Digitalker
DT1050

This application covers all the possible interface combinations for the uC de-
scribed below. This interface offers the following advantages:

1. Fast complete cycle times for loading the A/D address, performing con-
version, retrieving the conversion, and loading the conversion to a
speech processor.

2. Flexible use of A/D converter pins for either A/D conversion or input
of digital data.

3. Low cost.

The Intel Corporation microprocessor families for the uC 8048/8049 con-
sist of the following:

8035AHL 8048AH 8748H
8039AHL 8049AH 8749H
8040AHL 8050AH 80C49

Figure 3.5 shows the circuit configuration for the interface. This circuit can
be used for the 8048 and 8049 devices interfaced to the ADC0804 device, and
the 8051 and 8052 devices interfaced to the ADC0804. The system clock for
the A/D converter is obtained from the RC logic oscillator. The RC logic os-
cillator does not exceed the upper frequency limit of the A/D converter. You
can also obtain the system clock for the A/D converter from the micro-
controller crystal oscillator. In this case, a high impedance buffer must be
used to avoid overloading the oscillator. The buffered crystal oscillator signal
must be frequency divided to ensure that the resulting system clock frequency
does not exceed the upper limit frequency of the A/D converter. Any conve-
nient divider circuitry may be used to accomplish this task.

The flowchart required to develop the control routine is shown in Figure
3.6. A conversion cycle consists of reading the digital data register and load-
ing the speech data to the Digitalker DT1050. The complete software program
can be incorporated into a subroutine, so the designer can easily access the
software with a simple subroutine call. Also, the conversion software assumes
that the A/D converter address has been placed into the accumulator and then

92 3. Analog Circuits

START
224 CALL DELAY
ACC = CCH
R6 = DOH
CY = OOH
R1 = OOH
P2 = FFH
P2 = FEH
P2 = FFH
A = BUS
R1 = ACC

- \]
(EEE&) CALL COMPARE

A<10

@—<CALL COMPARE
/T’ 4<20

Cy=17"
<\ YEE

four
words
message

START)

Figure 3.6 Flowchart for the software program.

converter. On the other hand, another eight address lines (P1.0—-P1.7) and two
control signals (T1 and /WR) are utilized to drive the Digitalker DT1050. Two
speech ROMs (SSR1 and SSR2) contain in compressed form the data required
for the 144 addressable words.

The circuit announces the analog voltage corresponding to the digital input
from the microcontroller. With a resolution of 0.1 V, the operating voltage
range for this circuit is adjusted for 0 < Vin < 5.9 Vdc. The heart of the
circuit is the software program that is designed to keep the circuit reading and
announcing voltage readings every 30 seconds. Figure 3.6 is now our point of
reference. As you can see, the flowchart starts calling the subroutine DELAY

3.2 ADC0804/Digitalker Interface 93

which is illustrated in Figure 3.7. The subroutine DELAY loads the decimal
numbers 92, 255, and 255 in registers RO, R1, and R2, respectively. Notice
that all subroutines are located in page two of ROM, leaving page zero and
page one with some memory space available for adapting or augmenting the
program to your needs. The memory space gives you the convenience of aug-
menting the program without having to modify the current addresses.

The instruction “DJNZ R2, T2” is executed in 5 us because it is a two-
byte instruction. The delay caused by this instruction is

5 us X 255 = 1275 ps

When the register R2 is zero, the program jumps to the next instruction
“DJNZ R1, T3” which decrements register R1 by one. The program will keep
jumping to address T3 of the current page. This loop takes 10 us times 255
plus the time required to decrement register R2 (1275 X 255); therefore, we
will have the following elapsed time:

(10 ws X 255) + (1275 pus X 255) = 0.327675 s.

CDELAY >

LY =0
R3 = §10d
P
R0 = RO+1

Figure 3.7 Flowcharts for the subroutines.

94 3. Analog Circuits

The final step to increase this delay is to make a loop by decrementing register
RO 92 times, that is

0.3276 s X 92 = 30.14 s

After this delay the program clears the accumulator, registers R1 and R6,
the carry flag (CY), and port one. Output line P2.0 controls the write input
(/WR) of the ADC0803 by sending a low transient pulse of 5 us (see address
lines OEH to 1EH). This negative transient pulse initiates the conversion pro-
cess that takes 100 us. When the conversion process ends, the interrupt output
(/INTR) goes to a logic zero. The negative edge of this pulse is detected by the
input TO of the microcontroller 8748. When this happens, the microcontroller
proceeds to load the digital reading into the accumulator. This digital reading
is then transferred to register R1 for future use. Now the program starts com-
paring the digital reading in order to know in what range the reading is lo-
cated. This is achieved with the subroutine COMPARE located in address
O0H of page two. The COMPARE subroutine determines whether the digital
reading loaded in the accumulator is less than the decimal number 10. If that is
the case, the carry flag (CY) is set to one. If CY is equal to one, the program
jumps to subroutine ZERO. This subroutine loads the word “zero” into the
address lines (SW1-SW8) of the Digitalker. The subroutine ZERO now calls
the subroutine WRITE, which makes the Digitalker announce the correspond-
ing correct words such as “zero . . . point. . . two” or “zero . . . point . . .
nine.” The words “zero . . . point” are already contained in the subroutine
WRITE. The last word is a number that is obtained from page three of the
EPROM memory.

When a digital reading is greater than 10 and less than 20, the program first
performs the comparison to issue the words “one . . . point.” The program
then proceeds immediately to subtract 10 numbers of the digital reading before
searching the word in page three of ROM. For example, if the digital reading
is 00001111#b, which is the equivalent of 1.5 V, the program first compares
the magnitude of the reading by finding that such a reading is less than the
constant 20. At this point, the Digitalker will say the words “one . . . point.”
To find the following correct word “five,” the binary reading 00001111#b is
decremented 10 times. As a result, the digital reading is now converted to the
number 00000101#b. It is this new number that is used by the accumulator to
point to address five of page three. By looking at page three of the software
program (Table 3.2), you will see that the number O5H is stored at address
five; the program takes this new speech datum which is transferred to port 1 in
order to have the Digitalker announce the last word “five.”

The advantage of this technique is that the words “zero,” “one” up to
“nine” are stored only one time in ROM in order to save memory space.

The STROBE routine has two functions: to issue a negative transient pulse
to the /WR input of the Digitalker and then to proceed to read the interrupt
status (/INTR) in order to know when the Digitalker stops saying a word.

3.2 ADC0804/Digitalker Interface

95

TABLE 3.2
Software for uC 8748 to Control the Interface between the ADC0803
and the Digitalker System

Add Op Code Mnemonics Comments
00 8A FF START: ORL P2, #FFH ; /CS1=1, /WR1=1
02 54 2A CALL DELAY H
04 9A FF ANL P2, #FFH ; /CS1=0, /WR=
06 99 00 ANL P1, #O0OOH H
08 27 CLR A ;Acc =00H
09 97 CLR C ;Clear carry flag
0A A9 MOV R1, A ;Clear registers RO-R7
0B AA MOV R2, A H
0C AB MOV R3, A ;
0D AC MOV R4, A ;
OE AD MOV R5, A 5
OF AE MOV R6, A H
10 AF MOV R7, A ;
11 9A FE ANL P2, #FEH ;A/D starts conversion
13 8A FF ORL P2, #FFH ;Set /WR =1
15 36 15 WAIT: JTO WAIT ;Wait for /INTR to go low
17 00 NOP ;Delay to avoid reading glitches
18 08 INS A, BUS ;Load BUS contents to accumulator
19 A9 MOV R1, A ;Store reading in register R1
1A 54 00 CALL COMPARE ;Call compare to see if A<10
1C F6 49 JC ZERO ;Go to subroutine ZERO if A<10
1E F9 MOV A, R1 ;Load voltage reading to Acc
1F 54 00 CALL COMPARE ;Call compare to see if A<20
21 F6 A4F JC ONE ;Go to subroutine ONE if A<20
23 F9 MOV A, R1 ;Load voltage reading to Acc
24 54 00 CALL COMPARE ;Call compare to see if A<30
26 F6 57 JC TWO ;Go to subroutine TWO if A<30
28 F9 MOV A, R1 ;Load voltage reading to Acc
29 54 00 CALL COMPARE ;Call COMPARE to see if A<40
2B F6 OSF JC THREE ;Go to subroutine THREE if A<40
2D F9 MOV A, R1 ;Load voltage reading to Acc
2E 54 00 CALL COMPARE ;Call COMPARE to see if A<50
30 F6 67 JC FOUR ;Go to subroutine FOUR if A<50
32 F9 MOV A, R1 ;Load voltage reading to Acc
33 54 00 CALL COMPARE ;Call COMPARE if A<60
35 F6 6F JC FIVE ;Go to subroutine FIVE if A<60
37 00 NOP H
38 00 NOP H

;Routine for message "danger"
39 BC 04 MOV R4, #04H ;R4 is loaded with the number of

;words of the message
3B BD 64 MOV R5, #64H ;R5=#100d to find data in page 3
3D 27 CLR A H
3E 39 RICK:OUTL P1, A 5

3F 80

MOVX @RO, A

i

96

40
41
42
43
45
417

49
4B
4D

4F
51
53
55

57
59
5B
5D

S5F
61
63
65

67
69
6B
6D

6F
71
73
75

200
201
203
205
207
208
209
to

20A

1D
FD
E3
46
EC
04

89
54
04

89
FE
54
04

89
FE
54
04

89
FE
54
04

89
FE
54
04

89
FE
54
04

97
BB
18
EB
317
68
27

83

43
39
00

1F
20
00

01
0OA
OB
00

02
14
OB
00

03
1E
0B
00

04
28
0B
00

05
32
OB
00

0A

03

ONE:

TWO:

THREE:

FOUR

FIVE

COMPARE:

T1:

:ORL P1,

:ORL P1,

INC RS
MOV A, RS
MOVP3 A,
JNT1, SBY

@A

DJNZ R4, RICK

JMP OOH

ORL P1, #1FH
CALL WRITE
JMP OOH

ORL P1, #01H
MOV R6, #0AH
CALL SEARCH
JMP OOH

ORL P1, #O02H
MOV R6, #14H
CALL SEARCH
JMP OOH

ORL P1, #O03H
MOV R6, #1EH
CALL SEARCH
JMP OOH

#04H
MOV R6, #28H
CALL SEARCH
JMP OOH

#05H
MOV R6, #32H
CALL SEARCH
JMP OOH

END

CLR C
MOV R3,
INC RO
DJNZ R3, T1
CPL A

ADD A, RO
CLR A

#0AH

RET

3. Analog Circuits

;Reading /INTR status of DT1050

)

; Subroutine ZERO
; "Zero"

; Subroutine ONE
. "One"
;R6 = #10d

;Call address IF in page two

; Subroutine TWO
. "Two™
;R6 = #20d

; Subroutine THREE
; "Three"
;R6 = #30d

; Subroutine
; "Four"
;R6 = #40d

; Subroutine
; "Five"
;R6 = #50d

; Subroutine

;R3 = #10d

; Increment RO ten times to do A<RO
;Decrement R3 ten times

; Compare A<RO in order to determine
; the magnitude of the digital

;reading.

; then A<RO

If carry flag is set

3.2 ADC0804/Digitalker Interface

20B 54 1A SEARCH; CALL STROBE
20D 89 T7A ORL P1, #122d
20F 54 1A CALL STROBE
211 F9 MOV A, R1
212 07 DEC: DEC A

213 EE 12 DJNZ R6, DEC
215 E3 MOVP3 A, «A
216 39 OUTL P1, A
217 54 1A CALL STROBE
219 83 RET

21A 90 MOVX «RO, A
WR of DT1050 is pulsed low for 5uS
21B 46 1B RIC:JNT1, RIC
21D 99 00 ANL P1, #OOH
21F 83 RET

220 54 1A WRITE: CALL STROBE
222 89 T7A ORL P1, #7AH
224 54 1A CALL STROBE
226 F9 MOV A, R1
227 E3 MOVP3 A, «A
228 39 OUTL P1, A
229 54 1A CALL STROBE
22B 83 RET

22C B8 5C DELAY:MOV RO, #5CH
22E B9 FF T4: MOV R1, #FFH
230 BA FF T3:MOV R2, #FFH
232 EA 32 T2:DJNZ R2, T2
234 E9 30 DJNZ R1, T3
236 E8 2E DJNZ RO, T4
238 83 RET

300 IF

301 01

302 02

303 03

304 04

305 05

306 06

307 07

308 08

309 09

364 00

365 4C

366 41

367 8C

97

; Subroutine SEARCH

; "Point"

;Load Acc with voltage reading
;Decrement Acc n times,
;Transfer the byte in page three
;Load speech data to Digitalker

where n=R6

; Subroutine STROBE
v/

;Reading /INTR status
;Clear port 1 to load a new byte

; Subroutine WRITE

; "Point"

;Load Acc with voltage reading
;Routine DELAY (30.14 seconds)
;Do delay to allow "n" system
;clocks to occur.

)

; Speech data in page 3 for words:
; "Zero"

; "One"

; "Two"

; "Three"

; "Four™"

; "Five"

;"Six"

; "Seven"

; "Eight"

; "Nine"

;"This is Digitalker"
; "Danger"

; "Try"

; "Again"

3.3 Handling Multiple A/D Converters 99

required for interfacing a maximum of eight A/D converters. For explanation
and simplifying purposes, only two A/D converters are considered in the cir-
cuitry shown in Figure 3.8. A 3-to-8 line decoder (74HC138) is used to select
one of the two A/D converters (ADC0804) by controlling their chip select
inputs (/CS1 or /CS2) via the YO and Y1 outputs. Notice that output control
lines Y2 to Y7 are left unconnected and can be used to control six more A/D
converters. The three input lines (A, B, and C) of the 74HC138 are controlled
by port two of the uC 8748 (P2.4, P2.5, and P2.6). On the other hand, an
8-channel analog multiplexer (74HC4051) configured as a selector is respon-
sible for selecting the interrupt output (/INTR) of each A/D converter.
The output of this selector (pin 3 of 74HC4051) is routed to the TO input
of the microcontroller. Three lines of port two (P2.1, P2.2, and P2.3) are
used to select the interrupts (/INT1 or /INT2) of each A/D converter. Out-
put line (P2.0) of the microcontroller is normally held at a logic high and is
pulsed low for 5 ws in order to start the conversion process of the selected
A/D converter.

The method used here is similar to the one used in Section 3.2 of this chap-
ter. The main difference of this method is that we will be using allophones
instead of words; therefore, the amount of speech data stored in page three is
larger because it contains the allophones to construct the words required for
measuring different variables. For explanation purposes we will suppose that
we are measuring two different variables: one within the range of 0 to 5.9 V
and the other within the range of 0 to 2.0 mA. Both digital readings have a
resolution of 0.1 V and 0.1 mA, respectively. Accordingly, both A/D convert-
ers are adjusted with a reference voltage of 1.30 V, which is applied to the
input Vref/2.

The flowchart illustrated in Figure 3.9 presents the steps that must be exe-
cuted in order to make the speech processor announce the correct readings.
The first instructions enable the A/D converter (ADCO0804) located on the left
corner of Figure 3.8. Lines OAH to 12H are required to clear the accumulator
and register RO to R7. The instructions “ANL P2, #00H” and “ANL P2,
#01H” located in lines 13H and 15H, respectively, cause a low transient pulse
of 5 ws, which starts the A/D conversion process of the selected A/D con-
verter. The program now proceeds to call the subroutine AD1.

Figure 3.10 shows the circuitry for handling the multiple converters. Sub-
routine ADI first reads the status of the /INT2 output of the A/D converter.
When the interrupt signal (/INT) goes low, it indicates that the conversion
process is over. Now the digital reading is loaded into the accumulator and
stored in register R1 for future use. The next step is to compare the digital
reading against the decimal constants 10, 20, 30, 40, 50, and 60. The task of
comparing is made by the subroutine COMPARE. Subroutine COMPARE de-
termines if the reading is less than 10. If so, the carry flag (CY) is set to one.
When the program returns from the subroutine COMPARE, the instruction

100 3. Analog Circuits

(__START
Gy

FIRST A/D
IS SELECTED
V2
RO-R7 = OCH
ACC=00H CY=0
|

WR1 is pulsed
low for 5 uS
/
Qo< CALL ADT >
AN
<> CALL VOLTS

Figure 3.9 Flowchart subroutines for controlling two A/D converters interfaced to
the speech processor SPO256-AL2.

“INC, TEST 1"’ in line 34H detects that CY is set to one. Thus, the program
does not jump to label “TEST 17 but continues with the next instruction. Here
the program loads register R6 with OOH as well as the accumulator. Now the
program calls the subroutine FIND which is located in address O0H of page
one. Subroutine FIND clears register RS, loads register RS with the value con-
tained in the accumulator, and proceeds to interchange the value pointed by
the accumulator in page three of ROM. The new value in the accumulator is a
pointer that indicates the exact location of the speech data that must be issued
to the speech processor. Notice that the first speech data correspond to the
number of allophones that contain the message to be spoken. This number is
stored in register R4. Now the accumulator is cleared, and register RS is incre-
mented in order to find the first speech data.

The first speech data are located by moving the contents of register RS into
the accumulator and then pointing to page three of ROM. The first speech data
are now transferred to the accumulator and then to port one. At this point, the
speech processor receives the binary address for finding the allophone. The
program now calls subroutine STROBE, which pulses low the /ALD input of
the speech processor SPO256-AL2; also, subroutine STROBE keeps reading
the standby (SBY) status of the SPO256-AL2 in order to determine when the

102 3. Analog Circuits

When the program returns, it goes to address 3CH of page zero where the
instruction “CALL POINT” is executed. The purpose of subroutine POINT
is to make the speech processor say the word ““point.”

It is important to notice that we are dealing with cases where readings have
a magnitude of less than 10. That is, the cases correspond to readings that
range from 0000 0000#b to 0000 1010#b. Because we are working with a
resolution of 0.1 for readings of voltage or current, the speech processor has to
announce the words ““zero point..” prior to a digital reading. The final step to
get the next word is made by the set of instructions that start at address 3EH of
page one. Here the accumulator is loaded with the value of the digital reading
that had been previously stored in register R1. The contents of the accumulator
are then used to transfer the pointer from page three of ROM that will be used
by the subroutine FIND. Finally, subroutine FIND will take care of finding
the word that corresponds to the digital reading.

When the program returns from subroutine FIND, the program goes back
to address 19H of page one. Here subroutine VOLTS is called in order to
make the speech processor say the word “volts.” In this way, the user knows
what variable has been measured and announced. Now the program calls sub-
routine DELAY that makes the system halt for 15 s. You can adjust this time
delay according to your needs by changing the value of register RO (see line
4B in page one). When this delay has occurred, the program now calls sub-
routine AD2. Subroutine AD2 disables the first A/D converter and enables the
second via the 3-to-8 line decoder (74HC138). Once the second A/D con-
verter is enabled, the write input of both converters is pulsed low, but only the
second converter initiates the conversion process.

The procedure for having the speech processor enunciate the second read-
ing is similar to the one explained above. The only difference is that, when the
speech processor ends saying the second reading, the program makes the
speech processor enunciate the word “milliamperes.” This makes the user
aware of what type of reading he is listening to. Line 26H of page one is the
end of the program. Here, instruction “JUMP START” makes the program
start again by loading port two with ones in order to enable the first A/D con-
verter again.

If you want to increase the range of the digital readings, increase the num-
ber of comparison routines that take place in the instructions labeled
“TEST1” to “TESTS5.” Also, bear in mind that the words or numbers that you
are planning to use are already stored in page three of ROM.

Figure 3.10 : Circuitry for handling multiple converters using the uC 8748
along with the SPO256-AL2.

The uC software program is shown in Table 3.3.

3.3 Handling Multiple A/D Converters

103

Table 3.3
Software Program for Interface and Control of Multiple A/D Converters to the Speech
Processor SPO256-AL2

Add Op Code Mnemonics Comments

00 8A FF START: ORL P2, #FFH ; /CS1=1, CS2=1, /WR1=1

02 34 46 CALL DELAY ;

04 9A 01 ANL P2, #O01H ; /CS1=0, CS2=1, /WR=1

06 9A 00 ANL P1, #OOH H

08 00 NOP H

09 00 NOP H

0A 27 CLR A ;Acc =00H

0B 97 CLR C ;Clear carry flag

0oC A9 MOV R1, A ;Clear registers RO-R7

0D AA MOV R2, A H

OE AB MOV R3, A ;

OF AC MOV R4, A ;

10 AD MOV R5, A ;

11 AE MOV R6, A H

12 AF MOV R7, A 5

13 9A 00 ANL P2, #O0OH ; /WR1=0, A/D initiates conversion

15 8A 01 ORL P2, #01H ; /WR1=1

17 34 Z2E CALL AD1 ;

19 34 1F CALL VOLTS H

20 34 46 CALL DELAY H

22 14 28 CALL AD2 ;

24 34 24 CALL AMPS H

26 04 00 JMP START H

28 B8A 1F AD2: ORL P2, #1FH ; /CS1=1, /CS2=0, /WR2=1

2A 9A 10 ANL P2, #10H ; /CS1=1, /CS2=0, /WR2=0

2C 8A 1F ORL P2, #1FH ; /CS1=1, /CS2=0, /WR2=1

2E 36 2E AD1:JTO AD1 ;Wait for A/D conversion to occur

2F 00 NOP ;Delay to avoid reading glitches

30 08 INS A, BUS ;Load digital reading Vvinl into Acc.

31 A9 MOV R1, A ;Store digital reading in register

R1

32 34 OF CALL COMPARE ;Vin < #10d?

34 E6 43 JNC TEST 1 ;

36 BE 00 MOV R6, #O0OOH H

38 23 00 MOV A, #O00OH ;Acc=00H to anounce the word "ZERO"

3A 34 00 CALL FIND H

3C 34 1A CALL POINT ;Word "Point"

3E F9 MOV A, R1 ;Acc is loaded with reading less than
;10.

3F E3 MOVP3 A, @A ;Load the pointer byte

40 34 00 CALL FIND ;

42 83 RET H

43 34 OF TEST1:CALL COMPARE ;Vin <#20d?

45 E6 50 JNC TEST2 ;

47 BE 08 MOV R6, #08H ; R6=#10d

49 23 OE MOV A, #OEH ;Pointer for the word "ONE"

4B 34 00 CALL FIND B

4D 34 30 CALL SEARCH 5

104

4F
50
52
54
56
58
S5A
5C
5D
5F
61
63
65
67
69
6A
6C
6E
70
72
74
76
7
79
B
)
F
81
83

84
86
88

100
102
103
104
105
106
107
108
109
10A
10C
10E

10F
110
111
113
114
116
117

83
34
E6
BE
23
34
34
83
34
E6
BE
23
34
34
83
34
E6
BE
23
34
34
83
34
E6
BE
23
34
34
83

BD

E3
AC
27
1D
FD
E3
39
34
EC
83

F9
97
BB
18
EB
37
68

OF
5D
14
13
00
37

oF
6A
1E
17
00
37

OF
1
28
1B
00
30

OF
84
32
1F
00
30

07
34
04

00

2A
06

TEST2:

TEST3:

TEST4:

TEST5:

ERROR:
00
00

FIND:

PATY2:

COMPARE:

13

DEC:

RET
CALL COMPARE
JNC TEST3
MOV R6, #14H
MOV A, #13H
CALL FIND
CALL SEARCH
RET

CALL COMPARE
JNC TEST4
MOV R6, #1EH
MOV A, #17TH
CALL FIND
CALL SEARCH
RET

CALL COMPARE
JNC TEST5
MOV R6, #28H
MOV A, #1BH
CALL FIND
CALL SEARCH
RET

CALL COMPARE
JNC ERROR
MOV R6, #32H
MOV A, #1FH
CALL FIND
CALL SEARCH
RET

MOV A, #3CH
CALL FIND
JMP START

MOV R5, #00H
MOV R5, A
MOVP3 A,
MOV R4, A
CLR A

INC R5
MOV A, R5
MOVP3 A, «A
OUTL P1, A
CALL STROBE
DJNZ R4, PATY2
RET

WA

MOV A, R1
CLR C
MOV R3,
INC RO
DJNZ R3, DEC
CPL A

ADD A, RO

#0A

;Vin <#30d?
;R6=#20d
;Pointer for the

;Vin <#40d?

;R6=#30d
;Pointer for the

;Vin <#50d?
;R6=#40d
;Pointer for the
,Vin <#60d?
;R6=#50d
;Pointer for
; /ALD=0

the

;Message
. "EH"

"ERROR"

; Subroutine FIND

word

word

word

word

3. Analog Circuits

"TWO"

"THREE"

"FOUR"

"FIVE"

;Pointer for page three

;Ace =

of allophones

;R4 = #n; for n allophones

’

; Increment R5 to get next allophone

)

>

; Subroutine
;Ace = Vinl
;,CY = 0

;R3 = #10d

COMPARE; A < RO?

3.4 Using a Window Comparator

118
119

11A
11C
11E

11F
121
123

124
126
128

12A
12B
12D
12F

130
132
134
135
R6
136
138

139
13A

13B
13C
13D
13F
140
141
143
145

146
148
149
14B

14D
14F
151
153

27 CLR A H
83 RET H

;Message "POINT"
23 3C POINT:MOV A, #3CH H
34 00 CALL FIND ;
83 RET H

;Message "VOLTS"
23 46 VOLTS:MOV A, #46H H
34 00 CALL FIND H
83 RET H

;Message "MILLIAMPERES"
23 4E AMPS:MOV A, #4EH ;

34 00 CALL FIND H
04 00 JMP START H
; Subroutine STROBE
80 STROBE: MOVX «RO, A ; /ALD is pulsed low for five uS
46 2B WAIT:JNT1, WAIT ;Wait for SBY to go high
99 00 ANL P1, #OOH ;
83 RET 3

; Subroutine SEARCH
BD 00 SEARCH:MOV R5, #0O0OH ;

34 1A CALL POINT ;

F9 MOV A, R1 ;Acc = voltage reading
07 DEC2:DEC A ;Decrements n times Acc, where n
EE 35 DJNZ R6, DEC2 ;

E3 MOVP3 A, w«wA

;Load byte that points to the correct

;word

AD MOV R5, A ;Store it in register R5
E3 MOVP3 A, @

;Load first byte containing # of ;alloph.

AF MOV R7, A ;Store it in register R7
1D LUIGI: INC RS ;

FD MOV A, R5 H

E3 MOVP3 A, w©«A ;

39 OUTL P1, A H

34 2A CALL STROBE H

EF 3C DJNZ R7, LUIGI ;

83 RET 5

;Routine DELAY (15 seconds)
23 04 DELAY:MOV A, #04H H

105

39 OUTL P1, A ;Pause 3

34 2A CALL STROBE ; /ALD = 0

B8 2E MOV RO, #2EH ;Do delay to allow "n" system clocks
;to

B9 FF C:MOV R1, #FFH ;oceur

BA FF B: MOV R2, #FFH 5

EA 51 A:DJNZ R2, A H

E9 4F DJNZ R1, B ;

106

3.1 Basics of the A/D Converters

155 E8 4D DJNZ RO, C ;

157 83 RET H
;Addresses 00 to 09 of page three
;contain the pointers for the
; speech data located from address
;0A to 3A

Add Data Comments Add Data Comments

300 OA ; Zero 32C 37 ;

301 OE ; One 32D 07 ;

302 09 ; Two 32E 07 5

303 13 ; Three 32F 23 ;

304 1A ; Four 330 07 ;

305 1E ;Five 331 0B ;

306 23 ;Six 332 03 ;3 allophones

307 2A ; Seven 333 14 ; "EIGHT"

308 32 ;Eight 334 02 ;

309 36 ; Nine 335 oD H

30A 03 ; 3 allophones 336 04 ;4 allophones

30B 2B ; "ZERO" 337 38 ; "NINE"

30C 2C H 338 18 ;

30D 35 5 339 06 H

30E 04 ;4 allophones 33A OB ;

30F 39 ; "ONE" 33B 04 ;4 allophones

310 OF H 33C 07 ; "ERROR"

311 OF ; 33D 2F H

312 OB ; 33E 3A ;

313 02 ;2 allophones 33F 04 H

314 oD ; TWO 340 04 ;4 allophones

315 1F H 341 09 ; "POINT"

316 03 ;3 allophones 342 05 H

317 10 ; THREE 343 0B ;

318 OE H 344 11 ;

319 13 H 345 07 ;7 allophones

31A 03 ;3 allophones 346 23 ; "VOLTS"

31B 28 ; FOUR 347 35 ;

31C 28 ; 348 2D ;

31D 3A ; 349 11 ;

31E 04 ;4 allophones 34A 09 H

31F 28 ;FIVE 34B 37 ;

320 28 H 34C 04 5

321 06 ; 34D OA ;10 allophones

322 23 ; 34E 10 ; "MILLIAMPERES"

323 06 ; 6 ALLOPHONES 34F oC ;

324 37 ; SIX 350 2D ;

325 37 ; 351 ocC H

326 oC ; 352 18 ;

327 02 3 353 10 s

328 29 H 354 09 H

329 37 H 355 34 H

32A 07 ;7 allophones 356 37 H

32B 37 ; "SEVEN" 357 04 ;

Continued

3.4 Using a Window Comparator 107

3.4 Using a Window Comparator to
Drive a Speech Processor

Window comparators are frequently employed in the design of test equipment
to detect either the presence of a signal within a specified voltage range, or to
detect when a signal has stepped outside the specified range.

We will design a window comparator that will be interfaced to a field pro-
grammable controller (FPC) Am29CPL151. The FPC will drive the speech
processor SPO256-AL2 that will give three different messages about the input
voltage. In this case, the window comparator is adjusted for detecting voltage
levels in the range of 2 to 4 V; this is achieved by the resistor network R1, R2,
and R3 (see Figure 3.11). In order to have a current consumption of 1 mA in
this divider network, we must have a total resistor Rt as follows:

Rt = 5V/1 mA = 5,000 ohms

Now, the noninverting comparator ““B”” must receive a fixed input voltage
of 2 V, and the inverting comparator “A” must receive a fixed input voltage of
4 V; consequently, a resistor network divides the power supply voltage of 5 V
in two voltages of 4 and 2 V. The resistor values selected for R1, R2, and R3
are 1K, 2K, and 2K respectively. These resistor values give the Rt value that
we desire for a low current consumption in this network.

In this application, the speech processor is programmed for three different
cases: an input voltage lower than 2 V; an input voltage between the range of 2
to 4 V; and an input voltage higher than 4 V. These three cases are presented
in binary format to the controller. Because the complete circuit designed to do
this task requires only three different messages to be announced, the FPC
Am29CPL151 is selected.

The three different cases with the respective selected voiced messages are
shown in Table 3.4.

The messages ““Lower,” ““Ok,” and ““Higher” indicate how the input volt-
age is with respect to the fixed window levels of 2 and 4 V. First, the message
“Lower”” means that the voltage being monitored is lower than 2 V. Second,
the message “Ok” indicates that the voltage being monitored is in the pre-

TABLE 3.4
Three Different Cases for the Window Comparator
i Input voltage i T1 TO | Message |
i 0V<Vin<2.00V V01 "Lower" |
! 2V<=Vin<4.00V | 1 1 | "ok"

| 4V<=Vin<=5.00V { 1 0 | "Higher"

108 3. Analog Circuits

programmed range; that is, equal to or higher than 2 V and less than 4 V. The
last message ‘“Higher” states that the input voltage being monitored is equal
to or higher than 4 V.

The words of the messages were selected to permit the designer to change
the window levels without having to alter the allophones that are already pro-
grammed in the FPC Am29CPL151.

The software program for the FPC Am29CPL151 is shown in Table 3.5. By
looking at the circuitry shown in Figure 3.11, you will see that we are using
four testable inputs, TO to T4. Inputs TO and T1 are directly interfaced to the
FPC. The input T2 is normally held at a logic low. When the test switch is
pressed, the input T2 goes momentarily to a logic high. This initiates the test-
ing process of the input voltage which is presented in binary format at inputs
TO and T1. The input T3 is employed for monitoring the STANDBY status of
the speech processor.

In most applications where the field programmable controllers of the series
Am29CPLI15X are driving the speech processor SPO256-AL2, the speech
processor will be used in mode zero. This mode disables the /ALD input;
therefore, the speech processor is triggered by applying the data byte into the
input port and then by applying a byte zero (0000 0000) in order to start the

TABLE 3.5
Software Program for the FPC Am29CPL151

DEVICE (CPL141)

DEFAULT = 1;

DEFINE "test inputs"

higher = to

lower = t1

test = t2

sby = t3

equal = eq

"ouput control bits"

"speech data = 59 allophones plus five pauses"

pa2 = 01#h pa3 = 02#h pad4 = 03#h pa5 = 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = 08#h pp = 09#h jh = 0A#h nn1 = 0B#h ih = 0C#h
tt2 = 0D#h rrl1 = OE#h ax = OF#h mm = 10#h ttl = 11#h dhl = 12#h
iy = 13#h ey = 1l4#h ddl = 15#h wuwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = 1A#h hhi = 1B#h bbl = 1C#h th = 1D#h uh = 1E#h

i

uw2 = 1F#h aw = 20#h dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24#h
sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h xr = 2F#h wh = 30#h
yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h ow = 35#h dh2 = 36#h
ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h yr = 3C#h

gg2 = 3D#h el = 3E#h bb2 = 3F#h;
DEFAULT-OUTPUT = 0000#h;
TEST-CONDITION = sby; "default test condition"

3.4 Using a Window Comparator 109

BEGIN
"wait for test input to go high"
"1"start: ,if (not test) then goto pl (start);
nan ,load tm(03#h);
"3 ,cmp tm(03#h) to pl (01#h);
ngqn ,if (equal) then goto pl (msgl);
"5 ,cmp tm(03#h) to pl (02#h);
"e" ,if (equal) then goto pl (msg2);
nqn ,cmp tm(03#h) to pl (03#h);
ngn ,if (equal) then goto pl (msg3);
"9" msgl: 11, call pl(read); "LOWER"
"10" ow, call pl(read);
"t erl, call pl(read);
"ian pa5s, call pl(read);
"13" ,goto pl(start);
"14"msg2: ao, call pl(read); "OK"
"15" kk1, call pl(read);
"16" eh, call pl(read);
" ih, call pl(read);
"1g8" pa5, call pl(read);
"19" ,goto pl(start);
"20"msg3: hh1, call pl(read); "HIGHER"
"1 ay, call pl(read);
"oon erl, call pl(read);
23" pas, call pl(read);
"24" ,goto pl (start);
"25"read: ,continue;
"26"stay: ,if (not sby) then goto pl(stay);
27" ,ret;
.org 63#d
"28" ,goto pl(start);
END.

speech sequence. This sequence is easily solved by calling a subroutine that
contains the byte zero and that also keeps reading the /SBY status of the
speech processor.

The software program shown in Figure 3.13 presents the complete routine
that reads the status of the window comparator and then proceeds to announce
the required message.

Notice that the key word “DEVICE” is specifying the FPC Am29CPL141
even when the circuit is using the FPC Am29CPLI151. Both devices are func-
tionally identical. The Am29CPLI141 is a 28-pin device, one-time program-
mable, and 0.6 inches wide. On the other hand, the FPC Am29CPL151 is a
space-saving version of 28 pins and 0.3 inches wide. The Am29CPLI51 is
field programmable and contains an 32-bit per 64 words EPROM.

The key word “DEFINE” specifies the test inputs to be used with name
assignments. In this case, the word “test” is used for the input T2 while the

110 3. Andlog Circuits

- 45V
2 7 23
2 1
cc PO Al Te LPF and
1 KHz 3 17, 24 di
2 et ock i s %g;p;?fier
p3l0 1944 SPO256- 290F
6 14 a2 28 F
P4 A5 |
P5 7 13 AN
g Tijh6
P6 A7 £53.12 MHz
p71e 10 48
AM29CPL 151) "
P8 213 Do 2'2pr +
“ _1s < 13 SBY b 100K 5V
6N RST —2I5E RST VA
= SBYRST 22
5, T2 10T1 NG 144
. T[22 =
TEsT (4 23 |25 0.1F 7=
10K —

Vin

Figure 3.11 Circuit for driving a window comparator and a speech processor using
the FPC Am29CPL151.

word “sby” is employed for the input T3. Also, the flip-flop EQ of the FPC is
assigned as equal. If the flip-flop “equal” is set to one, the comparison of two
numbers previously defined is equal. Continuing with the program, now the
59 allophones plus the four pauses are defined with hexadecimal numbers. In
this way, you do not have to specify an equivalent number for every allo-
phone. All you have to do is write the abbreviation of each allophone in the
line in which you desire to produce the desired sound. Notice that pausel is
not defined. That is because the speech processor does not accept pausel in
mode zero.

The key word “DEFAULT _OUTPUT” is used to specify the required 16-
bit output at p0—pl5. In this case, when a line of the program does not indi-
cate any output, it will be full of zeros in the 16-bit output (pO—pl5). The
keyword “TEST _CONDITION” is used to specify the STANDBY input

3.4 Using a Window Comparator 111

coming from the speech processor as the default test condition. This feature
reduces the text of the program because you do not have to ask if the “sby”
input is present to continue with the program.

The program starts with the key word “BEGIN.” The instruction in line
one is continuously reading the input defined as “test,” that is, T2. When the
user presses the “test” switch, the program automatically jumps to line two
and loads the value of the test inputs TO and T1; this is achieved by loading all
the test inputs with the immediate mask 03#h (00011#b). Now lines three to
eight are used to compare TO and T1 against constant numbers. If the testable
inputs are T1 = 1 and T1 = 0, the program jumps to label “msgl” where the
message “Lower” must be announced. Notice that line nine calls subroutine
“read” while it is giving the allophone ““11.” The program jumps to subroutine
“read” when the following clock cycle arrives. The subroutine “‘read” (lines
25-27) starts with the instruction “‘continue,” which by default issues the
byte zero to the outputs (p0—p7). At this point, the speech processor starts
saying the first allophone and, simultaneously, the speech processor indicates
that by pulsing low the /SBY output. According to the data sheet, the /SBY
output spends 300 ns to go to the low state when the speech processor is trig-
gered; therefore, the instruction “‘continue” (line 25) is added to give the
/SBY time to go low before the FPC starts reading its logic status. It is the
next instruction ““If (not sby) then goto pl(stay),” located in line 26, the one
that keeps reading the /SBY status. When the /SBY function goes to a logic
high, the program jumps to line 27, which contains the return (ret) instruction
that makes the program jump automatically to line 10.

As you can see in line 10 of the program, the instruction “call pl(read)”
issues the next allophone “ow” to the speech processor and the program
jumps again to subroutine “‘read.” This process is repeated until the program
reaches line 13, which makes the internal PC counter of the FPC jump condi-
tionally to the label “start.”

Now, with the FPC controller in line one, the program will be waiting
again for the ““test” input to go high. The two final instructions located below
line 27 are utilized as a software reset when the program is first initialized;
consequently, we can ensure that the program will start at line one when the
circuitry is first turned on.

The box indicating the 1 kHz oscillator can be any kind of CMOS free-
running oscillator. The frequency of 1 kHz is equivalent to pulses with a pe-
riod of 1 ms; this means that the FPC executes every instruction in 1 ms. Ac-
cording to the software program shown in Table 3.5, the FPC will spend 2 ms
between each allophone; 1 ms for the instruction “‘ret”” and another one for the
instruction ““call pl(read).”” It does not mean that there will be pauses of 2 ms
between each allophone. Remember that the speech processor SPO256-AL2
keeps saying the last sound of each allophone until one of the pauses is as-
serted. That is why we are adding a pause at the end of each of the three mes-
sages (see lines 12, 18, and 23).

112

3. Analog Circuits

TABLE 3.6

PROM Bit Pattern for the FPC Am29CPL151

PROM Contents:
hex <dec>

000 < 0> [
001 < 1> [

OPCODE

002 <
003 <

2>
3>

OPCODE

004 <
005 <

4>

OPCODE

6> |

(=]

o

]
VANVARAY

o
(=]
©
N

19>
20>
21>
22>
23>
24>
25>
26>

[
[
[
[
[
[
[
[
[
[
17> [
[
[
[
[
[
[
[
[
[
63> [

OE
1
1

1
1

1

e e R R R e e T T S S Gy S W

OPCODE POL TEST DATA
11001 ¢ 1 | 010 : 000000
00110 © 0 | 011 . 000011
CONSTANT DATA
100 i 000001 | 000011
11001 : 0 i 111 | 001000
CONSTANT DATA
100 i 000010 ; 000011
11001 ; 0 i 111 | 001101
CONSTANT DATA
100 ¢ 000011 : 000011
11001 { 0 ; 111 }{ 010011
11100 © 0 011 : 011000
11100 ¢ 0 i 011 : 011000
11100 : 0 | 011 i 011000
11100 i 0 ; 011 011000
11001 i 0 i 011 i 000000
11100 © 0 i 011 i 011000
11100 : 0 ; 011 | 011000
11100 : 0 | 011 ; 011000
11100 ; 0 : 011 | 011000
11100 ¢ 0 i 011 : 011000
11001 ; 0 | 011 i 000000
11100 « 0 | 011 | 011000
11100 : 0 i 011 i 011000
11100 0 i 011 | 011000
11100 : 0 | 011 | 011000
11001 ¢ 0 i 011 ; 000000
01101 © 1 , 111 : 111111
11001 : 1 i 011 | 011001
00010 { O : 011 | 111111
11001 i O | 011 i 000000

OUTPUT
0000000000000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000

0000000000000000
0000000000000000
0000000000101101
0000000000110101
0000000000110011
0000000000000100
0000000000000000
0000000000010111
0000000000101010
0000000000000111
0000000000001100
0000000000000100
0000000000000000
0000000000011011
0000000000000110
0000000000110011
0000000000000100
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

The advantage of the circuit presented in this section in relation to the cir-
cuits presented in Chapter two is that here we are using an intelligent program-
mable controller that saves space; therefore, the cost for building this type of

circuit is much less than using MSI circuitry.

Table 3.6 shows the PROM bit pattern generated by the software ASM 14X
from Advanced Micro Devices. A JEDEC file (not shown) is also generated
by the assembler ASM14X in order to be loaded to the PROM programmer.
The PROM programmer then loads the JEDEC file into the FPC Am29CPLI151
which will be used to read the window comparator and to control the speech

processor.

114 3. Analog Circuits

TABLE 3.7
Truth Table for PAL20R4

Inputs ! Outputs | Comments
/OC ABCDEFGHTIJ C3 C2 C1 Co |
L LHHHHHHHHH L L L L Level 0O
L LLHHHHHHHH L L L H Level 1
L LLLHHHHHHH L L H L Level 2
L LLLLHHHHHH L L H H Level 3
L LLLLLHHHHH L H L L Level 4
L LLLLLLHHHH L H L H Level 5
L LLLLLLLHHH L H H L Level 6
L LLLLLLLILHH L H H H Level 7
L LLLLLLLLLH H L L L Level 8
L LLLLLLLLLL H L L H Level 9
H XXXXXXXXXX Hi Z

ority encoder. The truth table and the design equations for the PAL20R4 are
shown in Tables 3.7 and 3.8, respectively.

The LM3914, manufactured by National Semiconductor, is a dot/bar dis-
play driver, a chip that contains 10 independent comparators and a voltage
divider network. It has a self-contained decoding network that is capable of
driving the output in bar-graph mode or in single dot mode. This feature is
controlled by the input MODE-CONTROL (pin 9). The chip incorporates out-
puts with constant current that allow direct drive of the LEDs. The LM3914
has active low outputs that generate the truth table shown in Table 3.7. In this
case, the outputs of the LM3914 have been designated by the letters A to J.
Notice that the level zero is indicated by a low-state “L” at output A. In this
case, the readout range for the LM3914 is 0.1to 1.0 V (0.1 V per LED). To
adjust this scale, apply 1.00 V to the Vin input (pin 5) and adjust the 1K pot
(R1) until LED 10 (output A) glows. Repeat this procedure by applying 0.1 V
at Vin input and check that the output one (pin 1) goes low.

In order to make the best possible interface of the LM3914 to the FPC
Am29CPL152, we need to encode the 10 bits of the LM3914 by using a 10-
to-4 line priority encoder. The encoder must be able to accept low-active in-
puts and must contain a 4-bit register at the output. Accordingly, the 4-bit reg-
ister contained in the encoder will be storing the 4-bit readings so that the FPC
can take a reading without problems. Also, the encoder must have priority
inputs to permit the user to select both modes of control: dot or bar.

3.5 Using a 10-Step Voltage Comparator 115

TABLE 3.8
Design Equations for PAL20R4

Co := /A * /B

+ /A * /B *x /C * /D

+ /A *x /B * /C* /D * /E * /F

+ /A * /B * /C* /D* /E* /F * /G* /H

+ /A * /B* /C* /D* /E* /F*x /G* /H* /I * /]
Cl := /A * /B * /C

+ /A * /B *x /C * /D

+ /A * /B * /C* /D* /E* /F * /G

+ /A * /B* /C* /D* /E* /F * /G* /H
C2 := /A *x /B * /C* /D * /JE

+ /A * /B *x /C* /D* /E * /F

+ /A * /B * /C* /D* /E* /F * /G

+ /A * /B *x /C* /D* /E* /F* /G* /H
C3 := /A * /B* /C*x /D* /E* /F* /G* /H* /I

+ /A * /B* /C* /D* /E* /F * /G* /H* /I */J

Table 3.7 shows the 10 inputs named A to J, and the four encoded outputs
C3 to CO. From Table 3.7 we obtain the design equations for the PAL20R4.
The design equations are obtained using minterms for each of the outputs. The
symbol *““:="" means that the respective output is registered with a flip-flop
that is self-contained in the PAL20R4.

You can use any type of software to assemble and simulate your design
equations.

The software program for the Am29CPL152 is shown in Table 3.9. In the
circuitry shown in Figure 3.12, the PAL20R4 outputs are routed to the four
testable inputs TO, T1, T2, and T3 of the FPC Am29CPL152. Outputs PO to
P7 are dedicated to load the speech entry points to the speech processor. The
output P8 of the FPC is used to control the latch function of the PAL20R4.
When the latch pin makes a low-to-high transition, the registered outputs CO
to C4 are latched.

The first line of the software program after the keyword “BEGIN” (see
Table 3.9) corresponds to the instruction ““if (not tst) then goto pl(stay).” This
instruction keeps the program continuously reading the “‘test” switch which is
connected to the input T5 of the FPC. When the “test” switch is pressed mo-
mentarily, a logic high is present at the input TS, causing the program jump to
line two. The instruction “continue” in line two is used only to give a logic
high at the latch input of the PAL20R4. For instance, the 4-bit encoded output
of the PAL20R4 is latched. Now the program jumps to line three where the

116 3. Analog Circuits

TABLE 3.9
Software Program for the FPC Am29CPL152

DEVICE (CPL142)

DEFAULT = 1;

DEFINE "test inputs"
COo = to

Cl = t1

c2 = t2

C3 = t3

tst = t5

equal = eq

sby = t4

"ouput control bits"

"speech data = 59 allophones plus five pauses"

pa2 = 01#h pa3 = 02#h pad4 = 03#h pa5 = 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = 08#h pp = 09#h jh = 0A#h nnl1 = 0B#h 1ih = 0C#h
tt2 = 0D#h rrl1 = OE#h ax = OF#h mm = 10#h tt1 = 11#h dhl = 12#h
iy = 13#h ey = 1l4#h ddl = 15#h wuwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = 1A#h hhl = 1B#h bbl = 1C#h th = 1D#h uh = 1E#h
uw2 = 1F#h aw = 20#h dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24#h
sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl1

= 2A#h zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h =xr = 2F#h wh
= 30#h

yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h ow = 35#h dh2 = 36#h
ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar 3B#h yr = 3C#h
gg2 = 3D#h el = 3E#h bb2 = 3F#h

latch = 100#h;

DEFAULT_OUTPUT = 0000#h;

TEST—CONDITION = SBY; "default test condition"

BEGIN

"wait for test input to go high. SE = 0 (pin 19 of SP0256-AL2)"
"1"stay: ,if (not tst) then goto pl(stay);

nan latch, continue; "Registers are loaded on the low-high pulse."
"3 latch, load tm(OF#h);

g 11, call pl(read); "LEVEL"

"5 eh, call pl(read)

"e" Vv, call pl(read);

nn el, call pl(read);

"g" pas, call pl(read);

"o ,cmp tm(OF#h) to pl(00#h);

"10" ,if (equal) then goto pl (zero)

"1t ,cmp tm(OF#h) to pl(01#h);

3.5 Using a 10-Step Voltage Comparator

"z ,
"13" ,
"1qn ,
"5 .
"16" ,
"7 ,

n1g" ,
nign ,
noon ,

"2 ,
n22n ,
"23" ,
n2qn ,
"25" ,
"2e6" s
won

n2gn :
"30" ,
"routine for
"31"zero: zz,
"3a" yr,
"33" ow,
"34" pa4,
nggn

"routine for
"36"one: ww,

"3T" ax,
"38" ax,
"39" nnl,
"40" pa4,
ngqn

"routine for

"42"two: tt2,

"43" uw2,

44" pa4,

ngsn

"routine for
"46"thre: th,

4T rrl,
V|48|| 1},y

49" pa4,
w5

"routine for
"51"four: ff,

"52" ff,

"53" or,

n54n pa4,
w55

if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
goto pl(stay);

the word zero"
call pl(read);
pl (read);
pl (read);
pl (read);
pl (stay);

call
call
call
, goto

the word one"

call pl(read);
pl (read);
pl (read);
pl(read);
pl(read);

pl (stay);

call
call
call
call
,goto

the word two"

call pl(read);
call pl(read);
call pl(read);
,goto pl(stay);

the word three"
call pl(read);
call pl(read);
call pl(read);
call pl(read);
,goto pl (stay);

the word four"
call pl(read);
pl(read);
pl (read);
pl(read);
pl (stay);

call
call
call
,goto

117

goto pl (one);

pl(02#h);

goto pl(two);

pl (03#h) ;

goto pl(thre);
pl (04#h);

goto pl (four);
pl (05#h);

goto pl(five);
pl (06#h);

goto pl(six);

pl (07#h);

goto pl(svn);

pl (08#h) ;

goto pl(eit);

pl (09#h) ;

goto pl (nin);

118

"routine for

3. Analog Circuits

the word five"

"s6"five: ff, call pl(read);
"57" ff, call pl(read);
"58" ay, call pl(read);
"59" vv, call pl(read);
"60" pa4, call pl(read);
"e1" ,goto pl(stay);
"routine for the word six"
"62"six: ss, call pl(read);
"63" ss, call pl(read);
64" ih, call pl(read);
"es5" ih, call pl(read);
"66" pa3, call pl(read);
"eT" kk2, call pl(read);
"68" ss, call pl(read);
"e9" pa4, call pl(read);
"o ,goto pl(stay);
"routine for the word seven"
"71"svn: ss, call pl(read);
"2 ss, call pl(read);
"3 eh, call pl(read);
"an eh, call pl(read);
"5 Vv, call pl(read);
"Te" eh, call pl(read);
" nnl, call pl(read);
"8" pa4, call pl(read);
"79" ,goto pl(stay);
"routine for the word eight"
"80"eit: ey, call pl(read);
"g1" pa3, call pl(read);
ng2" tt2, call pl(read);
"g3" pad4, call pl(read);
"84 ,goto pl(stay);
"routine for the word nine"
"85"nin: nn2, call pl(read);
"g8e" aa, call pl(read);
"8 ay, call pl(read);
"gg8" nnl, call pl(read);
"g9" pa4, call pl(read);
"90o" ,goto pl (stay);
"subroutine for reading the standby status of the speech processor"
"91"read: ,continue;
"92"styl: ,if (not sby) then goto pl(styl); "reading SBY"
"93" ,ret;

.org 127#d
"g4" ,goto pl(stay);

END.

3.6 Speech Processor/Logic Probe Interface 119

instruction “‘load tm(OF#h)” is used for loading only four of the six testable
inputs. Because we only need to read the testable inputs TO to T3, the immedi-
ate mask “‘OF#h” is used.

Lines four to seven contain four allophones and one pause in order to make
the speech processor say the word “level.”” Certainly, when the user hears the
word “‘level,” he will be expecting to hear a number that indicates in what
level the reading is at that moment. Lines 9 to 29 compare the 4-bit reading
against a constant number. If the 4-bit reading is equal to the constant number
stored in the p1 field, the internal flag ““eq” is set to one. In this case, the flag
“eq” was assigned the name ‘“‘equal”; therefore, the program keeps reading
for this flag after every comparison. If the flag is set to one, the program
jumps to the routine indicated in the pl field. Once the program jumps to the
routine used for announcing the resf)ective number, the routine issues the re-
quired allophones and keeps calling the *“‘read’ subroutine. It is the *“read”
subroutine that starts the speech sequence of the speech processor (see lines 91
to 93). When the respective number has been correctly announced, the pro-
gram jumps again to the beginning at line one that is labeled ‘““stay.” Here the
program waits again for the test switch to be pressed momentarily in order to
repeat the process.

You can make certain modifications to the software program presented in
Table 3.9. For example, you can add a time delay at the beginning of the pro-
gram and avoid reading the status of the *“‘test” switch. In this way, your pro-
gram will be reading and announcing continuously the encoded reading that
corresponds to the voltage level presented at the input Vin of the LM3914. In
the program presented here, a total of 94 lines of real instructions were spent;
consequently, you can augment the size of the program for more specific in-
tructions. For example, you can add warning messages if the voltage level has
reached a ‘“‘dangerous’ zone or a message of the steps that must be followed
when the voltage level has dropped below a “permitted” level. As you can
see, the flexibility of this circuit relies on the capacity of the field program-
mable controller to be reprogrammed according to the needs of the user.

3.6 Interfacing a Speech Processor to a
Logic Probe

The multifunction logic probe shown in Figure 3.13 is able to indicate logic
states and the presence of pulses. In digital circuits, finding out if the the clock
section of a module is functioning properly can be a difficult job, especially
when you do not have access to an oscilloscope.

The logic probe presented in Figure 3.13 is divided into two parts: the logic
part and the programmable part. The logic part corresponds to the upper por-
tion of the circuit. Here, the circuit will be working as a conventional logic
probe that indicates the state of the input by merely glowing two LEDs. When

3.6 Speech Processor/Logic Probe Interface 121

also triggered for an interval of 0.33 s. Notice that the negative output of the
second monostable is utilized for disabling the first monostable for the period
of 0.33 s. This feature permits the monitoring of a continuous stream of
pulses which will be heard as an intermittent sound caused by the piezotrans-
ducer. Otherwise, a continuous sound generated by the buzzer would be in-
dicating the presence of pulses.

The main feature of this logic probe is that it has the capability of indicat-
ing the logic state of an input as well as the presence of pulses by means of a
speech processor. This enables the user to monitor or test a digital circuit
without having to look at the analog or digital display and waste precious
time.

The logic probe is interfaced to the speech processor SPO256-AL2 by
means of the field programmable controller Am29CPLI151. In this case, TO is
designated as the logic input, while T1 is connected to a DPDT switch that
will be indicating the mode of operation. When the mode of operation is
PULSE, the testable input T1 is held at a logic low. By looking at Table 3.10
you will see that the keyword “DEFINE” assigns the name “‘probe” to input
TO, the name ““pulse” for input T1, and the name *‘sby” for input T2. After
all the allophones have been assigned with hexadecimal equivalents, the pro-
gram starts at line one.

TABLE 3.10
Software Program to Control the Logic Probe Using the FPC Am29CPL151

DEVICE (CPL141)

DEFAULT = 1;

DEFINE "test inputs"
prob = to

puls = t1

sby = t2

"speech data = 59 allophones plus four pauses"

pa2 = 01#h pa3 = 02#h pa4 = 03#h pa5 = 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = 08#h pp = 09#h jh = 0A#h nn1 = 0B#h ih = 0oC#h
tt2 = oD#h rr1 = OE#h ax — OF#h mm = 10#h tt1 = 11#h dhl = 12#h
iy = 13#h ey = 14#h ddl = 15#h wuwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = 1A#h hhl = 1B#h bbl = 1C#h th = 1D#h uh = 1E#h
uw2 = 1F#h aw = 20#h dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24#h
sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2Dp#h ww = 2E#h xr = 2F#h wh = 30#h
yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h ow = 35#h dh2 = 36#h
ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h yr = 3C#h
gg2 = 3D#h el = 3E#h bb2 = 3F#h;

DEFAULT_OUTPUT = 0000#h;
TEST_CONDITION = sby; "default test condition"

122 3. Andlog Circuits

BEGIN

"read t1 for mode pulse or mode logic"
"1"start: ,if (puls) then goto pl (edge);
"2 ,if (not prob) then goto pl (one);
"3" zz, call pl(read); "ZERO"

"qn yr, call pl(read);

"5 ow, call pl(read);

ngn pas, call pl(read);
wgn pas, call pl(read);

ngn ,goto pl(start);
"g"one: ww, call pl(read); "ONE"
"1o" ax, call pl(read);

"1ln ax, call pl(read);

"12" nnl, call pl(read);

"13" pa5, call pl(read);
"14" pa5, call pl(read);

"15" ,goto pl(start);
"16"edge: ,if (not prob) then goto pl (edge);
LAl pp, call pl(read);
"1g" uh, call pl(read);
"ign 11, call pl(read);
20" ss, call pl(read);
"21" pa5, call pl(read);
naan pa5, call pl(read);
"23" ,goto pl(start);
"24"read: ,continue;
"25"stay: ,if (not sby) then goto pl(stay); "reading SBY"
"2e" ,ret;
.org 63#d
"2 ,goto pl(start);
END.

The program first asks for the mode of selection, that is, whether it is
LOGIC or PULSE that the user has chosen. In this case the program was de-
signed for monitoring the signal automatically, so the user does not spend
time pressing a switch for each test. If the mode LOGIC is selected, the pro-
gram jumps to line two, which reads the logic status of the input named
“probe.” If the input pulse is low, the program makes the speech processor
say the word *“‘zero”; otherwise, the speech processor will announce the
word “‘one.”” When the announcing of the word ends, the program goes back
again to line one in order to read the new status of the input assigned as
“probe.”

On the other hand, if the user selects the logic probe in the mode “PULSE,”
the first instruction makes the program jump to the label “edge” located in
line 6. The instruction “if (not probe) then goto pl(edge)” keeps the FPC
reading the status of the input “probe.” If a low-to-high transition occurs at

3.7 Talking Programmable Gain Amplifier 123

the input of the logic probe, the speech processor will say the word “pulse.”
When this word ends, the program goes back to line one in order to know if
the mode of operation has changed. In fact, after any of the three messages is
heard, the program goes back and reads the mode of operation for a possible
new selection.

In the program shown in Table 3.10, you can see that only 26 lines were
spent for developing the program; therefore, you have lines 27 to 63 free for
augmenting or adapting the program with some different features. For ex-
ample, you can add a low-battery indicator to this logic probe, so that the
program monitors when the voltage has dropped below a preprogrammed
level. In this case, the speech processor would issue a warning message in-
dicating that the battery is losing power. Many other features can be added to
this logic probe, but most of them will depend upon the imagination of the
user.

3.7 Talking Programmable Gain
Amplifier

The Figure 3.14 circuit is a programmable gain amplifier that has the capacity
of selecting 16 different gains by means of a switching network. The switch-
ing network is controlled by the FPC Am29CPL151. In addition, the speech
processor SPO256-AL2 announces the gain every time the user selects it.

The op-amp LF353 configured as an inverting amplifier is controlled by the
CMOS switching network contained in the IC CD4066. A set of four resistors
connected to the CD4066 is used to make 16 possible combinations. In other
words, 16 possible resistor values are obtained to control the gain of the op-
amp. The gain equation for the inverting amplifier is

Vout = —Vin (R2/R1)

In the preceding equation, resistor R2 can have 16 different values, starting
with the value of zero ohms. To make the selection of resistors, the four con-
trol inputs named A, B, C, and D will select the required combination via the
control outputs p8, p9, pl0, and p11 provided by the FPC Am29CPL151.

After the power-up reset, the circuit starts selecting the value of resistor
two as zero ohms. To select the next 15 gain levels, the user only has to press
the normally open switch “SEL.” When the user presses this switch for the
first time, the first gain level is selected and the resistor Ra is connected. This
event causes the speech processor to say the message “level one.” If the user
needs a higher gain, he will have to press the switch “SEL” again. In this
way, the speech processor will be announcing the selected gain level just after
the switch is pressed.

124

3. Analog Circuits
+5V
— rLB
R K = . Vout
Vin _/\/‘\‘/_ _ 1
-5V
1 2
/ /_\/\/_4
3 o~ 4 |
VT S
8 A] t
— A /\v_‘
0] A 11, A
Y
CD4DBB |44 s5y
7
+5V
7 23
12 18 To LPF and
3 172; 24~ audic
4 16,\3 " amplifier
5 151%, SP0256- 290F
6 14 AS AL? 23 ;
PS 7 13 A l AN
P6 g }{1 A7 =31
Am29CPL152 P7 4 A3 ;
LT [P pg 10 2000
22
14 e 18 Rl —
oo RST |19 SE RST
— SRYRS
St 10 SBYRST gyt
25 1122 —
SEL H 0. 1ufF /—J\‘
<{ 10K -

Figure 3.14 Circuitry for the talking programmable gain amplifier.

The software program for controlling the gain of the op-amp and the speech
processor is shown in Table 3.11. The section “DEFINE” of the program as-
signs the names of “SEL” and “sby” to TO and TI respectively. Also, al-
lophones and pauses are defined in the same way as in the previous programs.

Once you have written your program as a pure ascii file, you can assemble
it to produce the JEDEC file. The JEDEC file must be loaded into the FPC
Am29CPLI151 by using an appropriate PLD programmer.

3.7 Talking Programmable Gain Amplifier 125

TABLE 3.11

Software Program for the Programmable Gain Amplifier

DEVICE (CPL141)

DEFAULT = 1;

DEFINE "test inputs"
sel = to
sby = t1

"output control bits are given allophone assignments"
"speech data = 59 allophones plus four pauses"

pa2 = 01#h " e "
pa3 = 02#h "/zero->.1 281- Vce "
pa4 = 03#h " po0<-:2 27i<-clk "
pa5 = 04#h " pl<-:3 26/<-cc "
oy = 05#h " p2<-14 25i<-t0 "
ay = 06#h " p3<-15 Am29CPL 24,<-t1 "
eh = 07#h " p4<-'6 151 23i<-t2 "
kk3 = 08#h " p5<-:17 221<-t3 "
pp = 09#h " p6<-18 21i<-t4 "
jh = 0A#h " p7<-19 20i<-t5 "
nnl = O0B#h " p8<-110 19)<-/reset"
ih = oc#h " p9<-i11 18!->p15 "
tt2 = 0D#h " p10<-112 17!->p14 "
rrl = OE#h " pll<-113 16)->p13 "
ax = OF#h " Gnd-114 15 ->p12 "
mm = 10#h R it e e "

ttl1 = 11#h dh1 = 12#h iy = 13#h ey = 14#h ddl1 = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = 1A#h hhl = 1B#h bbl = 1C#h
th = 1D#h uh = 1E#h uw2 = 1F#h aw = 20#h dd2 = 21#h gg3 = 22#h
vv = 23#h ggl = 24#h sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h
kk2 = 29#h kk1 = 2A#h zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h
xr = 2F#h wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h
ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h bb2 = 3F#h

gainl = 100#h

gain2 = 200#h

gain3 = 300#h

gaind = 400#h

gain5 = 500#h

gain6é = 600#h

gain7 = 700#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = SBY; "default test condition"

BEGIN

"read t1 for mode pulse or mode logic"

"1"stay: ,if (not sel) then goto pl(stay); "Gain zero"
nan wWW, call pl(read); "ONE"

"gn ax, call pl(read);

"qn ax, call pl(read);

"5 nnl, call pl(read);

g pa2, call pl(read)

126

"7"styl: gainl,
"g" tt2,

"g" uw2,
"10" paz2,
"11"sty2:gain2,
"an th,
"13" rril,
"14" iy,
"1i5" pa2,
"16"sty3:gain3,
" ff,
"1g8" ff,
"ign or,
"20" pa2,
"21"sty4:gaing,
nza" ff,
"23" ff,
"24" ay,
"25" vv,
"26" pa2,
"27"sty5: gain5,
"28" ss,
"29" ss,
"30" ih,
"3 ih,
"3a2" paz2,
"33" kk2,
"34" ss,
"35" pa2,
"36"sty6: gain6,
"3 ss,
"38" ss,
"39" eh,
"40" eh,
"41" vv,
"42" eh,
"43" nnl,
"44" pa2,
"45"sty7: gainT,
na6"

"47"read:
"48"sty8:

nqgn

w5Q"

END.

3. Analog Circuits

if (not sel) then goto pl(styl)
call pl(read); "TwO"
call pl(read);
call pl(read);
if (not sel)
call pl(read);
call pl(read);
call pl(read)
call pl(read)
if (not sel) then goto
call pl(read); "FOUR"
call pl(read);

call pl(read);

call pl(read)

if (not sel) then goto
call pl(read);
pl(read);
pl (read);
pl (read);
pl(read);
(not sel)
pl (read);
pl(read);
pl (read);
pl(read);
pl (read);
pl(read);
pl (read);
call pl(read);
if (not sel) then goto pl (sty6)
call pl (read);

call pl(read);

call pl(read);

call pl(read);

call pl(read);

call pl(read);

call pl (read);

call pl(read);

if (not sel) then goto pl(sty7);
,goto pl(stay);
,continue;
,if (not sby)
,ret;

.org 63#d
,goto pl(stay);

then goto
"THREE"

pl (sty2);

pl (sty3);

pl (sty4);

call
call
call
call
if
call
call

then goto pl(sty5);

call
call
call
call
call

then goto pl(sty8); "reading SBY"

3.8 Designing an Electronic Thermometer 127

3.8 Designing an Electronic Thermometer
that Announces Readings

The Figure 3.15 circuit is an LED digital thermometer that has an operating
range of —5° C to 45° C with a resolution of 0.1° C. Thermistor YSI44202 is
manufactured by Yellow Springs Instruments and is used as the sensor ele-
ment that sends the voltage variations to ICL7117’s input (pins 31 and 30) via
the instrumentation amplifier formed by IC2, IC3, and IC4.

The temperature range used in the thermometer was selected based on bio-
logical applications. The main advantage for the LED digital thermometer cir-
cuit is that it can measure small changes in temperature accurately and quickly
in comparison to other conventional thermometers such as mercury ther-
mometers. The temperature measurements are exhibited in an LED display
and announced by a speech processor simultaneously.

The thermolinear sensor contains a linearization network formed by two
thermistors and two resistors (see Figure 3.16). This network provides a linear
output voltage versus temperature.

The output voltage Vo of the thermistor is described by the equation:

Vo = 0.77 + (0.028875 V/°C)T

By substituting the temperature T from —5° C to 45° C in the preceding equa-
tion, we get Table 3.12.

The 3-V power supply biasing the thermistor is used to avoid the errors
produced by internal heating in the sensor, which would produce wrong
readings.

An instrumentation amplifier (see Figure 3.17) is employed in order to get
accurate readings at the ICL7117’s input. The instrumentation amplifier is a
fixed-gain differential amplifier consisting of three op-amps, as indicated in
the circuitry of Figure 3.17. The gain expression is formally the same as that
for an op-amp, for example,

Vo = A(El — E2)

except that the open-loop gain is replaced by the gain with feedback A.
Specifically,

A = (2R11 + R10) R15/(R10 R13)

It is basically an improved version of the differential amplifier. The main
features are (1) high input impedance, especially with FET op-amps on the
input; (2) high CMRR, and (3) precision high gain. High input impedance
is achieved by using the noninverting amplifier configuration on the inputs.
Precision high gain is obtained by two stages of feedback amplifiers. High
common-mode rejection is achieved by the dual noniverting-configuration cir-
cuit, which utilizes a common feedback resistor R10.

130 3. Analog Circuits

3V
Green I
R7
R3 R4 10K
6K @25C § 30K 825C
RS R8 aroun Vref = 0.77V
10K ie—__o
RS 12K = V(1)
is.m
- Red

Figure 3.16 Thermistor linearization network.

The gain “A” is given by:
A = Vo/(El — E2) = RI5/R13(1 + 2 R11/R10) = 0.3463

From Table 3.12 we pick up the voltage values of Vo to verify the output
voltage Vo of the instrumentation amplifier depending upon the temperature;
thus we get Table 3.13. Notice that V(t) is the output voltage of the thermistor
network. In Table 3.13 Vo is now the output voltage that is routed to the
ICL7117. The values of Vo are obtained by substituting the gain A in Eq.
Vo = A(El — E2).

In the instrumentation amplifier, resistor R15 is used to adjust the common
mode gain, and resistor R10 is used to adjust the gain (see Figure 3.17).

The ICL7117 is a 3-1/2 digit single-chip converter. This A/D converter

TABLE 3.12
Temperature versus Voltage for the Thermistor Network
T (°C) Vo (Volts)

-5 0.6256

0 0.7700

5 0.9143

10 1.0587

15 1.2031
20 1.3475
25 1.4918

35 1.7806
40 1.9250

45 2.0693

3.8 Designing an Electronic Thermometer 131

TABLE 3.13

Typical Values of Vo versus Temperature When Vref = 0.77V
T (C) Vref (E2) V(t) (El) Vo = A (El - E2)
-5 0.77 0.6256 -0.05

0 0.77 0.17700 0.00

5 0.77 0.9143 0.05

10 0.77 1.0587 0.10

15 0.77 1.2031 0.15

20 0.77 1.3475 0.20

25 0.77 1.4918 0.25

30 0.77 1. 6362 0.30

35 0.77 1.7806 0.35

40 0.717 1.9250 0.40

45 0.77 2.0693 0.45

contains all the necessary active devices in a single CMOS IC. Included are
seven segment decoders, display drivers, a voltage reference, and a clock.
The ICL7117 is designed to interface with a common anode LED display.

To interface the temperature readings to a speech processor, we have to
convert the low-active seven segment outputs of the ICL7117 to a BCD code.

Vref=0.77V

I’ 5
2
| !4 To

oy —> ICL7117

T%V R11
5 22K
W
v(t) 3 2 R13 R15
47K 50K
-9V

Figure 3.17 The instrumentation amplifier.

132 3. Analog Circuits

The conversion is achieved by using three seven-segment-to-BCD decoders
74C915. The LSB digit that represents the decimal values of the temperature
is sent to P2.0-P2.3 of the microcontroller. Because the microcontroller’s
operating voltage is 5 V, the BCD code received by port two as well as by the
BUS must be in the logical levels of 0 to 5 V. To reduce the logical levels from
9to 5V, 12 voltage followers contained in two CD4050s are used. The output
P2.7 of the uC 8748 is selected for handling the hold reading (HLDR) func-
tion of the ICL7117. In this way, the wC 8748 holds the temperature reading
temporarily and selects the three 74C915s by holding low the input control
(/0C) via the output P2.6.

Now, the software program of the microcontroller is the one responsible
for making the decisions to drive correctly the speech processor Digitalker.
The Digitalker will proceed to announce the temperature readings every time
the user presses the TEST switch. The software program used to convert the
BCD code temperature readings to vocal messages is described below.

Table 3.14 shows different cases for temperature readings presented in
BCD code.

By looking at Table 3.14, you will see that some temperature readings re-
quire three words and others require four words. For temperature readings be-

TABLE 3.14
A Temperature Reading Presented in BCD Code at the Inputs Port 2.X and BUS,
Causes a Spoken Message in the Speech Processor

BUS Port 22X
Message Temperature 76543210 3210
five point zero 5.0 {00000101, 00O0O
five point one 5.1 /00000101 0001
six point zero 6.0 y, 00000110, 00O0O
nine point nine 9.9 { 00001001 1001
ten point zero 10.0 /00010000 : O0O0OO
nineteen point zero 19.0 100011001, 00O00O0
twenty point zero 20.0 100100000 O0O0O0O
twenty one point zero 21.0 100100000 O0O0O0O
twenty one point five 21.5 100100001, 0101
twenty two point zero 22.0 {1 00100010 000O00O0
thirty point zero 30.0 100110000, 0000O0
thirty point nine 30.9 100110000, 1001
thirty one point zero 31.0 100110001 0000O0
thirty nine point zero 39.0 7y 00111001, 0000
forty point zero 40.0 /01000000 :! O0O0OO
forty one point zero 41.0 101000001 00O0O
forty five point zero 45.0 101000101, 0000

3.8 Designing an Electronic Thermometer 133

P2.7 = 0, TEMPERAT.]

< BUS<21H2

Temp=>33 & BUSO- sf‘=0

\
ASPS |

Readings
21.0
22.0 Five, Six, Seven
230 Eight, Nine.......
24 0--24.9 | .. Twenty
25.0--25.
27.0--217.
28.0--28.
29.0—29.
31.0--31.
32.0--32
380
41.0--41. 9
45.0--45.9

L

‘O(D‘-C'KCI!-D&D(D‘O

r}a -
O

[l

Zero, One.. Nine“ll

\SV
] "Degrees"

(A

St

L]

Figure 3.18 Flow chart for converting temperature readings in BCD code to vocal
messages.

low 20.9° C, the message contains three words. Furthermore, the readings
that range from 30.0 to 30.9° C and the readings from 40.0 to 40.9° C are
formed with three words; however, in readings varying from 21.0 to 45.0 the
messages are formed with four words, with the exception of the two ranges
just described above. A flowchart will be helpful to understand the routes that
the program must follow in order to announce a temperature reading correctly
(see Figure 3.18).

The microcontroller’s routine for reading the temperature in BCD code and
then translating it to a vocal message is shown in Table 3.15. In this case the
Digitalker system is used.

134

3. Analog Circuits

TABLE 3.15
Software Program for the uC 8748 Which Makes the Digitalker System to Announce
Temperature Readings Which Are Received in BCD Code

Add Op Code Mnemonics Comments

00 26 00 STAY: JTO STAY ;Wait for TO to go low

02 8A FF ORL P2, #FFH ;HLDR function of ICL7117 is

04 9A EF ANL P2, #EFH ;is pulsed low to hold a

06 8A FF ORL P2, #FFH ;new reading

08 9A BF ANL P2, #BFH ;1011 1111, /OC = O

0A 08 INS A, BUS ;Load temperature reading

0B A9 MOV R1, A ;Register R1 contains units
;and tens of the temperature.

oC 0A IN A, P2 ;Acc gets decimal value

0D AA MOV R2, A ;R2 contains the decimal value

OE 8A FF ORL P2, #FFH ;

10 97 CLR C ;Carry flag is set to zero.

11 BB 21 MOV R3, #21H ;Register R3 = #33d

13 37 CPL A ;Routine to compare if A<R3

14 6B ADD A, R3 ;If CY is set then A<R3

15 27 CLR A ;

16 F6 23 JC POINTR ;Jump to POINTR if CY is one

18 F9 MOV A, R1 ;Load Acc with temperature

19 53 OF ANL A, #OFH ;Mask the Acc to test if the

1B 96 48 JNZ FIND ;units of temp are no zero.

1D F9 POINTR: MOV A, R1 ;Load Acc with temperature

1E 53 OF ANL A, #FOH ;Acc contains tens of temp.

20 14 3A CALL PULSE1l H

22 F9 MOV A, R1 ;Load Acc with temperature

23 53 OF ANL A, #OFH ;Acc contains units of temp.

25 14 3A CALL PULSE1l ;

27 89 7A ORL P1, #7AH ;Word "point"

29 14 3C CALL PULSE2 H

2B 27 CLR A ;

2C FA DCM: MOV A, R2 ;Decimal value of temperature

2D 53 OF ANL A, #OFH ;is loaded into Acc

2F Cc6 JZ ZERO ;Testing if temp = zero.

30 14 3A CALL PULSE1l H

32 89 72d CD: ORL P1, #72d ;Word "degree"

34 14 3C CALL PULSE2 ;

36 89 129d ORL P1, #129d ;Sound "ss"

38 14 3C CALL PULSE2 H

3A 04 00 JMP START 5

3B E3 PULSE1: MOVP3 A, @

A ;Find the speech data in page3

3C 39 OUTL P1, A ;Load portl with speech data

3D 80 PULSE2: MOVX @RO, A ;/WR of DT1050 is pulsed low

3E 46 3D STAY: JNT1, STAY ;Wait for /INTR to go low

40 99 00 ANL P1, #OOH ;Clear portl

42 83 RET ;

3.9 Interfacing Displacement Transducers 135

43
44
45
47
49
4A
4B
4D
4F
51

310
311
312
313
314
315
316
317
318
319

330
340

23
39
14
04
27
F9
14
89
14
04

1F
01
02
03
04
05
06
07
08
09
0A
0B
oc
oD
OE
OF
10
11
12
13
14
15
16

3C
32

3A
TA
3C
2C

ZERO:

FIND

MOV A, #1FH ;Load Acc with data 1FH
OUTL P1, A ;Load portl with word "zero"
CALL PULSE2 5

JMP CD H

:CLR A H

MOV A, R1 ; Temp<#33d (<21 C)
CALL PULSE1 ;
ORL P1, #7AH ;Word "point"
CALL PULSE2 ;
JMP DCM ;

;Page three of ROM

;"Zero"

; "One"

; "Two"

; "Three"

; "Four"

; "Five"

; "Six"

; "Seven"

; "Eight"

; "Nine"

; "Ten"

; "Eleven"

; "Twelve"

; "Thirteen"

; "Fourteen"

; "Fifteen"

; "Sixteen"

; "Seventeen"

; "Eighteen"

; "Nineteen"

; "Twenty"

; "Thirty"

; "Forty"

3.9

Interfacing Displacement Transducers
to Speech Processors

Speech processors can be interfaced to almost any analog or digital system to
indicate the presence or the magnitude of an input signal. Displacement trans-
ducers are not the exception. A displacement transducer is a device capable of
sensing the change in position or displacement of an object. A displacement
transducer must be sensitive enough to avoid affecting the event being mea-
sured. Using the right circuitry, transducers can be interfaced to a speech pro-
cessor. Certainly, there are many applications where a speech processor will

136 3. Analog Circuits

result in a better system for monitoring displacements instead of using the
conventional analog or digital indicators.

Strain gages are typical examples of displacement transducers. Most gages
consist of a metal foil or wire bonded to an insulating base, as illustrated in
Figure 3.19. The base is cemented to the surface of the object under test, and
the gage thus experiences the same strain as the surface. The strain “E” is
defined as

E = AL/L

where L is the distance between two reference points fixed in the object.

For applications involving small dc signals, a strain gage can be interfaced
to a differential op-amp. Figure 3.19 shows this type of circuitry. The output
voltage Vo must be interfaced to an A/D converter if a high resolution is
needed. You can even use a set of level comparators to detect several steps of
the displacement. Figure 3.20 shows how to interface a strain gage to a micro-
controller via an A/D converter. The microcontroller drives the speech pro-
cessor SPO256-AL2. As you can see in Figure 3.20, the circuit for A/D con-
version with the microcontroller and the speech processor is similar to the one
presented in Section two of this chapter. You will have to make a few modi-
fications to the software program presented in Section two. For example, you
can change the message ““volt” to the word “millimeters,” representing a dis-
placement. Now we will see how an optical displacement transducer can be
adapted to a speech processor.

Digital Displacement Transducer

A digital displacement transducer is used when relatively large displacements
are to be determined. There are two types of transducers that are easy to im-
plement and use: incremental and absolute. Figure 3.21 shows a basic incre-

Leads

VRN
T T Metal

L Foil

!
i

Backing

\
Strain axis

Figure 3.19 Strain gage diagram.

3.9 Interfacing Displacement Transducers

137

+5Y
20pF s 40 |28 = 49
= 10 gg 1 5 s . 1o PF ond
P11 W2 ‘-7\ audio
\61 MHz P12 §c9) 1; ggﬁ ot amplifier
P1.3 2:
26pF P14[3] TTISHs ! vl
3 4 ST P1.5 e wsetoa| B
Wwf 20 A 5 4.00 |MHz
GND b
e —_ 4| — SAVAY (——
= uc8748 wR1§ 2 1058 20pF L
T1 INTR
0-A13 D1-D8
po .o l21 JEG 25%
J24
20
s 10 jro- pid
12-19 1412 0a
8SR1 12
L
sy
fos
20
gAO— Di1—
a1z DB
SSR
SSR2 12
L
5V
Re 1
R
> rd
gty
| -
n
Cone B le Di-1s |5 3
g o s VIHBUS T W P
" v ADCOBO4 eL 10K
Rb vref/2 oS 4—-{
b i ket ¢St - 150pF
1 TR O[T AT VP
Y J

Figure 3.20 Strain gage interfaced to a speech processor.

mental digital displacement transducer. In this type of transducer, the photo-
detector picks up the pulses generated by the slide, which can be perforated

(see Figure 3.21)

On the opposite side of the slide, a light source must be emitting a light
beam that will be interrupted by the movement of the slide. Each interruption
which might occur will generate a pulse that will be routed to a binary
counter. This type of displacement transducer has the disadvantage of not
being capable of detecting the direction of the displacement, but it has the

138 3. Analog Circuits
Displacement

4
[_Phetedetector
=

RIS

Figure 3.21 Basic incremental digital displacement transducer.

advantage that the velocity of the movement can be detected; such velocity
can be accomplished by detecting the number of pulses that occur in a certain
period of time. The magnitude of this measurement will be proportional to the
velocity of the displacement.

Figure 3.22 shows a system that contains an absolute digital displacement
transducer. In this case the slide that is attached to the object under movement
is perforated with a BCD code. Four photodetectors have to be used in this
particular form. The advantage of the obtained BCD code is that the code can
be sent directly to a BCD-to-seven-segment decoder or to a controller. Ob-
viously, we will prefer the controller option using the FPC Am29CPL151
interfaced directly to a speech processor. Figure 3.23 shows a block diagram

8 4 2 1
® @ ® ® I rhotodetectors

0o
DUDS

OO~ LN —O

:Dx

Figure 3.22 Absolute digital displacement transducer.

3.10 BCD A/D Converter Interface to SPO256 139

1khZ
8
0SCILLATOR > PO-P7 {3l A0-A7 OUTPUT—>
T4 K SBY
Am29CPL152
10 SPO256-AL2
T
7
T3

Figure 3.23 Block diagram for a talking displacement system.

of the system that solves the problem completely. The software program for
the FPC shown in Figure 3.23 is similar to the one presented in Chapter two,
Section 10. In other words, the FPC and the speech processor must be pro-
grammed to work as a talking BCD-code meter, although you can make the
modifications to the software program according to your real needs.

3.10 BCD A/D Converter Interface to
SPO256

The advantage of interfacing a BCD A/D converter to a speech processor is
that you have two ways of representing a digital reading: a digital display and
a voiced reading. In addition, the vocalized reading can be programmed to
indicate to the user the procedure to be followed in order to correct a possible
malfunction. This feature avoids the time the user would spend trying to find
the manual that contains the procedures.

Generally, the use of an A/D converter can be applied to measure analog
variables such as pressure, temperature, resistance, capacitance, inductance,
and others. Certainly, most of these applications will require a circuit capable
of converting these variables to voltage. The input voltage will have to be ap-
plied in the correct scale that the A/D converter is requiring in order to obtain
the proper output reading.

The circuit shown in Figure 3.24 uses the BCD A/D converter TSC8750
manufactured by Teledyne Semiconductor. The TSC8750 is a 3-1/2 digit A/D
converter with parallel BCD output. This converter has a conversion time of
10 ms and contains an input, which can be used to control the data output

3.10 BCD A/D Converter Interface to SPO256 141

used for readings in the range of 5°C to 45°C. In this case you will have to
work, for example, within a range of 00.0 to 10.0 V. A resolution of 0.1V will
keep the format of the program in the same way it was developed for the ther-
mometer. If your requirement is for a resolution of 0.01 V, the program will
have to be modified so that the microcontroller is able to identify the decimal
and centesimal digits. Please take into account that the routine required for
this conversion is greatly simplified, because we are working in BCD code. In
this way, most of the comparisons required to detect the magnitude of the in-
put voltage are made directly by merely masking the digital reading. Masks
will permit you to have the unit, the decimal, or the centesimal value of the
input voltage.

If you decide to use the Digitalker system for vocalizing the voltage read-
ings, the software program becomes smaller because the words are already
constructed in the speech ROMs and are easier to find, specially when you try
to find numbers.

CHAPTER 4

Digital Circuits

4.1 4-Bit Magnitude Comparator Calls
Out the Results

Digital comparators use only exclusive OR circuits to compare the respective
pairs of bits in each of the two words presented. The outputs of the com-
parators are routed to a gate that gives a logic one at its output when all the bit
pairs are equal and a logic zero when one or more are not. Additional logic
can indicate which input is larger than the other.

A basic single-bit magnitude comparator is designed by a truth table that
indicates the logic states, as shown in Table 4.1. Here we are comparing the
magnitude of two input words A and B.

There are three possible outputs for the magnitude comparator shown in
Table 4.1, which we can define as f(A < B), f(A = B), and f(A > B).
By applying minterms to these three outputs, we get the following three
equations:

f(A <B)=/A*B
f(A = B) = (/A = /B) + (A * B)
f(A > B) = A * /B

For comparison of two words that are larger than one bit, for example,
four bits, several of the magnitude comparators available in TTL, CMOS, or
HCMOS technology can be used. A good approach is to use the IC 74HCSS, a
4-bit magnitude comparator. The 74HC85 provides three fully decoded out-
puts that indicate which of two 4-bit inputs is larger than the other or if both
inputs are equal. It also includes three cascade inputs that permit two or more

142

4.1 Four-Bit Magnitude Comparator 143

TABLE 4.1
Truth Table for a Basic Single-bit
Magnitude Comparator

A B | A<B | A=B | A>B

= = O ©
= O O

0
0
1
0

= O© = O
o O = O

74HC85s to compare words having eight or more bits. In this case, if two
74HCSSs are connected in cascade, the speed of the total comparator is cut to
one-half.

It is important to cite that if the reader has access to a PLD programmer, an
n-bit magnitude comparator can be designed using a programmable array
logic (PAL) chip. This approach is justified when speed is an important factor
in the design. A low-cost universal programmer that I strongly recommend is
the PLD1100, which is manufactured and distributed by BP Microsystems.

The total number of product terms required for an n-bit comparator is 2!
Comparators require a large number of product terms; a PAL that offers 16
product terms is the PAL16L4/R4. A magnitude comparator can also be de-
signed using generic array logic (GAL) devices. The GAL22V 10 from Lattice
Semiconductor, for example, can be programmed to emulate a 4-bit magni-
tude comparator. For additional information regarding GAL devices, see the
GAL Data Book from Lattice Semiconductor.

We will now examine how to interface the 4-bit magnitude comparator
74HC8S to the speech processor SPO256-AL2 by using the FPC Am29CPL151
(see Figure 4.1). The 74HCS85 has a maximum propagation delay from a data
input to any output of 21 ns when the ambient temperature is 25°C.

In the circuit presented in Figure 4.1, the three outputs (P < Q, P = Q,
P > Q) of the 74HCSS provide the answer of the digital comparison that are
sent to inputs TO, T1, and T2 of the FPC Am29CPL151. T4 is used to detect
the transient negative pulse caused when the user presses the TEST switch.
This way, the circuit will be waiting for T4 to go low. When this happens, the
FPC will start reading the logic status of the testable inputs TO, T1, and T2.
When the FPC detects the first input in a logic high, it jumps to the routine
containing the message that corresponds to the status of the magnitude com-
parator. The FPC is programmed to make the speech processor SPO256-AL2
announce the messages “P is less than Q,” “P is equal to Q,” and “P is
greater than Q.”

144 4. Digital Circuits

15
a 7 23
Viep)4 13 X T
1 KHz e PO Al ., To LPF and
4 CLOCK Pl 2 }QAZ i_%}au?(q _
~) P2 SAD < amplifier
P32 1944 5PO256-
G\ E? g 1::.5\5 AL2
o St 46
4;3—1”, Pe S A
<00 | Am2gcpList TP 148
— ol —
TEST e Fe :g LD
: B sy 100K
4 — |1 > 2 N
Pemo ST 12 MEIR RaT
— SRYRST 3]
011 T SEIRAT A
25 Joa |23 127 o 1ur —ji_—
7 le g3
P P=0 P>Q |16
/ 9 3 .
PG \
J Pl — 11 uices i o
N P2 —1d 13 e 0
P3 1 15 -
A = Q3
7

g 12 |4

Figure 4.1 Circuitry for interfacing a 4-bit magnitude comparator to the speech
processor SPO256-AL2.

Certainly, this circuit is highly reduced in size, which means less board
space and a reduced cost for building a prototype. Because the FPC contains
an erasable PROM, you can make changes depending on the type of decisions
to be taken and the contents of the messages to be enunciated.

The software program for programming the FPC Am29CPL151 is shown in
Table 4.2.

If the reader does not have access to a universal programmer that accepts
the FPC Am29CPL151, the circuit can be modified by using an EPROM, a
4-bit counter, and a Nand gate. In this particular case an EPROM programmer
will be needed to assert the hex codes that will drive the speech processor

4.1 Four-Bit Magnitude Comparator 145

SP0256-AL2. Figure 4.2 shows the EPROM-based circuitry required for
building a talking 4-bit magnitude comparator. Table 4.3 shows the hex code
for the EPROM 2716 that contains the speech data.

The configuration shown in the circuitry of Figure 4.2 is a small modifica-
tion of the circuits illustrated in Chapter 2 where such circuits were explained

TABLE 4.2
Software for Interfacing a Magnitude Comparator
to the Speech Processor SPO256-AL2
by Using the FCP Am29CPL151

DEVICE (CPL151)

DEFAULT = 1;

DEFINE "test inputs"
less = toO

equal = t1

greater = t2

sby = t3

test = t4

"output control bits are given allophone assignments"
"speech data = 59 allophones plus four pauses"

pa2 = 01#h " mmemmmmme - "
pa3 = 02#h "/zero->,1 281- Vee "
pa4 = 03#h " p0<-:2 271<-clk "
pa5 = 04#h " pl<-:3 261<-cc "
oy = 05#h " p2<-.4 25i<-t0 "
ay = 06#h " p3<-15 Am29CPL 24i<-t1 "
eh = 07#h " p4<-.6 151 231<-t2 "
kk3 = 08#h " p5<-17 22/<-t3 "
pp = 09#h " p6<-:8 21i<-t4 "
jh = 0A#h " p7<-19 20/=<-t5 "
nnl = OB#h " p8<-110 19i<-/reset"
ih = 0C#h " p9<-111 18:->p1l5 "
tt2 = 0D#h " plO<-112 17:->pl14 "
rrl = OE#h " pll<-113 16:->p13 "
ax = OF#h " Gnd-i14 151->p12 "
mm = 10#h . "
tt1 = 11#h

dh1l = 12#h iy = 13#h ey = 14#h dd1l = 15#h uwl = 16#h
ao = 17#h aa = 18+#h yy2 = 19#h ae = 1A#h hh1 = 1B#h
bb1 = 1C#h th = 1D#h uh = 1E#h uw2 1F#h aw = 20#h

dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24+#h sh = 25#h

zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kk1l = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h xr = 2F#h

wh = 30#h yyl = 31#h ch = 32#h erl 33#h er2 34+#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 38#h hh2 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 3D#h el = 3E#h

bb2 = 3F#h;

DEFAULT-OUTPUT = 0000#h;

"

i
"

1

TEST-CONDITION = SBY, "default test condition"

146

BEGIN
"wait for test input to go low"
"l1"stay: ,if (test)
non pp, call pl(read);
"3 iy, call pl(read);
n"qn pas, call pl(read);
"5 iy, call pl(read);
"e" ss, call pl(read);
nn ss, call pl(read);
"8 paz, call pl(read);
"gn ,if (less)
"io" ,if (equal)
"1 ,if (greater) then
"12"msgl: 11, call pl(read);
"13" eh, call pl(read);
"4 ss, call pl(read);
"15" ss, call pl(read);
"16" pa5, call pl(read);
"1 ,goto pl(msg4);
"18"msg2: ih, call pl(read);
"ig" kk1, call pl(read);
"20" uh, call pl(read);
21" ax, call pl(read);
"o 11, call pl(read);
"23" pa5, call pl(read);
n24n tt1, call pl(read);
"25" ow, call pl(read);
26" pa4, call pl(read);
naTn ,goto pl (msg5);
"28"msg3:ggl, call pl(read);
29" rr2, call pl(read);
"30" ey, call pl(read);
"31" pa2, call pl(read);
"3an erl, call pl(read);
"33" pa5, call pl(read);
"34"msg4: dhl, call pl(read);
"35" ae, call pl(read);
"36" nnl, call pl(read);
"37" pa4, call pl(read);
"38"msg5:kkl, call pl(read);
"3g" iy, call pl(read);
"40" uh, call pl(read);
"41" pa2, call pl(read);
nq2n ,goto pl(stay);
"43"read: ,continue;
"44"styl: ,if (not sby) then
45" ,Tet;

.org 63#d
46" ,goto pl(stay);

END.

then goto pl (stay);
"p is"

then goto pl (msgl);
then goto pl (msg2);

goto pl (msg3);

"GREATER"

goto pl(styl);

4. Digital Circuits

"LESS..."

"EQUAL TO..."

"THAN"

nQ

148 4, Digital Circuits

TABLE 4.3
EPROM Program for the Circuit of Figure 4.2
Hex Hex Hex Hex Hex Hex
Add Data Add Data Add Data
20 09 40 09 80 09
21 13 41 13 81 13
22 04 42 04 82 04
23 13 43 13 84 13
24 37 44 37 85 37
25 37 45 37 86 37
26 02 46 02 87 02
27 2D 47 oC 88 24
28 07 48 2A 89 27
29 37 49 1E 8A 14
2A 37 4A OF 8B 02
2B 04 4B 2D 8C 33
2C 12 4C 04 8D 04
2D 1A 4D 11 8E 12
2E OB 4E 35 8F 1A
2F 03 4F 03 90 0B
30 2A 50 2A 91 03
31 13 51 13 92 2A
32 1E 52 1E 93 13
33 04 53 04 94 1E
34 40 54 40 95 04
Continued Continued 96 40

scanning the lower address bits of the EPROM in order to issue all the speech
data that the speech processor need to announce a message. The end of a mes-
sage is also indicated by the EPROM, which asserts a logic high at output 06
in order to clear the flip-flop (1/2 CD4013).

Bear in mind that using the circuit of Figure 4.2, in contrast with the circuit
of Figure 4.1, occupies more board space and increases the cost of this system.

4.2 A Talking Hexadecimal
Keyboard Encoder

A talking keyboard encoder can be an important feature that can be added to
most digital control systems. The project presented here will introduce rele-
vant applications in burglar alarms, telephone dialers, motor-speed control-
lers, and stand-alone PROM programmers. In applications requiring precision
(e.g., control of a set of huge ac motors where a small failure or mistake can

150

4. Digital Circuits

TABLE 4.4
Software Program for the FPC Am29CPL152 to Make the
Speech Processor SPO256-AL2 Announce a Key Pressed

DEVICE (CPL152)
DEFAULT = 1;
DEFINE "test inputs"
data = t4
sby = t5
"allophones and pauses are given name assignments"
pa2 = 01#h L et e "
pa3 = 02#h " t6->11 28/- vVec "
pa4d = 03#h " pO<-i2 271<-clk "
pa5 = 04#h " pl<-i 26./<-cc "
oy = 05#h " p2<-14 25/<-t0 "
ay = 06#h " p3<-1 Am29CPL 24:<-t1 "
eh = 07#h " p4<-1| 152 23i<-t2 "
kk3 = 08#h " p5<-1 221<-t3 "
pp = 09#h " p6<-1 21/<-t4 "
jh = 0A#h " p7<-:9 201<-t5 "
nnl = OB#h " p8<-110 19i<-/reset"
ih = 0C#h " p9<-i11 18/->pl15 "
tt2 = 0D#h " plo<-:12 17:->p14 "
rrl = OE#h " pll<-i113 16:->p13 "
ax = OF#h " Gnd-114 151 ->p12 "
mm = 10#h L e e e "
ttl1 = 11#h
dh1l = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = 1A#h hhl = 1B#h
bb1 = 1C#h th = 1D#h uh = 1E#h uw2 = 1F#h aw = 20#h
dd2 = 21#h gg3 = 22#h vv = 23+#h ggl = 24#h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h Xxr = 2F+#h
wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h;
DEFAULT-OUTPUT = 0000#h;
TEST-CONDITION = SBY; "/STANDBY is the default test condition"
BEGIN
"o" ,goto pl(zero);
" ,goto pl(one);
nan ,goto pl(two);
"3 ,goto pl(thre);
n4n ,goto pl(four);
"5 ,goto pl(five);
"e" ,goto pl(six);
" ,goto pl(svn);
"g" ,goto pl (eit)

4.2 A Talking Hexadecimal Keyboard Encoder

ngn
"10"
"y
nign
"13"
"14"
nign
"ie"
nyn
nig"
nygn
noQn
noqn
noon
nogn
nogn
nogn
nog"
noqn
nogn
nogn
ngon
ngyn
nggn
n3gn
nggqn
nggn
"3g"
nggn
n3gn
nggn
ngqon
LV SRl
ngqon
nggn
ngqn
nggn
n4en
ngqn
n4qgn
ngqgn
nso"
ngn
ngon
nggn
n54n
nggn
n5e"
ngn
nggn
nsgn
"eo"
"el"
ngan

,goto
,goto
,goto
,goto
,goto
,goto
,goto

zero: zz,
yr,
ow,
pa2,

one: ww,
ax,
ax,
nni,
paz,

two: tt2,
uw2,
paz,

thre: th,
rril,
iy,
paz,

four: ff,
ff,
or,
pa2,

five:ff,
ff,
ay,
v,
paz,

six:ss,
ss,
ih,
ih,
pa3,
kk2,
ss,
paz2,

svn: ss,

call
call
call
call
goto
call
call
call
call
call
goto
call
call
call
goto
call
call
call
call
goto
call
call
call
call
goto
call
call
call
call
call
goto
call
call
call
call
call
call
call
call

,goto

call
call
call
call
call
call
call

pl (nin);
pl (1tra);
pl(ltrb);
pl(ltre);
pl(ltrd);
pl(ltre);
pl (1trf);
pl(read);
pl(read);
pl (read);
pl(read);
pl (stay);
pl(read);
pl(read);
pl(read);
pl (read);
pl (read);
pl(stay);
pl(read);
pl(read);
pl (read);
pl(stay);
pl (read);
pl(read);
pl(read);
pl (read);
pl(stay);
pl (read);
pl (read);
pl(read);
pl (read);
pl (stay);
pl(read);
pl(read);
pl (read);
pl (read);
pl (read);
pl (stay);
pl (read);
pl (read);
pl (read)
pl (read) ;
pl (read)
pl (read);
pl(read);
pl (read);
pl (stay);
pl (read);
pl (read);
pl(read);
pl (read);
pl (read)
pl (read);
pl(read);

"ZERO"

"ONE"

"TWO"

"THREE"

"FOUR"

"FIVE"

ngIX"

"SEVEN"

151

152 4. Digital Circuits

"63" pa2, call pl(read);
"e4n ,goto pl(stay);
"65"eit: ey, call pl(read); "EIGHT"
"66" pa3, call pl(read);
"eT" tt2, call pl(read);
"68" pa2, call pl(read);
"69" ,goto pl(stay);
"70"nin:nn2, call pl(read); "NINE"
" aa, call pl(read);
"2 ay, call pl(read);
"3 nnl, call pl(read);
"4 pa2, call pl(read);
"5 ,goto pl(stay);
"76"1ltra:ey, call pl(read); "AY
" pa2, call pl(read)
"8 ,goto pl(stay);
"79" ltrb:bb2, call pl(read); "B"
"80" iy, call pl(read);
"g1" pa2, call pl(read);
"ga" ,goto pl(stay);
"83" ltrc:ss, call pl(read); e
"g4qn ss, call pl(read);
"g5" iy, call pl(read);
"86" pa2, call pl(read);
"87" 1ltrd:dd2, goto pl(stay); "D"
"g8" iy, call pl(read)
"89" pa2, call pl(read)
"90" ,goto pl(stay);
"91" ltre:iy, call pl(read); "E"
"gan pa2, call pl(read);
"g3" ,goto pl (stay)
"g4" ltrf:eh, call pl(read); "F"
"g5" eh, call pl(read);
"ge" ff, call pl(read);
"gT" ff, call pl(read);
98" pa2, call pl(read);
"gg" ,goto pl (stay)
T e wait for data input to go high"
"100"stay: . if (not data) then goto pl(stay);
"101" ,goto tm(001111#b); "Go to address: T3,T2,T1,TO"
"subroutine for reading the standby status of the speech processor"
"102"read: ,continue;
"103"styl: ,if (not sby) then goto pl(styl); '"reading SBY"
"104" ,ret;
.org 127#d
"105" ,goto pl(stay);

END.

4.2 A Talking Hexadecimal Keyboard Encoder 153

entry has been made. When the entered key is released, the DATA AVAIL-
ABLE output returns to a low level.

The software program that reads the 16-key pad and makes the speech pro-
cessor say the pressed key is shown in Table 4.4. The routine for this program
must be able to detect when a key has been pressed and then to proceed driv-
ing the speech processor. When the circuit is first turned on, a power-up reset
pulse is applied to the reset input of the FPC (see Figure 4.3); therefore, we
have to apply the same reset pulse in the software program. This pulse is
achieved with the instruction ‘“‘org 127#d.” Once this reset pulse has been
applied, the program jumps to line 105, which contains the instruction *‘goto
pl(stay).” This instruction makes the program jump to the label “‘stay’ that is
located in line 100.

The instruction located in line 100 ““if (not data) then goto pl (stay)” keeps
the program reading the logic status of the input presented in T4. As Fig-
ure 4.3 shows, the output DATA AVAILABLE coming from the encoder
(74C922) is routed to the testable input T4. The instruction in line 100 will be
waiting for the data input (T4) to go high; consequently, if the input T4 is
high, the program jumps to the next instruction (line 101). Instruction ‘““goto
tm(001111#b);” located in line 101, makes the program jump to the address
indicated by the four testable inputs TO, T1, T2, and T3; it means that the hex
code presented in these inputs will make the program jump to the addresses
within the range of zero to fifteen. The instructions located within this range
are used to indicate to the program the location of the set of allophones con-
taining the word that must be vocalized. When the message corresponding to
the pressed key has been issued, the program jumps directly to line 100 in
order to continue monitoring the status of the data input (DA).

To make sure the program of Table 4.4 is performing the instructions cor-
rectly, we will write a short file called “SIMKBD.” This file (see Table 4.5)
contains only seven vectors that must be executed by the program SIM14X,
version 5.0 from Advanced Micro Devices. The program SIM14X executes
the simulation by reading the JEDEC file that corresponds to the program pre-
sented in Table 4.4. !

Table 4.6 is the output file generated by the program SIM14X. This file
presents all the logical status of the inputs, outputs, and registers. In this man-
ner, you can check the outputs related to the inputs that you have already pro-
grammed. If a mismatch occurs, it will be indicated by the symbol ““?.” In
this case, this file shows correctly all the outputs, which means that our pro-
gram is working perfectly. You can also augment the size of the test file pre-
sented in Table 4.5 in order to test different points or steps of the program.

With the project presented here, we will be able to add a key pad to the
designs that require a digital input from the user. We will use the program
presented here as a simple subroutine whenever we need it. Remember that
this routine can be added to programs working with the FPC Am29CPL152 or
Am29CPL154.

154 4, Digital Circuits

TABLE 4.5
Test Vector File to Simulate the Operation of the
Software Program Presented in Table 4.5

HEADER (CPL142) "Simulating the keyboard routine"

PIN clk = 27

/reset = 19

t5 = 20 t4 = 21

t3 = 22 t2 = 23

t1 = 24 to = 25

cc = 26 pl5 = 18
pl4 = 17 pl3 = 16
pl2 = 15 pl1l = 13

pl0 = 12 p9 = 11
p8 = 10 pP7 =9
p6 = 8 p5 =17
p4d = 6 p3 =5
p2 = 4 pl = 3
po = 2;

VECTORS

IN clk /reset t5 t4 t3 t2 t1 toO;
ouT p7 p6 p5 p4 p3 p2 pl po;

BEGIN
" c / Sdn
" 1 r ban
" o e yt
" ¢ s an
" k e tttttt pppppppp"

" 543210 76543210"

" TEST INSTR FOR FAIL CONDITION "

" "

XXXXXX XXXXXXXX; '"reset pulse"

100000 XXXXXXXX; "low to high reset"

100000 LLLLLLLL; "goto pl(stay), data=0"

110111 LLLLLLLL; "if (not data) then goto pl(stay)"
100111 LLLLLLLL; "if (not data) then goto pl(stay)"
100000 LLLLLLLL; "PC=101d -goto tm"

100000 LLLLLLLL; "PC=07d -goto pl (seven)"

100000 LLHHLHHH; "PC=38h -allophone= ss"

N oUW N RO
0O 0000000
i =)

END.

4.2 A Talking Hexadecimal Keyboard Encoder 155

TABLE 4.6
Output File Generated by the Simulator SIM14X

V0000 INPUT

| OUTPUT (Expansion disabled)
/ |

Name: 1 s t t t t t t |
PPPPPPPP

k e 5 4 3 2 1 0 |
76543210
R/NR: R R R R R R R \

Pin#: 27 19 20 21 22 23 24 25 1
98765432

Vect: C 0 X X X X X X H
XXXXXXXX

Comp: I
XXXXXXXX

CREG = **** PC = **x* EQ = *

STK [0] ***x* [1] **x%
Pipeline : * ok ok
Mnemonics: * koK

Current PL contents are undefined

OUTPUT (Expansion disabled)

Pin c e

Name: 1 s t t t t t t
PPPPPDPPP

k e 5 4 3 2 1 0)
76543210
R/NR: R R R R R R R |

Pin#: 27 19 20 21 22 23 24 25 |
98765432

Vect: C 1.1 0 0 0 0 O |
XXXXXXXX

Comp:

XXXXXXXX

CREG = **** PC = **%*x EQ = *
STK [0] **x*x [1] **xx%

156 4. Digital Circuits

Pipeline : * ko
Mnemonics: * Kk

Current PL contents are undefined

V0002 INPUT OUTPUT (Expansion disabled)

Pin c e

Name: 1 s t t t t t t
PPPPPPDPP
k e 5 4 3 2 1 0 |
76543210
R/NR: R R R R R R R ;

Pin#: 27 19 20 21 22 23 24 25)
98765432

Vect: ¢ 1.1 0 0 0 O O 1
LLLLLLLTL

Comp: i
LLLLLLLTL

CREG = *xxx_ pPC = TF#H, EQ = 0

STK [O] ***x* [1] *xx*x
Pipeline : OE OPCODE POL TEST DATA OUTPUTS

1 19#H 0 05#H 64#H 0000000000000000#B
(0000#H)

Mnemonics: GOTOPL, IF (cond) THEN GOTO PL (data)
Condition PASS, TEST t5 = 1, VALUE = 1
Current PL contents loaded from ROM address 127 (07F#H)

V0003 INPUT | OUTPUT (Expansion disabled)

Pin c e |

Name: 1 s t t t t t t
PpPpPPPPDPP
k e 5 4 3 2 1 0
76543210
R/NR: R R R R R R R |

Pin#: 27 19 20 21 22 23 24 25 i
98 765432

Vect: C 1. 1 1 0 1 1 1 j
LLLLLLLTL

4.2 A Talking Hexadecimal Keyboard Encoder 157

Comp:
LLLLLLLL

CREG = **** = PC = 64#H, EQ = O

STK [0] **%%x [1] *%x%
Pipeline : OE OPCODE POL TEST DATA OUTPUTS

1 19#H 1 04#H 64#H 0000000000000000#B
(0000#H)

Mnemonics: GOTOPL, IF (cond) THEN GOTO PL(data)
Condition PASS, TEST t4 = 0, VALUE = 0
Current PL contents loaded from ROM address 100 (064#H)

OUTPUT (Expansion disabled)

Pin c e

Name: 1 s t t t t t t
PPPPPDPPPDP
k e 5 4 3 2 1 0 176543210
R/NR: R R R R R R R \
Pin#: 27 19 20 21 22 23 24 25
98765432
Vect: C 1. 1 0 0 1 1 1
LLLLLLLL
Comp:
LLLLLLLL

CREG = **** PC = 64#H, EQ = 0

STK [O] ***% [1] *%*x
Pipeline : OE OPCODE POL TEST DATA OUTPUTS

1 19#H 1 04#H 64#H 0000000000000000#B
(0000#H)

Mnemonics: GOTOPL, IF (cond) THEN GOTO PL (data)
Condition FAIL, TEST t4 = 0, VALUE = 1
Current PL contents loaded from ROM address 100 (064#H)

V0005 INPUT l OUTPUT (Expansion disabled)

Name: 1 s t t t t t t
PPPPPPPD

k e 5 4 3 2 1 0
76543210

R/NR: R R R R R R R

158 4, Digital Circuits

Pin#: 27 19 20 21 22 23 24 25 |

98765432
Vect: C 1.1 0 0 0 0 O i

LLLLLLLL
Comp: i LLLLLLLL

CREG = **** PC = 65#H, EQ = 0
STK [0] **** [1] **%%*

Pipeline : OE OPCODE POL TEST DATA OUTPUTS

1 1F#H 0 05#H OF#H 0000000000000000#B
(0000#H)
Mnemonics: GOTOTM, IF (cond) THEN GOTO TM(data)
Condition PASS, TEST t5 = 1, VALUE = 1, T[6:0] = 27#H, T*M = 07#H
Current PL contents loaded from ROM address 101 (065#H)

OUTPUT (Expansion disabled)

Name: 1 s t t t t t t 1
PPPPPPDPP

k e 5 4 3 2 1 0 i
76543210

R/NR: R R R R R R R |

Pin#: 27 19 20 21 22 23 24 25 |
98765432
Vect: C 1. 1. 0 0 0 0 O |
LLLLLLLL
Comp: '
LLLLLLLL

CREG = ***x PC = 07#H, EQ =0

STK [0] ***% [1] ***%*
Pipeline : OE OPCODE POL TEST DATA OUTPUTS

1 19#H 0 05#H 38#H 0000000000000000#B
(0000#H)

Mnemonics: GOTOPL, IF (cond) THEN GOTO PL(data)
Condition PASS, TEST t5 = 1, VALUE =1
Current PL contents loaded from ROM address 7 (007#H)

OUTPUT (Expansion disabled)

4.3 Designing a Talking Semaphore 159

Name: 1 s t t

PPPPPDPPDP

k e 5 4 3 2 1 0

76543210
R/NR: R R R R R R R)
Pin#: 27 19 20 21 22 23 24 25 ;
98765432
Vect: € 1.1 0 0 0 0 O |
LLHHLHHH
Comp: i
LLHHLHHH

CREG = **** PC = 38#H, EQ = 0

STK [O] ***% [1] **%x*
Pipeline : OE OPCODE POL TEST DATA OUTPUTS

1 1C#H 0 05#H 66#H 0000000000110111#B
(0037#H)

Mnemonics: CALPL, IF (cond) THEN CALL PL (data)
Condition PASS, TEST t5 = 1, VALUE = 1
Current PL contents loaded from ROM address 56 (038#H)

Simulation completed 0 simulation error (s) found

4.3 Designing a Talking Semaphore

A traffic controller can be enhanced by integrating a vocal warning system
which can protect pedestrians from accidents caused by an elapsed time.
Some pedestrians perceive the WALK signal but they do not notice when the
WALK signal starts flashing so that they are not in the middle of the street
when the oncoming cars have the green light.

The design presented here will be applied to a simple traffic controller
where two one-way streets are considered for illustrative purposes. Figure 4.4
shows the traffic intersection with two one-way streets: one in direction 1 and
the other in direction 2. Each direction has a set of five light signals consisting
of green, yellow, red, pass, and don’t pass. The lights assigned for direction 1
are named GREEN1, YELLOW1, REDI, PASS1, and DON’T PASSI. In the
same manner, the set of lights assigned for direction 2 are named GREEN?2,
YELLOW2, RED2, PASS2, and DON’T PASS2. The signals DON’T PASS1
and DON’T PASS?2 are generated by using two external inverters, as shown in
Figure 4.5. Two sensor switches, SW1 and SW2, will be used for detecting a
request made by a pedestrian who desires to cross the street. The selection of
the street that the pedestrian wants to cross is made by pressing only the re-
spective switch SW1 or SW2. Also, each direction has a sensor that provides
an active high signal (SEN1, SEN2) that indicates the presence of a vehicle.

4.3 Designing a Talking Semaphore 161

The traffic controller signals will be generated by the FPC Am29CPL152.
Thanks to the 16 output lines of the FPC, it will also be controlling the speech
processor that will give the messages to the pedestrians. In this case, we will
give names to the streets so that the vocal message will be able to indicate the
street that the pedestrian has to cross. For this purpose, the street with direc-
tion 1 will be named “MAIN Street,”” and the street with direction 2 will be
named “FIRST Street.”

The truth table indicating all the functions of this traffic controller, includ-
ing the type of vocal warning messages, is shown in Table 4.7. In normal
operation the traffic controller will give equal periods of green signals. At the
end of each period of green signal, the controller will ask for the status of the
input switches SW1 and SW2, and the vehicle sensors SEN1 and SEN2 in
order to decide the length of time for the next cycle.

The operation of the software program shown in Table 4.8 is as follows.
When the circuit is first turned on, a software reset pulse is applied. Then the
program performs the next instruction ““go to pl(dirl),”” which makes the pro-
gram to go to the address labeled as “dirl” that is located in line 16. Lines 16
to 22 contain a routine that activates the output lines named “‘grnl” and
“red2.” These names, separated by a comma from the instruction, generate a

TABLE 4.7
Table for Traffic Flow Direction

SW1 SW2 SEN1 SEN2 | Output

i Allow traffic in direction 1 (MAIN St)

i Allow traffic in direction 2 (FIRST St)

i Allow traffic in direction 1 (MAIN St)

i Cycle with equal durations in both directions
i Allow traffic in direction 2 (FIRST St)

! Allow traffic in direction 2 (FIRST St)

\ Allow traffic in direction 1 (MAIN St)

i Cycle with equal directions in both directions

Allow traffic in direction 1 (MAIN St)

Cycle with equal durations in both directions

Allow traffic in direction 1 (MAIN St)

Cycle with equal durations in both directions

! Cycle with equal durations in both directions

Cycle with equal durations in both directions

Cycle with equal durations in both directions

I T T T T T I T ©° © o o oo oo
I T = T © ©o ¢ 0 & & - - ©o o o
I T ¢ 0 & & o0 - & &0 T o
f= "R o« o o« o o = o o« oH o« >R o= E o« o

i Cycle with equal durations in both directions

162 4, Digital Circuits

TABLE 4.8
Software Program for the FPC Am29CPL152 to Make the Traffic Controller

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
swl = toO
sw2 = t1
senl = t2
sen2 = t3
sby = t5

equal = eq
"allophones and pauses are given name assignments"

pa2 = 01#h " eemmme e "

pa3 = 02#h " t6->11 28{- Vce "
pa4 = 03#h " pO<-i2 27/<-clk "
pa5 = 04#h " pl<-| 26i<-cc "
oy = 05#h " p2<-| 25/<-t0 "
ay = 06#h " p3<-1| Am29CPL 24;<-t1 "
eh = 07#h " p4<-1i 152 231<-t2 "
kk3 = 08#h " p5<-1 22)<-t3 "
pp = 09#h " p6<-18 21i<-t4 "
jh = 0A#h " p7<-1i9 20i<-t5 "
nnl = OB#h " p8<-110 19.<-/reset"
ih = 0C#h " p9<-i11 18!->pl5 "
tt2 = 0D#h " plo<-i12 17:->pl4 "
rrl = OE#h " pll<-,13 16:->pl3 "
ax = OF#h " Gnd- 114 15i->p12 "
mm = 10#h " e "
ttl = 11#h

dhl = 12#h iy = 13#h ey = 14+#h dd1 = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = 1A#h hh1l = 1B#h
bb1l = 1C#h th = 1D#h uh = 1E#h uw2 = 1F#h aw = 20#h
dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24+#h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h xr = 2F#h
wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34+#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h

grnl = 40#h yell = 80#h redl = 100#h

grn2 = 200+#h yel2 = 400#h red2 = 800#h

passl = 1000#h pass2 = 2000#h latch= 4000#h rst = 8000+#h;

DEFAULT-OUTPUT = 0000+#h;
TEST-CONDITION = SBY; "/STANDBY is the default test condition"

BEGIN
"o" ,goto pl(dirl);
" ,goto pl(dir2)

"an ,goto pl(dirl);

4.3 Designing a Talking Semaphore

g
g
g
g
W
g
g
wign
nipn
nign
wign
wian
nisn

,goto
,goto
,goto
, goto
, goto
,goto
, goto
,goto
,goto
,goto
,goto
,goto
,goto

pl (both) ;
pl (dir2);
pl (dir2);
pl(dirl);
pl (both);
pl(dirl);
pl (both);
pl(dirl);
pl (both);
pl (both);
pl (both);
pl (both);
pl (both);

163

"16"dirl

wign
1ge
nagn
wapn
wogn

:grnl+red2.
"17"rick:

grnl+red2+pas,
grnl+red2,
grnl+red2,
grnl+red2,
grnl+red2,
grnl+red2,

load pl(100); "20 seconds"
call pl(delay);

while (creg <> 0) loop to pl(rick);
load tm(OF#h);

cmp tm(OF#h) to pl (00#h);

if (equal) then goto pl (diril)

goto tm(OF#h);

"23"dirz2:
"24"styl:

nogn
nogn
non

"28"styy:

nogn
ngon
ngqn
ngon
n33n
ng4qn
nggn
"3e"

"37"sty2:

nggn
nggn

"40"sty3:

ngqn
ngon

yell+red2+rst,
yell+red2+pa5,
yell+red2,
grn2+redl+pass2,
grn2+redl+pass2,
grn2+redl+pass2+pas,
grn2+redl+pass2,
grn2+redl+pass2+ss,
grn2+redl+pass2+ss,
grn2+redl+pass2+tt2,
grn2+redl+pass2+ax,
grn2+redl+pass2+pp,
grn2+redl+pass2+pa4,
grn2+redl+pass2,
grn2+redl+pass2+pas,
grn2+redl+pass2,
yel2+redl,
yel2+redil+pas,
yel2+redl,
yel2+redil,

load pl (20); "4 seconds"
call pl(delayl);
while (creg <> 0)

call pl (msgl)

loop to pl (styl);

load pl(100); "20 seconds"

call pl(delay2);

while (creg <> 0) loop to pl(styy);
call pl(readl); "STOP"

call pl(readl);

call pl(readl);

call pl (readl)

call pl (readl);

call pl(readl);

load pl(25); "5 seconds"

call pl (delay2);

while (creg <> 0) loop to pl(sty2);
load pl (20); "4 seconds of Yellow2"
call pl (delay3);

while (creg <> 0) loop to pl (sty3);

goto pl(dirl); "goto verify sensors"

"43"both:
"44"sty4:

nggn
nggn
g

"48"sty5:

nggn
a5on
wgn
nggn
nggn

yell+red2+rst,
yell+red2+pa5s,
yell+red2,
grn2+redl+pass2,
grn2+redl+pass2,
grn2+redl+pass2+pas,
grn2+redl+pass2,
grn2+redl+ss,
grn2+redl+ss,
grn2+red1+tt2,
grn2+redl+ax,

load pl(20); "4 seconds of Yellowl"
call pl(delayl);
while (creg <> 0)

call pl (msgl)

loop to pl(sty4);

load pl(125); "25 seconds of Green2"
call pl(delay2);
while (creg <> 0) loop to pl(sty5);

call pl(delay5); "STOP"
call pl(delay5);
call pl(delays);

call pl(delays);

164

"54" grn2+redl+pp,

"55" grn2+redl+pad,

"56" yel2+redl,

"57"sty6: yel2+redl+pa5,

"58" yel2+redl,

"59" grnl+red2+passl

"60" grnl+red2+passi,
"61"sty7: grnl+red2+passl+pas,
"e2" grnl+red2+passi

"63" grnl+red2,

"64"delay: grnl+red2,
"65"styz: grnl+red2,
"6e" grnl+red2,

4. Digital Circuits

call pl(delay5);
call pl(delay5);

load pl (20); "4 seconds"

call pl(delay3);

while (creg <> 0) loop to pl(sty6);
call pl (msg2)

load pl(125); "25 seconds"

call pl(delay4),;
while (creg <> 0)
goto tm(OF#h);

loop to pl(sty7)

continue;
if (not sby) then goto pl(styz)

ret;

"subroutine for reading the standby status of the speech processor"

"67"readl: grn2+redl+pass2,
"68"paty: grn2+redl+pass2,

69" grn2+redl+pass2,

continue;
if (not sby)
ret;

then goto pl (paty);

"subroutine for reading the standby status of the speech processor"

"70"read2: grnl+red2+passl1,
"71"styb: grnl+red2+passl,
"2 grnl+red2+passi

"73"delayl: yell+red2,
"74"styc: yell+red2,
"5 yell+red2,

"76"delay2: grn2+redl+pass2,
"77"styd: grn2+redl+pass2,

"78" grn2+redl+pass2,

"79"delay3: yel2+redl,
"80"stye:yel2+redl,
"8l yel2+redl,

"82"delay4: grnl+red2+passl,
"83"styf: grnl+red2+passl,
"84 grnl+red2+passl,

"85"delay5: grn2+redl+ss,
"86"styg :grn2+redl+ss,
"8 grn2+redl+ss,

continue;
if (not sby) then goto pl(styb);

ret;

continue;
if (not sby)
ret;

then goto pl (styd)

continue;
if (not sby)
ret;

then goto pl (styd);

continue;
if (not sby)
ret;

then goto pl(stye);

continue;
if (not sby)
ret;

then goto pl (styf);

continue;
if (not sby)
ret;

then goto pl (styg);

"k % x%x % SUBROUTINE FOR THE MESSAGE: PASS THE MAIN STREET"

"88"msgl: grn2+redl+pass2+pp,

"go" grn2+redl+pass2+ax,
"go" grn2+redl+pass2+ss,
"g1" grn2+redl+pass2+ss,
g2 grn2+redl+pass2+pad,
"g3" grn2+redl+pass2+dhi,

call
call
call
call
call
call

pl (readl);
pl (readl);
pl(readl);
pl (readl)
pl (readl);
pl (readl)

4.3 Designing a Talking Semaphore 165

"gq" grn2+redl+pass2+ax, call pl(readl);
"95" grn2+redl+pass2+pad4, call pl(readl);
"96" grn2+redl+pass2+mm, call pl(readl);
"9 grn2+redl+pass2+ey, call pl(readl);
"g8" grn2+redl+pass2+nnl, call pl(readl);
"g9" grn2+redl+pass2+pad, call pl(readl);
"100" grn2+redl+pass2+ss, call pl(readl);
"101" grn2+redl+pass2+ttl, call pl(readl);
"1o02" grn2+redl+pass2+rrl, call pl(readl);
"103" grn2+redl+pass2+ih, call pl(readl);
"104" grn2+redl+pass2+tt2, call pl(readl);
"105" grn2+redl+pass2+pad, call pl(readl);
"106" grn2+redl+pass2, ret;

"*******x SUBROUTINE FOR THE MESSAGE: PASS THE FIRST STREET"
"107"msg2: grnl+red2+passl+pp, call pl(read2);

"108" grnl+red2+passl+ax, call pl(read2);
"109" grnl+red2+passl+ss, call pl(read2);
"110" grnl+red2+passl+ss, call pl(read2);
"11ln grnl+red2+passl+pa4, call pl(read2);
vi12n grnl+red2+passl+dhl, call pl(read2);
"113" grnl+red2+passl+ax, call pl(read2);
"110" grnl+red2+passl+pad4, call pl(read2);
"111n grnl+red2+pass1+ff, call pl (read2);
"112" grnl+red2+passl+er2, call pl(read2);
"113" grnl+red2+passl+ss, call pl(read2);
"114" grnl+red2+passl+tt2, call pl(read2);
"115" grnl+red2+passl+pad, call pl(read2);
"116e" grnl+red2+passl+ss, call pl(read2);
"11n grnl+red2+passi+ttl, call pl(read2);
"118" grnl+red2+passl+rrl, call pl(read2);
"119" grnl+red2+passil+ih, call pl(read2);
"120" grnl+red2+pass1+tt2, call pl(read2);
"121" grnl+red2+passl+pad4, call pl(read2);
ni22" grnl+red2+passl, ret;

.org 127#d
ni22" ,goto pl(dir1);
END.

logic high to the outputs that activate the signals GREEN1 and RED2. The
instruction “‘load pl(100)” in line 16 loads the counter register (CREG) with
the decimal value ““100.”” The next instruction “‘call pl(delay)” then proceeds
to call subroutine “‘delay” in order to load the speech processor with pause
paS. Pause pa5 is used to perform 200 ms silence pauses. Also, subroutine
“delay” waits for the speech processor until it finishes executing the 200 ms
pause. When the 200 ms pause ends, the program performs a return to line 18
where the instruction “‘while (creg <> 0) loop to pl(styl)” is executed. The

166 4. Digital Circuits

instruction in line 18 decrements the counter (CREG) and tests its contents
against zero. If the contents differ from zero, the program loops to the instruc-
tion labeled “‘rick,” and the process of calling the subroutine “delay” and
decrementing the counter CREG is repeated until the CREG is equal to zero.
Consequently, the three instructions in lines 16 to 18 cause a 20 s delay be-
cause the loop of 200 ms is executed 100 times. Notice that by using the long-
est pause contained in the speech processor, a long timing interval can be gen-
erated. But consider that the highest possible value that the counter CREG can
handle is 127.

Lines 19 to 22 are used to detect if any of the four input sensors has been
activated. These sensors are activated by comparing the value of the four input
lines TO—T3 against zero. If any of these lines differs from zero, the program
jumps to one of the instructions located in lines O to 15. It is the value of the
four inputs TO to T3 that indicates the exact location of the jump. In this man-
ner, lines O to 15 contain the label where the program has to jump in order to
execute the timing routines that will control the output signals. In fact, lines 0
to 16 are used as a selector for the different types of inputs presented when the
sensors are activated. According to Table 4.6, there are two timing routines
that the program must execute: “‘dir2”” and “‘both.”

For example, if sensor2 is activated, the program will detect its activation
when the instructions 19 to 22 are executed. This will cause a jump to line 1,
which in turn makes the program jump to the routine named ‘“‘dir2.” Now,
routine ‘‘dir2” will start turning on the lamps named YELLOW1 and RED2
and also will cause a reset pulse to the four external flip-flops. The timing
interval for the lamps YELLOW1 and RED2 will be 4 s. The next step is to
perform the instruction in line 26, which calls subroutine “msg1” in order to
issue the first vocal message to the pedestrian(s). The first message issued is
“Pass Main Street.”” This message is used to indicate to the pedestrian(s) that
now he(they) is(are) allowed to pass Main Street. Also, output signal “PASS2”
will be activated for 20 s. Thus, the pedestrian(s) will have two modes of an-
nouncement: visual and audible. Five seconds before the PASS2 signal goes
off, the speech processor will announce the following message: “STOP.”
After the message “STOP” has been issued, signal GREEN2 will remain acti-
vated five more seconds to give the pedestrian(s) time to reach the other side
of Main Street. There is still another interval of security given by lamp
YELLOW?2, because this lamp will be activated for 4 s. The last instruction
of routine *“dir2”” makes the program jump to routine ‘‘dir1”’ which is the nor-
mal state of this traffic controller; that is, lamps GREENI and RED2 are
turned on.

Routine ““both” makes essentially the same process of routine “dir2.” The
only difference is that it allows traffic to flow in both directions. When routine
“both” ends, the program will jump to the routine indicated by the four test-
able inputs TO-T3.

4.4 How to Design a Talking Clock 167

As can be seen, the timing intervals can be changed by augmenting or re-
peating the set of instructions that perform the respective delay. In the same
manner, if more outputs are needed for controlling a larger number of lamps,
a second FPC can be added in parallel, which will share the same clock input
as the first FPC.

4.4 How to Design a Talking Clock

A talking clock can offer different applications, depending upon the area of
installation. For example, in a waiting room, it can be programmed to an-
nounce the time every 30 minutes. In a factory, a talking clock can be used
to report entrance and exit times of the workers. Talking clocks are useful
for people with visual handicaps. The talking clock presented here is pro-
grammed to show the time in hours and minutes in an LED display and to tell
the time every hour. To report the time every hour, Table 4.9 presents the
complete set of required messages. Notice that all the hours within the range
of 12:00 pm to 12:00 aM are reported.

The digital clock will be built around the chip MM5387 manufactured by
National Semiconductor. This chip is capable of driving four LED digits: M1,
MI10, H1, and H10. The seven-segment outputs are compatible with common-
anode LED displays. Figure 4.6 shows the complete circuit for the talking

TABLE 4.9

Messages for Programming the Talking Clock

Hour Message

12: 00 It is twelve o'clock AM/PM
1:00 It is one o'clock AM/PM
2:00 It is two o'clock AM/PM
3:00 It is three o'clock AM/PM
4:00 It is four o'clock AM/PM
5:00 It is five o'clock AM/PM
6: 00 It is six o'clock AM/PM
7:00 It is seven o'clock AM/PM
8: 00 It is eight o'clock AM/PM
9:00 It is nine o'clock AM/PM
10: 00 It is ten o'clock AM/PM
11:00 It is eleven o'clock AM/PM
12: 00 It is twelve o'clock AM/PM

4.4 How to Design a Talking Clock 169

74C915 (A, B, C, and D) are converted from a 10 V logic level toa 5 V logic
level with four voltage followers contained in the IC CD4050. The testable
inputs TO to T3 receive the BCD data that correspond to the hour units HI.
The FPC also needs to know three more factors: (1) the digit that represents
the tens of hours (H10), (2) the bit that indicates if the hour is AM or PM, and
(3) the bit that states when the hour has just changed in order to start the vocal
message announcing a different hour. To send even more information to the
FPC about the three last factors, the testable input T4 is used for detecting line
H10. When line H10 goes to a logic one, the tens of hour digit is activated.
Also, the testable input T5 receives the bit AM. If the bit AM is in a logic one,
the hour reading is within the range of 12:00 am to 11:59 aM. Notice that T4
and TS5 receive their input signals in a 5 V logic, thanks to the two voltage
followers contained in the IC CD4050. The FPC also needs to know when the
hour reading contains exactly zero minutes. For example, when the hour
changes from 7:59 to 8:00, the FPC will detect this change by reading its test-
able input T7; therefore, we need a circuit that detects when the digits repre-
senting the minutes (M10 and M1) change from the number 59 to 00.

Figure 4.7 shows the circuit that detects when digits M10 and M1 change
from the number 59 to 00. To detect when digit M1 changes from nine to zero,
we will need a seven-input AND gate performing the product

Ml=asbsxcxdxex*fx*/g

e 9

Notice that input “g” is inverted because the digital number “0” is formed

i
el 20

- : 1
a ™
[\ . 2
b P 15 To input 17
e T of FRC
Mo L &4
d 1 e
e o 16C1
f = =
4 - -
I"eZ bl 8

Figure 4.7 Circuit for detecting when digits M10 and M1 are zero.

170 4. Digital Circuits

with all the segments activated, except ““g.” On the other hand, to detect
when digit M10 changes from 5 to zero, a two-input AND gate is needed. The
following truth table (Table 4.10) shows the six logical states of digit MI10.

As Table 4.10 shows, we are using only six logical states for digit M10.
Thus, to detect when digit M 10 is zero, we only require the following equation:

M10 = e2 * f2

The product e * f is sufficient to detect the zero state in digit M10 because no
other logical state presents the same combination. Now, we need to join the
two equations to detect when both digits M10 and M1 are zero. In this manner,
we get the following equation that detects when M10 and M1 are in state 00.

ZERO = asbxcsd*xe*f*/gxe2*f2

To perform the above logic equation we need a PAL that accepts a minimum
of nine inputs and nine product terms. The PAL16CI is suitable to perform the
equation ZERO. Figure 4.7 shows the PAL16C1 which must be programmed
with the preceding equation ZERO.

The software program required to perform the complete task of reading the
hour and giving the vocalized messages is shown in Table 4.11. The main rou-
tine is more or less similar to the one presented previously. That is, the pro-
gram first needs to detect if the time presented is exactly a determined hour
with zero minutes. The output bit of the PAL16CI1 is the one that indicates to
the FPC if digits M10 and M1 are in the numbers 00. In this way, the FPC
must stay in a loop waiting for the input T7 to go to a logic high. When the
input T7 is high, the program will have to determine the type of message to be
announced by reading the time presented in the inputs TO to T5. The inputs TO
to TS5 will indicate to the program the location where the required message has
been stored.

TABLE 4.10
Truth Table for Digit M10

Number | a2 b2 c2 d2 e2 f2 g2

0 711 1 1 1 1 0
1 i0 1 1 0 0 0 O
2 i1 1 0 1 1 0 1
3 i1 1 1 1 0 0 1
4 {0 1 1 0 0 1 1
5 i1 0 1 1 0 1 1

4.4 How to Design a Talking Clock

17

TABLE 4.11
Software Program for the FPC Am29CPL154 to Perform
the Control of the Talking Clock

DEVICE (CPL154)

DEFAULT = 1;

DEFINE "test inputs"
hi1o = t4
am = t5
sby = t6
mints = t7
equal = eq

"allophones and pauses are given name assignments"
pa2 = 01#h " e "
pa3 = 02#h " t6->11 281- Vce "
pad = 03#h " p0<-:2 27i<-clk "
pa5 = 04#h " pl<-:3 26:i<-t7 "
oy = 05#h " p2<-.4 25:,<-t0 "
ay = 06#h " p3<-) Am29CPL 24i<-t1 "
eh = 07#h " p4<-1 154 23:<-t2 "
kk3 = 08#h " p5<-17 221<-t3 "
pp = 09#h " p6<-:8 21i<-t4 "
jh = 0A#h " p7<-:9 20i<-t5 "
nnl = OB#h " p8<-110 19i<-/reset"
ih = 0C#h " p9<-i11 18!->pl5 "
tt2 = 0D#h " pl0<-,12 171->pl4 "
rrl = OE#h " pll<-113 16:->p13 "
ax = OF#h " Gnd-114 151->p12 "
mm = 10#h R ittt e e "
ttl = 11#h
dhl = 12#h iy = 13#¢h ey = 14#h ddl = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = 1A#h hh1l = 1B#h
bbl = 1C#h th = 1D#h uh = 1E#h uw2 = 1F#h aw = 20#h
dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24#h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h xr = 2F#h
wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A+#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h;

DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = SBY; "/STANDBY is the default test condition"

BEGI
wyn
won
ngn
ngn
ngn
ngn
e

N

,goto pl(one);
,goto pl(two);
,goto pl (three);
,goto pl(four);
,goto pl(five);
,goto pl(six);
,goto pl (seven);

file:///m29CPL

172

ngn
ngn

n1o"
nyq
nygn
nygn
"4
nygn
"1g"
nwyqn
nygn
nign
nogn
nopn
noon
nogn
nogn
nogn
nogn
nogn
nogn
nogn
n3o"
gy
ngon
nggn
ngqn
nggn
ngen
ngn
nggn
nggn
nqo"
g
nqon
nqgn
ngqn
g5
nqg"
g
nqgn
nqgn
50"
ngqn
ngon
nggn
ngqn
ng5n
56"
ngn
n58"
nggn

,goto
,goto
,goto
, goto
, goto

one: ww,
ax,
ax,
nnil,
paz,

two: tt2,
uwz,
paz,

three: th,
rril,
1y,
pa2,

four: ff,
ff,
or,
pa2,

five: ff,
ff,
ay,
vv,
paz,

six: ss,
ss,
ih,
ih,
pa3,
kk2,
ss,
paz2,

seven: ss,
ss,
eh,
eh,
v,
eh,
nnl,
paz2,

eight: ey,
pa3,
ttz,

)

call
call
call
call
call
goto
call
call
call
goto
call
call
call
call
goto
call
call
call
call
goto
call
call
call
call
call
goto
call
call
call
call
call
call
call
call
goto
call
call
call
call
call
call
call
call
goto
call
call
call

pl (eight)
pl (nine);
pl(ten);
pl(eleven);
pl (twelve);
pl(read);
pl (read);
pl(read);
pl (read);
pl (read);
pl (msg2);
pl (read);
pl (read);
pl (read);
pl (msg2);
pl (read);
pl (read);
pl (read);
pl (read);
pl (msg2);
pl (read) ;
pl (read);
pl (read);
pl (read);
pl (msg2);
pl (read);
pl(read);
pl (read);
pl (read);
pl (read);
pl (msg2);
pl (read);
pl (read);
pl (read);
pl (read);
pl(read);
pl (read);
pl (read);
pl (read);
pl (msg2);
pl(read);
pl (read);
pl (read);
pl (read);
pl (read);
pl (read);
pl (read) ;
pl (read);
pl (msg2);
pl (read);
pl (read);
pl (read);

4, Digital Circuits

"ONE"

"TWO"

"THREE"

"FOUR"

"FIVE"

"SIX"

"SEVEN"

"EIGHT"

4.4 How to Design a Talking Clock

"6o" pa2, «call
"e1" ,goto
"62"nine: nn2, call
"63" aa, call
64" ay, call
"65" nnl, call
"66" pa2, call
"eT" ,goto
"68"ten: tt2, call
"69" eh, call
"7o" eh, call
"1t nnl, call
nan pa5, call
n73n ,goto
"74"eleven: ih, call
"T5" 11, call
"7e" eh, call
R ir il eh, call
"8 vv, call
"Ton eh, call
"8o" nnl, call
"81" pa4, call
"gan , goto
"83"twelve: tt2,call
"g84" wh, call
"85" eh, call
"86" eh, call
ngT" 11, goto
"88" vv, call
"89" pa4, call
"go" ,goto
"91"msg2: ow, call
"gan pa2, «call
"93" kkl, call
"g4" 11, call
"g5" aa, call
"ge" aa, call
"g7" pa3, call
"g8" kk2, call
"gg" pa5, call
"100" ey, if |
"101" eh, call
"102" eh, call
"103" mm, call
"104" pa5, call
"105" ,goto
"106"pm: pp, call
"107" iy, call
"108" pa2, call
"109" eh, call
"110" eh, call
"111" mm, call

173

pl (read);
pl (msg2);
pl (read);
pl (read);

"NINE"

pl (read);
pl (read);
pl (read);
pl (msg2);
pl(read);
pl (read);
pl (read);
pl (read);
pl (read);
pl (msg2);
pl(read);
pl(read);
pl (read);
pl (read);
pl (read);

"TEN"

"ELEVEN"

pl (read);
pl (read);
pl (read);
pl (msg2);
pl (read);
pl (read);
pl(read);
pl (read);
pl(stay);
pl (read);
pl(read);
pl (msg2);
pl (read);

"TWELVE"

"O' CLOCK"
pl (read);
pl (read);
pl (read)
pl(read);
pl (read);
pl (read);
pl (read);
pl (read);
not am) then goto pl (pm);
pl (read); "am"
pl (read);
pl (read);
pl (read);
pl (delay) ;
pl (read);
pl (read);
pl (read);
pl(read);
pl (read);
pl(read);

"pm"

174 4, Digital Circuits

"ii1zn pas, call pl(read);

"113"delay: , load pl(255); "70 seconds delay to avoid reading.."
"114" pa5, call pl(read); " the mints input again"

"115" ,while (creg <> 0) loop to pl(delay);

"116" ,load pl(50);

"117"del2: pa5, call pl(read)

"118" ,while (creg <> 0) loop to pl(del2);

"Hkkkkxkxkxk wait for data input to go high ***kkxkxxn

"119"stay: ,if (not mints) then goto pl(stay); "Wait for M10=M1=00"
"120"msgl: ih, call pl (read); " IT IS...."

"121" ttl, call pl(re d);

"22" pa2, call pl(read);

"123" ih, call pl(read)'

"124" ss, call pl(read);

"125" ss, call pl(read);

"126" pa5, call pl(read);

"127" ,goto tm(0011111#b); "Go to address specified by mask"

"subroutine for reading the standby status of the speech processor"
"128"read: ,continue;

"129"styl: ,if (not sby) then goto pl(styl); "reading SBY"
"130" ,ret;
.org 255#d
"131" ,goto pl (stay);
END.

4.5 Designing a Speaking Coin Detector

A coin detector is a widely used commercial device for most vending ma-
chines now in use in the market. Vending machines have mechanisms that are
usually difficult to operate because the process for obtaining a product is dif-
ferent in each type of device. Moreover, most vending machines do not have a
display that indicates the sum of money that has been deposited. With these
drawbacks in mind, we will design a general-purpose coin detector that gives
spoken instructions to users. This coin detector can be installed in conven-
tional machines to enhance their versatility. Even a child who cannot read
printed instructions will easily understand the spoken directions for obtaining
the chosen product.

Figure 4.8 presents the circuit for a talking coin detector that uses the
microcontroller wC 8748 as the main processing unit. The wC 8748 receives
three input signals, indicating the type of coin that has been deposited. The
three input signals are assigned for each type of coin, that is, nickels, dimes,
and quarters. Three D-type flip-flops detect the kind of coin by receiving a
transient pulse in their inputs “SET” coming from the coin-detecting mecha-
nism. The three outputs Q1, Q2, and Q3 of the flip-flops are routed to the
inputs P2.0 to P2.3 of the uC 8748. The output P2.3 of the uC 8748 is used

176 4, Digital Circuits

detects the selection that the user has made, it will activate the output signal
that corresponds to the desired product.

From the microcontroller, eight address lines (P1.0—P1.7) and two control
signals (T1 and /WR) are utilized to drive the Digitalker DT1050. Two speech
ROMs (SSR1 and SSR2) contain, in compressed form, the data required for
the 144 addressable words. The 16-key encoder 74C922 is used to let the
operator select the product he wants when he has deposited a total amount of
fifty cents. In this case, the Digitalker will issue the message *‘Please, mark
the number.” When the user presses the number in the keypad, the uC 8748
sends the respective data to the four most significant bits in port two. Notice
that a 4-t0-16 decoder can be added in order to control the external mechanism
that will bring the products out. The software program for the uC is shown in
Table 4.12.

TABLE 4.12

Software for uC 8748 to Control a Talking Coin Detector
Add Op Code Mnemonics Comments
00 05 EN I ;Enables Interrupt
01 04 05 JMP START 5
03 04 F2 JMP CANCEL ;Cancel operation and return money.
05 8A 00 START: ANL P2, #O0O0H H
07 54 08 ORL P2, #08H ;Reset D-type flip flops
09 9A 00 ANL P2, #O0OH ; /CS1=0, /WR=
OB 99 00 ANL P1, #00H ;
oc 27 CLR A ;Acc =00H
OE 97 CLR C ;Clear carry flag
OF A9 MOV R1, A ;Clear registers RO-R7
1B AA MOV R2, A H
11 AB MOV R3, A ;
12 AC MOV R4, A ;
13 AD MOV R5, A ;
14 AE MOV R6, A ;
15 AF MOV R7, A H
16 0A READ: INA, P2 ;Load P2 contents to accumulator
17 A9 MOV R1, A ;Store reading in register R1
18 53 01 ANL A, #O01H ;Mask the Acc to test the 5c bit
1A 96 26 JNZ FIVEC ;Go to add five cents
1C F9 49 MOV A, R1 ;Move reading to Acc
1D 53 02 ANL A, #02H ;Mask the Acc to test the 10c bit
1F 96 2A JNZ TENC ;Go to add ten cents
21 F9 MOV A, R1 ;Move reading to Acc
22 53 04 ANL A, #04H ;Mak the Acc to test the 25c¢ bit
24 96 2E JNZ TFIVE ;Go to add twentyfive cents

26 6A 05 FIVEC: ADD R2, #O0S5H ;Add five cents to register R2
28 04 30 JMP COMPARE ;

4.5 Designing a Speaking Coin Detector 177

2A 6A 0A TENC :ADD R2, #O0AH ;Add ten cents to register R2
2C 04 30 JMP COMPARE
2E 6A 19 TFIVEC :ADD R3, #19H ;Add 25 cents to register R2

30 23 32 COMPARE:MOV A, #32H ;Load Acc with number 50d

32 D9 XRL A, R1 ;Compare the amount against 50d
33 C6 JZ MSG50 ; If amount=50c goto MSG50

35 23 05 AMOUNT:MOV A, #O05H ;Load Acc with constant 5c

37 DA XRL A, R2 ; Compare

38 C6 64 JZ MSG5 ; If amount= 5 cents goto MSG5
3A 23 O0A MOV A, #0AH ;Load Acc with constant 10c

3C DA XRL A, R2 ; Compare

3D C6 6C JZ MSG10 . If amount= 10 cents goto MSG10
3F 23 OF MOV A, #OFH ;Load Acc with constant 15c

41 DA XRL A, R2 ; Compare

42 C6 T4 JZ MSG15 ; If amount= 15 cents goto MSG15
44 23 14 MOV A, #14H ;Load Acc with constant 20c

46 DA XRL A, R2 ; Compare

47 C6 17C JZ MSG20 ; If amount= 20 cents goto MSG20
49 23 19 MOV A, #19H ;Load Acc with constant 25c

4B DA XRL A, R2 ; Compare

4C C6 84 JZ MSG25 ; If amount= 25 cents goto MSG25
4E 23 1E MOV A, #1EH ;Load Acc with constant 30c

50 DA XRL A, R2 ; Compare

51 C6 90 JZ MSG30 ; If amount= 30 cents goto MSG30
53 23 23 MOV A, #23H ;Load Acc with constant 35c

55 DA XRL A, R2 ; Compare

56 C6 98 JZ MSG35 ; If amount= 35 cents goto MSG35
58 23 28 MOV A, #28H ;Load Acc with constant 40c

5A DA XRL A, R2 ; Compare

5B C6 A4 JZ MSG40 ; If amount= 40 cents goto MSG40
5D 23 2D MOV A, #2DH ;Load Acc with constant 45c

SF DA XRL A, R2 ; Compare

60 C6 AC JZ MSG45 ; If amount= 45 cents goto MSG45
62 04 B8 JMP MSG50 ;amount = 50 cents

64 BD 05 MSGS5: MOV R5, #05 ;"Five"

66 14 EA CALL VOCAL 5

68 14 EO CALL CENTS ;

6A 04 16 JMP READ 5

6C BD 0A MSG10: MOV RS, #0A ; "Ten"

6E 14 EA CALL VOCAL

70 14 EO CALL CENTS

72 04 16 JMP READ H

74 BD OF MSG15: MOV R5, #OFH ,"Fifteen"

776 14 EA CALL VOCAL ;

78 14 EO CALL CENTS ;

7TA 04 16 JMP READ 5

7 BD 14 MSG20: MOV RS, #14H ; "Twenty"

7E 14 EA CALL READ ;

80 14 EO CALL CENTS

82 04 16 JMP READ :

178

84
86
88
8A
8C
8E
90
92
94
96
98
9A
9C
9E
A0
A2
A4
A6
A8

AC

BO
B2
B4
B6
B8
BA
BC
BE
co
C2
C4
C6
Cc8
CA
CcC
CE
DO
D1
D2
D4
D6
D8
DA
DC
DE

BD
14
BD
14
14
04
BD
14
14
04
BD
14
BD
14
14
04
BD
14
14
04
BD
14
BD
14
14
04
BD
14
14
BD
14
BD
14
BD
14
BD
14
26
08
3A
B8
B9
BA
EA
E9
E8
04

14
EA
05
EA
EO
16
15
EA
EO
16
15
EA
05
EA
EO
16
16
EA
EO
16
16
EA
05
EA
EO
16
17
EA
EO
78
EA
69
EA
8A
EA
70
EA
CE

OF
FF
FF
D8
D6
D4
05

MSG25:

MSG30:

MSG35:

MSG40:

MSG45:

MSGS50:

DATA:

T4:
T3:
T2:

MOV R5, #14H
CALL VOCAL
MOV R5, #05H
CALL VOCAL
CALL CENTS
JMP READ
MOV R5, #15H
CALL VOCAL
CALL CENTS
JMP READ
MOV RS, #15H
CALL VOCAL
MOV R5, #O0S5H
CALL VOCAL
CALL CENTS
JMP READ
MOV R5, #16H
CALL VOCAL
CALL CENTS
JMP READ

MOV R5, #16H
CALL VOCAL
MOV R5, #O0OS5H
CALL VOCAL
CALL CENTS
JMP READ

MOV RS, #17TH
CALL VOCAL
CALL CENTS
MOV R5, #78H
CALL VOCAL
MOV R5, #69H
CALL VOCAL
MOV R5, #8A
CALL VOCAL
MOV R5, #70H
CALL VOCAL
JNTO DATA
INS A, BUS
OUTL P2, A
MOV RO, #OFH
MOV R1, #FFH
MOV R2, #FFH
DJNZ R2, T2
DJNZ R1, T3
DJNZ RO, T4
JMP START

; "Twenty five"

; "Thirty"

;"Thirty five"

; "Forty"

; "Forty five"

Fifty”

; "PLease"

; "Mark"

; "The"

; "Number"

i

4, Digital Circuits

;Wait for DA to go high
;Read the pressed number
;Turn on the product mechanism for

;five seconds
;
;
;
;
;

)

;Routine for the word

"Cents"

:MOV RS,

#40H
CALL VOCAL
MOV R5, #81H

4.6 A Talking Coffee Machine Controller 179

E6 14 EA CALL VOCAL
E8 83 RET ;
;Routine to control the DT1050

EA FD VOCAL: MOV A, R5

EC 39 OUTL P1, A

ED 90 MOVX A, @RO H

EE 00 NOP ;

EF 46 EF WAIT: JNT1 WAIT ;

F1 83 RET 5

;Routine to cancel the operation

F2 23 80 CANCEL:MOV A, # 80H

F4 3A OUTL P2, A
F6 B8 T5:MOV RO, #FFH
F8 EB DJNZ RO, T5
FA 04 05 JMP START

4.6 Designing a Talking Coffee
Machine Controller

The coffee machine controller presented here will use part of the software pro-
gram for the coin detector in Section 4.5. The process of designing a control-
ler for a coffee vending machine now will be applied to the allophone-based
speech processor SPO256-AL2. Certainly, with this speech processor we will
be allowed to create any type of word for indicating to the user the choices he
might have.

The coffee machine controller will be built around the microcontroller uC
8748. The following possible varieties of coffee will be available for the
consumer:

Coffee black

Coffee with sugar

Coffee with cream

Coftee with cream and sugar
Extra sugar

. Extra cream

AR o

The variations of coffee are indicated in numbers one to four. Numbers five
and six are available in order to let the user add extra sugar or extra cream to
the type of coffee he has already selected. In this way, a keypad will be in-
stalled with options one to six. Also, number seven in the keypad will be la-
beled ““coin return” to permit the user to cancel the operation and to make the
machine return the coins he has deposited. The system will be programmed to
accept the “coin return” request when the consumer is still inserting coins or
before he has selected a type of coffee. This feature stops the vending machine

180 4. Digital Circuits

from serving a coffee and then returning the coins to the user if he presses the
““coin return” key. In this manner, the interrupt input of the uC 8748 will be
used for “‘coin return” and will be disabled when the machine starts preparing
the coffee.

The program of the uC 8748 will first detect if the total amount of 50 cents
has been deposited before starting to prepare the coffee. To detect if the
amount of 50 cents has been deposited, the program will take part of the soft-
ware presented in Section 4.5. Some minor changes to that software program
will take place now because our uC 8748 will be controlling the speech pro-
cessor SPO256-AL2.

The output control signals that need to be generated from the uC 8748 are:

Cup drop
. Water on
. Coffee on
. Cream on
. Sugar on
. Coin return

AN AW -

The routine that the software program has to perform is as follows:

1. The program will execute nothing until a coin is detected.

2. Upon coin detection the speech processor will announce the amount the
operator has deposited until he reaches a total amount of 50 cents.

3. The speech processor will indicate that the user should select his op-
tions with the message ‘‘Please select your options.”

4. If coin return is detected, the machine returns coins, gives the message
*“Pick up your coins please,” and waits for the next coin insertion to be
deposited.

5. The cup has 2.0 s to get into place.
6. Depending on selection, powders will be released for different intervals
as follows:
coffee 2.0s
coffee withsugar coffee 2.0 s, sugar 2.0 s
coffee withcream coffee 2.0 s, cream 2.0 s
coffee with cream and sugar coffee 2.0 s, sugar 2.0 s,

cream 2.0 s
7. Check to see if extra sugar and/or extra cream are selected. If yes, extra
cream 2.0 s, extra sugar 2.0 s.
8. Water on for 10.0 s.

As can be seen, there are four possible types of coffee and two extra op-
tions for extra sugar and/or extra cream. The software program will make the
speech processor speak the options the user is selecting. In this manner, the
user will be quite sure that the options he is selecting are being accepted by

182

4. Digital Circuits

TABLE 4.13

Software for uC 8748 to Control a Talking Coffee Vending Machine
Add Op Code Mnemonics Comments
00 05 EN I ;Enables Interrupt
01 04 05 JMP START H
03 04 F2 JMP CANCEL ;Cancel operation and return money
05 8A 00 START: ANL P2, #OOH 5
07 54 08 ORL P2, #80H ;Reset D-type flip flops
09 9A 00 ANL P2, #O00H H
OB 99 00 ANL P1, #O00H H
oD 97 CLR C ;Clear carry flag
OE A9 MOV R1, A ;Clear registers RO-R7
OE AA MOV R2, A H
OF AB MOV R3, A H
10 AC MOV R4, A H
11 AD MOV R5, A ;
12 AE MOV R6, A H
13 AF MOV R7, A H
14 27 READ: CLR A ;Acc =00H
15 54 80 ORL P2, #80H ;Clear D-type flip flops
17 08 INS A, BUS ;Load BUS contents to accumulator
19 A9 MOV R1, A ;Store reading in register Rl
1A 53 01 ANL A, #O01H ;Mask the Acc to test the 5c bit
1C 96 28 JNZ FIVEC ;Go to add five cents
1E F9 49 MOV A, R1 ;Move reading to Acc
1F 53 02 ANL A, #O02H ;Mask the Acc to test the 10c bit
21 96 2C JNZ TENC ;Go to add ten cents
23 F9 MOV A, R1 ;Move reading to Acc
24 53 04 ANL A, #04H ;Mak the Acc to test the 25c bit
26 96 30 JNZ TFIVE ;Go to add twentyfive cents
28 6A 05 FIVEC: ADD R2, #05H ;Add five cents to register R2
2A 04 32 JMP COMPARE H
2C 6A 0A TENC :ADD R2, #0AH ;Add ten cents to register R2
2E 04 32 JMP COMPARE 5
30 6A 19 TFIVEC :ADD R2, #19H ;Add 25 cents to register R2
32 23 05 COMPARE:MOV A, #O0O5H ;Load Acc with constant 5c
34 DA XRL A, R2 ; Compare
35 C6 61 JZ MSG5 ; If amount= 5 cents goto MSG5
37 23 0A MOV A, #O0AH ;Load Acc with constant 10c
39 DA XRL A, R2 ; Compare
3A C6 67 JZ MSG10 ; If amount= 10 cents goto MSG10
3C 23 OF MOV A, #OFH ;Load Acc with constant 15c
3E DA XRL A, R2 ; Compare
3F C6 6D JZ MSG15 ; If amount= 15 cents goto MSG15
41 23 14 MOV A, #14H ;Load Acc with constant 20c
43 DA XRL A, R2 ; Compare
44 c6 73 JZ MSG20 ; If amount= 20 cents goto MSG20
46 23 19 MOV A, #19H ;Load Acc with constant 25c¢
48 DA XRL A, R2 ; Compare

4.6 A Talking Coffee Machine Controller

49
4B
4D
4E
50
52
53
55
57
58
5A
5C
5D
SF

79
1E

82
23

88
28

92
2D

98

JZ MSG25
MOV A, #1EH
XRL A, R2
JZ MSG30
MOV A, #23H
XRL A, R2
JZ MSG35
MOV A, #28H
XRL A, R2
JZ MSG40
MOV A, #2DH
XRL A, R2
JZ MSG45
JMP MSG50

; If amount= 25
;Load Acc with

; Compare

; If amount= 30
;Load Acc with

; Compare

3

;Load Acc with

If amount= 35

; Compare

; If amount= 40
;Load Acc with

; Compare
; If amount= 45 cents goto MSG45

; amount =

cents goto MSG25
constant 30c

cents goto MSG30
constant 35c¢

cents goto MSG35
constant 40c

cents goto MSG40
constant 45c

50 cents

MSG10:

MSG15:

MSG20:

MSG25:

MSG30:

MSG35:

MSG40:

MSG45:

MSG50:

:MOV A, #1EH

CALL FIND
JMP READ
MOV A, #23H
CALL FIND
JMP READ
MOV A, #28H
CALL FIND
JMP READ
MOV RS, #2FH
CALL FIND
JMP READ
MOV A, #2FH
CALL FIND
MOV A, #1EH
CALL FIND
JMP READ
MOV A, #38H
CALL FIND
JMP READ
MOV A, #38H
CALL FIND
MOV A, #1EH
CALL FIND
JMP READ
MOV A, #3DH
CALL FIND
JMP READ
MOV A, #3DH
CALL FIND
MOV A, #1EH
CALL FIND
JMP READ
MOV A, #43H
CALL FIND
MOV A, #93H
CALL FIND

’
i

5

S nRive"

; "Ten"

; "Fifteen"

; "Twenty"

i

s

3

i

"Twenty five"

"Thirty"

"Thirty five"

; "Forty"

; "Forty five"

;"Fifty"

; "Cents"

183

184 4. Digital Circuits

AA 23 77 MOV A, #77TH ; "Select your options"

AC 34 65 CALL FIND ;

AE 23 8D MOV A, #8DH ; "Please"

BO 34 65 CALL FIND ;

B2 26 B2 DATA: JNTO DATA ;Wait for DA to go high

B4 15 DIS I ;Disable the "return coin" key
B5 08 INS A, BUS ;Read the pressed number

B6 AD MOV R5, A ;Store selection in register R5
B7 9A 00 ANL P2, #OOH H

B9 8A 01 ORL P2, #O01H ; Cup drop

BB 34 38 CALL DEL2 ;Wait cup drop for 2 seconds
BD 23 50 MOV A, #50H ;

BF DD XRL A, R5 ;Extra cream?

CO 96 CE JNZ XTSGR ;Jump if not extra cream to XTSGR
C2 8A 08 ORL P2, #08H ;Add extra cream

C4 34 38 CALL DEL2 H

Ccé6 23 63 MOV A, #63H ; "Extra Cream"

C8 34 65 CALL FIND H

CA 23 5D MOV A, #5DH H

CC 34 65 CALL FIND H

CE 23 40 XTSGR: MOV A, #40H ;

DO DD XRL A, R5 ;Extra sugar?

D1 96 DF JNZ CFWS ;Jump if not extra sugar to CFWS
D3 8A 10 ORL P2, #10H ;Add extra sugar

D5 34 38 CALL DEL2 5

D7 23 63 MOV A, #63H ; "Extra sugar"

D9 34 65 CALL FIND H

DB 23 57 MOV A, #57 ;

DD 34 65 CALL FIND H

DF 23 10 CFWS: MOV A, #10H ;

E1 DD XRL A, R5 ;Coffee with sugar?

E2 96 F6 JNZ CFWC ;Jump to Coffee/Cream

E4 B8A 14 ORL P2, #14H ;Add coffee with sugar

46 34 38 CALL DEL2 H

E8 23 4B MOV A, #4BH ; "Coffee"

EA 34 65 CALL FIND 5

EC 23 52 MOV A, #52H s "With"

EE 34 65 CALL FIND H

FO 23 57 MOV A, #57H ; "Sugar"

F2 34 65 CALL FIND H

F4 24 32 JMP WATER H

F6 23 20 CFWC: MOV A, #20H ;

F8 DD XRL A, R5 ;Coffee with cream?

F9 24 0C JNZ CWCS ;Jump to Coffee/Cream/Sugar
FB 8A 0C ORL P2, #OCH ;Add coffee with cream

FD 34 38 CALL DEL2 H

FF 23 4B MOV A, #4B ;"Coffee"

100 34 65 CALL FIND H

102 23 52 MOV A, #52H ; "With"

104 34 65 CALL FIND - ;

106 23 5D MOV A, #5DH ; "Cream"

108 34 65 CALL FIND H

4.6 A Talking Coffee Machine Controller

10A
10C
10E
10F
111
112
114
116
118
11A
11C
11E
120
122
124
126
128
12A
12C
12E
130
132
134
136

24
23
DD
96
8A
34
23
34
23
34
23
34
23
34
23
34
24
23
34
8A
34
8A
34
04

32
30

2A
1C
38
4B
65
52
65
SD
65
52
65
57
65
32
4B
65
1C
38
20
417
05

CWCS:

CBLACK:

WATER:

JMP
MOV
XRL

WATER

A, #30H
A, RS
JNZ CBLACK
ORL P2, #1CH
CALL DEL2
MOV A, #4BH
CALL FIND
MOV A, #52H
CALL FIND
MOV A, #5DH
CALL FIND
MOV A, #52H
CALL FIND
MOV A, #57H
CALL FIND
JMP WATER
MOV A, #4BH
CALL FIND
ORL P2, #04H
CALL DEL2
ORL P2, #20H
CALL DEL10
JMP START

;Coffee with cream and sugar?
;Go to prepare coffee black
;Add coffee + cream + sugar

; "Coffee"

; "With"

; "Cream

S "With"

; "Sugar"

; "Coffee"
;Release coffee only
;Release water for 10 seconds

;Routine for 2 seconds delay

:MOV RO,
:MOV R1,
:MOV R2,
:DJNZ R2, T2

#05H
#FFH
#FFH

DJNZ R1, T3
DJNZ RO, T4
ANL P2, #00H
RET

;2 SECONDS

;Routine for 10 seconds delay

:MOV RO,
:MOV R1,
:MOV R2,
:DIJNZ R2, T2

#1EH
#FFH
#FFH

DJNZ R1, T3
DJNZ RO, T4
ANL P2, #00H
RET

;10 seconds

s

;Routine for coin return

15A
15C
15D

38
6A

65

:MOV A, #20H

OUTL P2, A
CALL DEL2
MOV A, #6AH
OUTL P2, A
CALL FIND

;Output "return coin" is activated
;for two seconds

; "Pick up your coins"

185

186

1
5
5

MOV A, #91H
CALL FIND
JMP START

15F 23 9
161 23 6
163 04 O
165 BD
167 AD
168 E3
169 AC
16A 27
16B 1D
16C FD
16D E3
16E 39
16F 80
170 46
172 EC
174 83
Add Dat
300 OA
301 OE
302 09
303 13
304 1A
305 1E
306 23
307 2A
308 32
309 36
30A 03
30B 2B
30C 2C
30D 35
30E 04
30F 39
310 04
311 28
312 28
313 06
314 23
315 1F
316 03
317 10
318 OE
319 13
31A 03
31B 28
31C 28
31D 3A
31E 04

00

FIND:

RICK:

SBY:

; Ten

MOV R5, #00H
MOV R5, A
MOVP3 A, @A
MOV R4, A
CLR A

INC RS

MOV A, RS
MOVP3 A, «A
OUTL P1, A
MOVX A, @RO
JNT1 SBY
DJNZ R4, RICK
RET

;Fifteen
; Twenty
; Thirty
;Forty
JFifty

; Coffee
;With

; Sugar

; Cream
;Extra

;Pick up your coins
;Select your options

;Please
;Cents
;4 allophones

5

)

;2 allophones

; TWO

s

; 3 allophones
; THREE

s

5

;3 allophones
; FOUR

i

)

;4 allophones

; "Please"
;

i

5

;Pointer for page three
;Acc = # of allophones

4, Digital Circuits

; Subroutine to find and isssue a word

;R4 = #n; for n allophones

i

; Increment R5 to get next allophone

)
5

5

; /WR is pulsed low for 5 uS
;Wait for /SBY input to go high

)

4.6 A Talking Coffee Machine Controller

351

28
28
06
23
04
oD
07
07
0B
07
ocC
28
02
oD
13
0B
08
oD
30
07
07
OB
02
oD
13
04
1D
34
2D
13
05
28
3A
02
oD
13
07
28
28
ocC
28
02
oD
13
06
08

28
28
13
04

; FIVE

; 6 ALLOPHONES
; TEN

;7 allophones
; FIFTEEN

;8 allophones
; TWENTY

i

;4 allophones
; THIRTY
;5 allophones
; FORTY
;7 allophones
; FIFTY

3

;5 allophones plus one pause

; COFFEE

)

187

188 4, Digital Circuits

352 03 ;3 allophones plus one pause
353 2E ; WITH

354 13 H

355 11 H

356 04 ;

357 04 ;4 allophones plus one pause
358 32 ; SUGAR

359 1E H

35A 24 H

35B 3B H

35C 04 H

35D 04 ;4 allophones plus one pause
35E 2A ; CREAM

35F 27 ;

360 ocC 5

361 10 ;

362 04 ;

363 05 ;5 allophones
364 07 ; EXTRA

365 2A H

366 37 H

367 0D ;

368 27 5

369 18 ;

36A 11 ;16 allophones
36B 09 ; PICK UP YOUR COINS
36C oC H

36D oC H

36E 29 5

36F 03 5

370 OF H

371 09 ;

372 03 H

373 19 ;

374 35 H

375 33 H

376 03 H

377 2A 5

378 05 H

379 0B ;

37A 37 H

37B 15 ;21 allophones
317C 37 ; SELECT YOUR OPTIONS
37D 37 H

37E 07 ;

37F 07 H

380 2D 5

381 07 ;

382 02 5

383 29 5

384 11 H

385 04 H

4.7 A Talking Random-Number Generator 189

386 19

387 35

388 33

389 04

38A 17

38B 09

38C 25

38D 35

38E 0B

38F 37

390 37 ;

391 06 ;6 allophones
392 09 ; PLEASE
393 2D ;

394 oC

395 37

396 37

397 04 ;

398 08 ;7 allophones and 1 pause.
399 37 ; CENTS
39A 07 ;

39B 07

39C 0B

39D 11

39E 37

39F 37

340 04

4.7 Designing a Talking Random
Number Generator

Random numbers are used to compute statistical problems and in games such
as spinners. Special software has been created to process random numbers for
many games and statistical estimations. A technique to produce random num-
bers electronically is to apply a burst of high-frequency clock pulses to a
counter as shown in Figure 4.10. This figure shows a complete working ver-
sion of a pseudorandom-number generator that tells the selected number by
means of the speech processor SPO256-AL2.

Figure 4.10 shows a timer 7555 configured as a free-running oscillator. The
timer 7555 oscillates at a frequency of approximately 1000 Hz, given by the
equation:

1.44

fo= ——1"
° 7RI +2R2)C

The 47 uF capacitor, located in the RC timing network of the timer, per-
mits the addition of a gradual slowdown feature for the frequency (fo) gener-
ated. When switch S1 is closed momentarily by the operator, the timer will be

4.7 A Talking Random-Number Generator

191

TABLE 4.14

Software Program for the Pseudo-random Number Generator

DEVICE (CPL152)

DEFAULT = 1;

DEF INE "test inputs"
sby = t5
sl = t4

equal = eq
"allophones and pauses are given name assignments"

pa2 = 01#h " eemmem e "

pa3 = 02#h " t6->11 281- Vce "
pa4 = 03#h " pO<-1 27i<-clk "
pa5 = 04#h " pl<-i 261 <- "
oy = 05#h " p2<-i4 25:<-t0 "
ay = 06#h " p3<-15 Am29CPL 24,<-t1 "
eh = 07#h " p4<-. 152 23i<-t2 "
kk3 = 08#h " p5<-17 221<-t3 "
pp = 09#h " p6<-| 21i<-ta "
jh = O0A#h " p7<-i 20i<-t5 "
nnl = 0B#h " p8<-110 19i<-/reset"
ih = 0C#h " p9<-i11 18i->pl5 "
tt2 = 0D#h " pl0<-112 17,->pl4 "
rrl = OE#h " pll<-113 16,->p13 "
ax = OF#h " Gnd-:14 15;->p12 "
mm = 10#h " emeememem s "
ttl = 11#h

dhl = 12#h iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h

ao = 17#h aa = 18+#h yy2 = 19#h ae = 1A#h hhl = 1B#h
= 1C#h th = 1D#h uh 1E#h uw2 = 1F#h aw 20#h
dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24+#h sh = 25#h
26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h Xr 2F#h
wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 38#h hh2 = 39#h
or = 3A+#h ar = 3B#h yr = 3C#h gg2 3D#h el = 3E#h
bb2 = 3F#h;

o

o
-
i

N
=2
i

DEFAULT-OUTPUT = 0000#h;
TEST-CONDITION = SBY; "/STANDBY is the default test condition"

BEGIN

"o" ,goto pl(zero);
" ,goto pl(one);
nan ,goto pl(two);
"3 ,goto pl (three);
nan ,goto pl(four);
"5 ,goto pl(five);
"e" ,goto pl(six);
" ,goto pl(seven);
ng" ,goto pl(eight);

"gn ,goto pl (nine);

192

n1Q"
ISERd
nygn
"3
"4
nign
"6
nygn
"8
nign
nogn
noqn
oo
nogn
nogqn
nogn
nogn
ngn
nogn
nogn
n3Qn
"3l
ngon
nggn
ngqn
nggn
n3gn
ngn
nggn
n3gn
ngQn
ngqn
nqon
nqgn
nqqn
g5
a6
nwgqn
nagn
nqgn
nsQn
"5
ngon
"3
ngqn
ng5m
56"
ngn
n5gn
ng5gn
ngo"

zero: zz,

yr,

ow,

paz2,
one: ww,
ax,
ax,
nnl,
paz,
two: tt2,
uwz,
paz,

three: th,
rri,
iy,
paz,

ff,
ff,
or,
paz,

four:

five: ff,
ff,

ay,

paz,

six: ss,
ss,
ih,
ih,
pa3,
kk2,
ss,
paz,

seven: ss,
ss,
eh,
eh,
v,
eh,
nnl,
paz,

eight: ey,
pa3,

s

call
call
call
call
goto
call
call
call
call
call
goto
call
call
call
goto
call
call
call
call
goto
call
call
call
call
goto
call
call
call
call
call
goto
call
call
call
call
call
call
call
call
goto
call
call
call
call
call
call
call
call
goto
call
call

pl (read);
pl(read);
pl (read);
pl (read);
pl (stay);
pl (read);
pl(read);
pl (read);
pl (read);
pl (read);
pl (stay);
pl (read);
pl (read);
pl (read);
pl (stay);
pl (read);
pl (read)

pl (read);
pl (read);
pl (stay);
pl (read);
pl(read);
pl (read);
pl (read);
pl (stay);
pl (read);
pl (read) ;
pl (read);
pl(read);
pl (read);
pl (stay);
pl (read);
pl (read);
pl(read);
pl (read);
pl(read);
pl (read);
pl (read);
pl (read);
pl (stay);
pl (read);
pl(read);
pl(read);
pl(read);
pl (read);
pl(read);
pl (read);
pl (read);
pl (stay);
pl (read);
pl (read);

4. Digital Circuits

"ZERQ"

"ONE"

"TWO"

"THREE"

"FOUR"

"FIVE"

ngIX"

"SEVEN"

"EIGHT"

4.7 A Talking Random-Number Generator 193

"e1" tt2, call pl(read);
ne2n pa2, call pl(read);
"63" ,goto pl(stay);
"64"nine:nn2, call pl (read); "NINE"
"g5" aa, call pl(read);
"66" ay, call pl(read);
"eT" nnl, call pl(read);
"68" pa2, call pl(read);
"69" ,goto pl(stay);
"70"ten: tt2, call pl(read); "TEN"
" eh, call pl(read);
n2an eh, call pl(read);
"73" nnl, call pl(read);
"74n pa2, call pl(read);
"75"stay: ,if (not s1) then goto pl(stay);"Wait for S1 to go high"
"76"msgl: ih, call pl(read); " IT IS...."
" tt1, call pl(read);
8" pa2, call pl(read);
"gn ih, call pl(read);
"80" ss, call pl(read);
"g1" ss, call pl(read);
ngan pa5, call pl(read);
"83" ,load pl(80); "15 seconds delay to avoid reading.."
"84"delay: pa5,call pl(read); "a wrong pseudorandom number"
"85" ,while (creg <> 0) loop to pl(delay);
"86" ,goto tm(0001111#b); "Go to address specified by mask"
"subroutine for reading the standby status of the speech processor"
"87"read: ,continue;
"88"styl: ,if (not sby) then goto pl(styl); "reading SBY"
"go" ,ret;
corg 127#d
"90" ,goto pl(stay);
END.

program jump to lines zero to nine. Lines zero to nine of the program make
the program jump to the exact location where the message is recorded. Then
the recorded message is announced by the speech processor SPO256-AL2.
Once the speech processor ends saying the decimal number, the program
jumps to the address named “‘stay.” The instruction in the address *‘stay” will
keep the program waiting for switch S1 to be pressed again by the operator.

After the read-out, the random number generator can again be started by
giving a 0 starting signal to the input TO of the Am29CPL152.

If a sequence of random numbers with ““2” decimal digits has to be gener-
ated, another BCD counter is required. This second BCD counter can be ob-
tained from the same IC CD4518 and must be connected in cascade with the
first BCD counter.

4.8 An Alternating Current Motor-Speed Controller 195

and R/8. This resistive network controls the magnitude of the current that
passes through diac D30. The LEDs that are self-contained in the opto-
couplers are activated by the 4-bit latch CD4042. The four inputs (D1-D4)
and the clock signal of the latch CD4042 are directly controlled by the FPC
Am29CPL152, which also controls a speech processor.

When the circuit is first turned on, the R1C1 network resets the FPC
Am29CPL152 and the speech processor SPO256-AL2. Under these condi-
tions, the motor will not run because the LEDs inside the four opto-
couplers are not turned on. This state is achieved by programming the FPC
Am29CPL152 with the software program shown in Table 4.15. The software
program for the FPC Am29CPL152 makes the program jump to line 1 (la-
beled as stay) after the power-up reset pulse has occurred. The instruction in
line 1 “If (s1) then go to pl(stay)” is used to maintain the FPC reading the
status of the normally open switch S1. When the operator wishes to start run-
ning the motor, he will momentarily press switch S1 and the program will
jump automatically to line 2. Line 2 of the program “‘call pl(del5)” then will
proceed to call subroutine ““delS” that causes a 5 s delay. This delay is in-
serted to allow the operator to quit the program before it starts running the
motor. If the operator decides to continue the program, he will have to wait
only 5 s after he has pressed switch S1 for the first time. When the 5 s delay
has elapsed, the program goes to line 3, where the instruction *‘call pl(msgl)”
is executed; therefore, this instruction makes the speech processor announce
the word “‘speed.” When the program returns from subroutine “msgl,” the
program will start performing sequentially the set of instructions located
within lines 4 to 8 which make the speech processor say the word “one.” In
this manner, the operator will hear the complete message “‘speed one.”

When the SPO256-AL2 ends saying the words “‘speed one,” the program
jumps to line 9, where the instruction ‘‘if (S1) then goto pl(stay)” is located.
Notice that this instruction contains the outputs named “speedl + latch,”
which starts running the motor M in the first speed. This first speed is
achieved because the FPC issues the logical output 100#h, which is equiva-
lent to having the outputs P11-P8 with the binary output 0001#b. This binary
output causes a logic one at the output P8 of the FPC which turns on the LED
contained inside the optocoupler that selects resistor R. Also, the output P12
of the FPC goes to a logic one, causing the CD4042 to latch the 4-bit output
coming from P8 to P11. Notice that the output speed] is also specified one line
prior to the output “latch.” That is because latch CD4042 must first receive
the data input and then the clock pulse in order to latch the 4-bit input.

Because the program stays in the same loop while executing the instruction
in line 9, the FPC will keep giving speed] for the motor M; therefore, resistor
R is enabled to transmit the voltage across capacitor C6, which increases as
the source Vac passes through zero on each alternation. When Vc reaches
30 V, the diac breakover voltage, the diac turns on and discharges C6 across
the TIC216D and G leads of the triac, thus triggering it. The triac, therefore,

196 4, Digital Circuits

TABLE 4.15
Software Program for the Motor-speed Controller

DEVICE (CPL152)

DEFAULT = 1;
DEFINE "test inputs"
sby = t1
sl = to
cancel = t2

"allophones and pauses are given name assignments"
pa2 = 0l#h ittt "
pa3 = 02#h " t6->) 28i- Vee "
pad = 03#h " pO<-:2 27i<-clk "
pa5 = 04#h " pl<-13 26i<-cc/sdi"
oy = 05#h " p2<-14 25/<-t0 "
ay = 06#h " p3<-15 Am29CPL 24:<-t1 "
eh = 07#h " p4<-.6 152 231<-t2
kk3 = 08#h " p5<-:17 227<-t3 "
pp = 09#h " p6<-:8 21i<-t4 "
jh = 0A#h " pT<-19 20!i<-t5 "
nnl = O0B#h " p8<-110 19i<-/reset"
ih = oC#h " pP9<-i11 18)->pl5 "
tt2 = 0oD#h " pl0<-112 17:->pla "
rrl = OE#h " pll<-,13 16)->p1l3 "
ax = OF#h " Gnd-i14 15i->p12 "
mm = 10#h L i "
ttl = 11#h
dhl = 12#h iy = 13#h ey = 1l4#h dd1l = 15#h uwl = 16#h
ao = 17#h aa = 18#h yy2 = 19#h ae = 1A#h hh1l = 1B#h
bbl = 1C#h th = 1D#h uh = 1E#h uw2 = 1F#h aw = 20#h
ddz = 21#h gg3 = 22#h vv = 23#h ggl = 24+h sh = 25#h
zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h Xxr = 2F#h
wh = 30#h yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h
bb2 = 3F#h latch = 1000#h
speed0 = 000#h speedl = 100#h speed2 = 200#h speed3 = 300#h
speed4 = 400#h speed5 = 500#h speed6 = 600#h speed7 = 700#h
speed8 = 800#h speed9 = 900#h speedl0 = A0OO#h speedll = BO0O#h
speedl2 = CO0#h speedl3 = DOO#h speedl4 = E00#h speedl5 = FO0O#h;
DEFAULT-OUTPUT = 0000#h;

TEST-CONDITION = SBY,;

BEGIN

"1"stay: ,if (s1)

" ,call pl(dels);
"3 ,call pl(msgl)
"4 ww, call pl(read);
"5n ax, call pl(read);
e ax, call pl(read);

then goto pl (stay);

"/STANDBY is the default test condition"

"delay to allow user to stop the motor"

"message 1 is --speed--"

"ON

E"

4.8 An Alternating Current Motor-Speed Controller

" nnl, call pl(read);
g pa2, call pl(read);
"gn speedl, continue;

"10"stya: speedl+latch ,
vyl)

wign)
"13" tt2,

"14" uwz,

"is" paz,

"16" speed2,

"15"styb: speed2+latch,
"1g"

nygn
"1g8" th,
"ig" rril,
"20" iy,
"21" paz,
22" speed3,

"23"styc: speed3+latch,
nogn

if (s1) then goto pl(stya);
call pl(dels);
call pl (msgl)
call pl (read); "TWO"
call pl (read);
call pl(read);
continue;
if (s1) then goto pl(styb);
,call pl(del5);
,call pl (msgl)
call pl(read); "THREE"
call pl(read);
call pl(read)
call pl(read)
continue;
if (s1) then goto pl (styc)
,call pl(del5)

n25" ,call pl(msgl);

"26" ff, call pl(read); "FOUR"
"2" ff, call pl(read)

"2g" or, call pl(read)

n29" pa2, call pl(read);

"30" speed4, continue;

"31"styd: speedd4+latch,
wggn

if (s1) then goto pl(styd);
,call pl(dels)

"33" ,call pl (msgl)

"34" ff, call pl(read); "FIVE"
"35" ff, call pl(read);

"36" ay, call pl(read)

"37" Vv, call pl (read)

"38" paz2, call pl (read);

"39" speed5, continue;

"40"stye: speed5+latch,
ngqn

ngon
"43" ss,
"q4qn ss,
45" ih,
"46" ih,
"q7" pa3,
48" kk2,
"49" ss,
"50" paz2,
"51n speed6,

"52"styf: speed6+latch,
w5y

nE4n
"55" ss,
"56" ss,
"57" eh,

if (s1) then goto pl(stye);
,call pl(dels);

,call pl (msgl)

call pl(read); "SIX"

call pl(read);

call pl(read);

call pl(read)

call pl(read);

call pl(read);

call pl(read)

call pl(read);

continue;

if (s1) then goto pl(styf)
.call pl(del5);

,call pl(msgl);

call pl(read); "SEVEN"
call pl(read);

call pl(read);

197

198

4 Digital Circuits

"58" eh, call pl(read);

"59" Vv, call pl(read)

"60" eh, call pl(read)

"eL" nnl, call pl(read);

ne2" pa2, call pl (read);

"63" speed7, continue;

"64"styg: speed7+latch, if (s1) then goto pl(styg);
"65" ,call pl (dels)

"66" ,call pl (msgl)

"eT" ey, call pl(read); "EIGHT"
"e8" pa3, call pl(read);

"69" tt2, call pl(read);

"o" pa2, call pl(read);

"71n speed8, continue;

"72"styh: speed8+latch, if (s1) then goto pl(styh);
"3 ,call pl(dels)

"4n ,call pl (msgl)

"s" nn2, call pl(read); "NINE"

"6 aa, call pl(read);

Rl ay, call pl(read);

"g" nnl, call pl(read);

"79" paz, call pl(read);

"80" speed9, continue;

"81" speed9+latch, if (not s1) then goto pl(stopm) else wait;
"82"msgl: ss, call pl (read); " SPEED. ."

"83" pa2, call pl(read);

"84" PP, call pl (read);

"85" ih, call pl(read);

"86" ddz2, call pl(read);

"g" pas, call pl(read);

"gg" ,ret;

"89"del5: ,load pl(24); "5 S delay to let the user..."
"90"delay: pa5, call pl(read); "stop the motor immediatly"
"g1" ,if (cancel) goto pl(stopm);

"g2n ,while (creg <> 0) loop to pl(delay);
"93" ,ret;

"subroutine for
"94"read:

reading the standby status of the speech processor"
, continue;

"95"styl: ,if (not sby) then goto pl(styl); "reading SBY"
"96" ,if (not cancel) then ret;
"97"stopm: ss, call pl(read2); "STOP"
"gg8" latch+ss, call pl(read2);
"ggo" ttl, call pl(read2);
"100" aa, call pl(read2);
"101" ppP, call pl(read2)
"102" pa5, call pl (read2)
"103" ,goto pl(stay);
"104"read2: ,continue;
"105"sty2: ,if (not sby) then goto pl(sty2); "reading SBY"
"106" ,ret;
.org 127#d
"107" ,goto pl(stay);

END.

4.8 An Alternating Current Motor-Speed Controller 199

becomes conductive after the source Vac reaches 30 V. The result is that the
motor will run at the lowest speed (speedl).

If the operator wants to increase the speed of the motor from speedl to
speed2, he will have to press switch S1 again. After the operator presses
switch S1, he will again have to wait for 5 s. During this time, the operator
may decide to stop the motor. If so, he only has to press the “cancel” switch
for at least 1 s. This action will stop the motor and the program will proceed to
jump to line 1 again in order to wait for a new starting. The 4-bit latch CD4042
serves to maintain the selected speed of the motor while the FPC is running
the routines that make the SPO256-AL2 tell the speed selected by the opera-
tor. In this case, a maximum of 9 speeds were programmed in the FPC
Am29CPL152 even when the set of four resistors controlling the diac D30 can
give a maximum of 15 speeds. The number of speeds to the motor can be
augmented by inserting more optocouplers controlling more resistors. For ex-
ample, if 31 speeds are needed for the motor, just add another optocoupler
below the MOC3010 controlling the resistor R/8. In this case, the new opto-
coupler will be controlling a new resistor named R/16. Bear in mind that if the
number of speeds for the motor is augmented, the speech routines for the
SPO256-AL2 must also be included. Schmitt-trigger inverters E and F make
up a 10 kHz oscillator that drives the FPC Am29CPL152.

The choice of the triac will depend upon the amount of current required by
the motor. In this case, a triac TIC216D was used because the motor demand
was only 1.5 A. A good starting value for the parallel resistor network is
R = 10K, while R11 is adjusted to 250K.

As can be seen, the versatility of the speech processor SPO256-AL2 is im-
mense, considering all the areas of control where it can be applied. It will be
shown in Chapter 5 that a speech processor in conjunction with a program-
mable controller allows the designer to implement a speech-based system ca-
pable of handling most tasks assigned to a system designer in the field of test
and measurement.

Test and Measurement Circuits

5.1 Designing a Talking Autorange
Frequency Counter

A very interesting application for speech processors is a talking frequency
counter that voices the input frequency under measurement. If the frequency
counter features autorange, the operator will be able to take frequency mea-
surements without looking at a digital display or having to adjust the scale of
the frequency counter. The frequency meter presented in this section monitors
an input frequency automatically and enunciates the result, freeing an opera-
tor for other tasks.

The circuit shown in Figure 5.1 measures frequencies from dc to 10 MHz
with an automatic floating point. Notice that the talking autorange frequency
counter does not contain a digital display, because the speech processor will
be enunciating the frequency readings and the scales in hertz, kilohertz, and
megahertz.

The input frequency is selected by IC4 (74HC4051) configured as a four-
to-one channel selector. IC1, IC2, and IC3 are three high-speed Johnson
counters used as dividers by 10 each, connected in cascade to obtain three
different input frequencies: fi/10, fi/100, and fi/1000, respectively. When the
circuit is first turned on, for example, a reset pulse is applied to counter ICS5.
IC5 selects the direct input frequency ““fi.” Consequently, BCD counters IC8a
to IC8d will count from 0 to 9999 Hz. IC8a to IC8d are connected in cascade
to form a 16-bit BCD counter. The BCD format of these counters was chosen
because it reduces the size and development of the software program used by
the FPC Am29CPL154, designated as IC10 in Figure 5.1.

The time base section is formed by IC7. The oscillator/divider MM5369EST

200

202 5. Test and Measurement Circuits

FPC proceeds again to determine if a new overflow has occurred. If no over-
flow occurs in the new selected scale, the FPC reads the measured frequency
through the four testable inputs TO to T3. This way, the FPC starts the routine
to drive the speech processor Digitalker (MM54104). The Digitalker kit was
selected for this application because it contains a vocabulary with numbers
and words that are used for frequency measurements. Notice that the Digi-
talker and the two PROM memories are not included in the schematic because
the FPC needs to control only three functions of the Digitalker:

1. Address bus (input lines SW1 to SW8)
2. Write input (/WR)
3. Interrupt output (/INTR)

We will now examine the operation of the complete circuit of Figure 5.1 in
more detail. When the circuit is first turned on, the FPC Am29CPL154 resets
the BCD counter ICS via output P9. ICS is the counter that registers the over
range that may occur when the selected input frequency causes an overflow in
the dual BCD counters 1C8a to IC8d. Then the FPC clears the dual BCD
counters (IC8a to IC8d) by sending a positive transient pulse via output P15.
In this manner, the FPC resets counters IC8a to 1C8d prior to starting a
new frequency reading. Now, the FPC enables the input frequency “fin” to
counters IC8a to IC8d for 1.00 s in order to determine its magnitude. When
counters IC8a to IC8d finish counting the input frequency for 1.00 s, the FPC
checks to see if an overflow has occurred by reading the outputs A and B of
counter IC5. If A or B are in a logic high, the FPC clears counters IC8a to
IC8d, and the FPC starts a new counting cycle by enabling the input ‘‘enable”
of the top counter IC8a. Now counters IC8a to IC8d will be receiving the in-
put frequency “fi/10.”” If no overflow occurs, the FPC will proceed to read the
measured frequency through the four testable inputs TO to T3. Here the FPC
will perform the routine for vocalizing the frequency reading.

Table 5.1 shows the cases that might occur when the input signal under
measurement contains a frequency that ranges from 0 to 10 MHz.

TABLE 5.1
Input Frequencies for the Autorange Frequency Counter

Frequency Input Node Display IC5 Units
Range Frequency Selected Reading B A

0-10 KHz 9999 Hz fi 9999 0o 0 Hz
10-100 KHz 10,000 Hz fi/10 1 0.00 0 1 KHz
100 KHz-1 MHz 100,000 Hz fi/100 100.0 1 0 KHz
1- 10 MHz 1,000,000 Hz £i/1000 1.0 0 O 1 1 MHz

5.1 Talking Frequency Counter 203

Table 5.1 shows four cases representing all possible ranges for the input
frequency under measurement. In the first row, the frequency counter accepts
up to 9999 hertz via the node named “fi.” Bear in mind that counter IC5
makes IC4 select “fi”” with outputs A and B equal to a logic zero. If the first
overflow occurs, counter IC5 will then select the input frequency *fi/10.”
With “fi/10” selected, the FPC will start a new counting cycle to get the new
reading in the scale of kilohertz. The FPC will detect the change of scale by
reading the outputs A and B of IC6 using the testable inputs T4 and T5. If a
second overflow occurs, ICS will change the input node from “fi/10” to
“f1/100.” With ““fi/100” selected, the frequency counter will be capable of
performing frequency readings within the range of 100 to 999.9 kHz. If the
input frequency under measurement, for instance, is equal to or higher than
1 MHz, counter IC5 will select the node ““fi/1000”’; the FPC will then start a
new frequency reading in order to obtain the correct value. The logical values
of outputs A and B of IC5 will serve to indicate the scale of the reading to the
FPC (IC10). This way, the speech processor will enunciate a frequency read-
ing in hertz, kilohertz or megahertz.

Table 5.2 shows the microcode program for the FPC Am29CPL154. As
shown in Figure 5.1, the FPC is clocked by a 100 Hz frequency that is gener-
ated by IC7 and associated components. This means that the FPC will perform
each instruction in 10 ms (10,000 us); therefore, the FPC will issue output
pulses with 10 ms of duration. The output pulses are named ‘‘resetl,” “re-
set2,” “‘enable,” and “GL.” Thanks to the stable, low frequency of 100 Hz,
the output ““enable” (P10 of IC10) is generated by merely loading the CREG
counter of the FPC with the number 99. Because the FPC Am29CPL154 con-
tains an 8-bit CREG counter, the number 99 is loaded in one step, and then
counter CREG is decremented and tested against zero. Notice that while the
CREG counter is being decremented, the output named ‘“‘enable” permits
counters IC8a to IC8d to count the incoming pulses received at the input CLK
(pin 1 of IC8a).

Table 5.2 presents the software program for the FPC Am29CPL154. The
section for “‘comments” in the software program explains in detail the steps
that are being followed by the FPC in order to drive the speech processor cor-
rectly. In this case, the FPC Am29CPL154 is capable of reading the input fre-
quency of four BCD counters (IC8a, IC8b, IC8c, and IC8d) by driving a
3-to-8 decoder 74HC137 (IC6). IC6 is an active low decoder that selects the
BCD output of each counter by applying a logic zero at the input /OC of
the selected 4-bit latch (74HC173). Because the IC’s 74HC173 (IC9a to
IC9d) contain tri-state outputs, bus conflicts are avoided; therefore, the four
74HC173s share the same bus that provides the frequency measurement to the
FPC Am29CPL154. The FPC drives the 74HC137 by asserting a 3-bit data via
the outputs P12, P13, and P14.

The next step consists of driving the GL input of IC6 to a logic high while
the outputs P12 to P14 maintain the data. It is necessary to keep the input GL

204

5. Test and Measurement Circuits

TABLE 5.2
Software Program for the FPC Am29CPL154

DEVICE (CPL154)
DEFAULT = 1;
DEFINE "test inputs"
intr = t6 equal = eq

"Output control bits are given name assginments"
zero = 1F#h one = 01#h two = 02#h three = 03#h
four = 04#h five = 05#h six = 06#h seven = 07#h
eight = 08#h nine = 09#h ten = 0A#h eleven = 0B#h
twelve = 0C#h thirteen = OD#h fourteen = OE#h fifteen = OF#h
sixteen = 10#h seventeen = 11#h eighteen = 12#h nineteen = 13#h
twenty = 14#h thirty = 15#h forty = 16#h fifty = 17#h sixty
= 18#h
seventy = 19#h eighty = 1A#h ninety = 1B#h hundred = 1C#h
thousand = 1D#h million = 1E#h pulses = 9C#h kilo = 62#h
point = 9A#h digl = 1000+#h wr = 5000#h and = 3C#h
resetl = 100#h dig2 = 2000#h
reset2 = 200#h dig3 = 3000#h
cken = 400#h dig4 = 4000#h GL = 0800#h;

DEFAULT_OUTPUT = 0000#h;

OUT_POLARITY = F7FF#h;
TEST_CONDITION = INTR; "Default test condition"
BEGIN

"o zero, goto pl (no0);
" one, goto pl(nl);
n2n two, goto pl(n2);
"3 three, goto pl(n3);
"4 four, goto pl(n4);
"5 five, goto pl(n5);
"e" six, goto pl (n6);
g seven, goto pl(n7)
"g" eight, goto pl(n8);
g nine, goto pl(n9);

"10"start:reset2, call pl(count);

"11" ,cmp tm (30#h) to pl (00#h); "testing overflow"
"an ,if (equal) then goto pl (SPHZ);

"3n reset2, call pl(count)

"14" ,cmp tm (30#h) to pl (10#h); "testing overflow"
"15" ,if (equal) then goto pl (SPKHZ);

"16" reset2, call pl(count)

" ,cmp tm (30#h) to pl (20#h); "testing overflow"
"8" ,if (equal) then goto pl (SPKH2)

"19" reset2, call pl(count);

"20" ,goto pl (SPMHZ) ;

5.1 Talking Frequency Counter

" DISPLAY FORMAT: 0000 Scale: Hz D4 D3

"21"SPHZ: dig4, continue;

"22" dig4+GL, continue; " Digit 4 is selected by IC
"23" ,cmp tm(OF#h) to pl (00#h); "D4 =

"24" dig3, if (not equal) then goto pl (spkD4);
"25" dig3+GL, continue;

"26" ,cmp tm(OF#h) to pl (00#h); "D3 =

"27" dig2, if (not equal) then goto pl (spkD3);
"28" dig2+GL, continue;

D2 D1 "

T4HC137"

07"

0? "

07"

07"

07"

"2g9" ,cmp tm(OF#h) to pl (00#h); "D2 =
"30" ,if (not equal) then goto pl(ptyc);
"31"spkdl:digl, continue;

"32" digl+GL, call pl (announ); "Announce D1
"33"hrtz: ,call pl(HZ); "Hertz"
"34" ,goto pl(start)

"35"spkd4:dig4, continue;

"36" dig4+GL, call pl (announ); "Announce D4"
"37" thousand, continue;

"38"thousand+wr, continue; "Thousand. . . "
"39"same: dig3, if (not intr) then goto pl (same)

"40" dig3+GL, continue;

41" ,cmp tm(OF#h) to pl (00#h); "D3 =
42" ,if (not equal) then goto pl (spkD3);

"43" dig2, continue;

"44" dig2+GL, continue;

"45" ,cmp tm(OF#h) to pl (00#h); "D2 =
46" ,if (not equal) then goto pl(ptyand)
"47"spkand: and, continue;

48" and+wr, continue; "And. .. "
"49"same2: ,if (not intr) then goto pl (same2)

"50" ,goto pl (spkdl);

"51"spkd3:dig3, continue;

"52" dig3+GL, call pl (announ) ; "Announce D3"
"53" hundred, continue;

"54" hundred+wr, continue; "Hundred. . ."

"55"same3:dig2, if (not intr) then goto pl (same3);
"56" dig2+GL, continue;

"57" ,cmp tm(0OF#h) to pl (00#h); "D2
"58" ,if (not equal) then goto pl (ptyand);
"59" digl, continue;

"60" digl+GL, continue;

"e1L" ,cmp tm(0OF#h) to pl(00#h); "D1
"e2" ,if (not equal) then goto pl (spkand);
"e3" ,goto pl (hrtz);

"64"ptyand: and, continue;

"e5" and+wr, continue;

"66"samed4:dig2, if (not intr) then goto pl (same4);
"67"ptyc: dig2+GL, continue;

= o7n

= o7

=170

"e8" ,cmp tm(OF#h) to pl (01#h); "D2
"69" ,if (not equal) then goto pl (ptyb);

"7o" digl, continue;

"1 digl+GL, call pl(BCD4); "Announce D1"
nan ,goto pl(hrtz);

"73"ptyb:dig2, continue; "Announce D2"

205

206

5. Test and Measurement Circuits

"74" dig2+GL, call pl (BCD3b);

"5 digi, continue;

"76" digl+GL, continue;

Rl ,cmp tm(OF#h) to pl(00#h); "D1 = 0?"
78" ,if (equal) then goto pl (hrtz)

"9 ,call pl (announ) ; "Announce D1"
"80" ,goto pl (hrtz);

" DISPLAY FORMAT: 10.00 Scale: KHz D4 D3.D2 D1"
"81"SPKHZ: dig4, continue; "D4 is necesarily not zero"
"gan dig4+GL, continue; "D4 is latched"

"83" ,cmp tm(OF#h) to pl (00#h); "D4=0? "
"84qn ,if (not equal) then goto pl(rick5)
"85"sayd3: dig3, continue; "say D3 because D4=0"
"86" dig3+GL, call pl(announ); "D3 is latched"
"87"pnt: point, continue; "Point. . "

"88" point+wr, continue;

"89"idle: ,if (not intr) then goto pl(idle);
"go" dig2, continue;

"g1" dig2+GL, continue;

"gan ,cmp tm(OF#h) to pl (00#h); "D2=0? "
"g3" ,if (not equal) then goto pl(rick2);
"gqn ,continue;

"gs5" ,call pl(announ); "announce D2"
"96"pat: digi, continue;

"9 digl+GL, call pl(announ); "announce D1"
"98"paty: ,call pl(KHZ); "announce KiloHertz"
"g9" ,goto pl(start);

"100"rick2: digi, continue;

"101" digl+GL, continue;

"102" ,cmp tm(OF#h) to pl(00#h);

"103" ,if (not equal) then goto pl(rick3);
"104" dig2, continue;

"105" dig2+GL, call pl (BCD3);

"106" ,goto pl (paty);

"107"rick3: dig2, continue;

"108" dig2+GL, continue;

"109" ,cmp tm(OF#h) to pl (01#h);

"110" ,if (not equal) then goto pl(rick4);
"i11" ,call pl (BCD4);

"i12n ,goto pl (paty);

"113"rick4: dig2, continue;

"114" dig2+GL, call pl (BCD3b);

"115" ,goto pl(pat)

"116"rick5: dig4, continue;

"1 dig4+GL, continue;

"118" ,cmp tm(OF#h) to pl (01#h); "D4=1? "
"119" ,if (not equal) then goto pl(ricks);
"120" digs, continue;

"121" dig3+GL, call pl(BCD4); "Announce D3"
ni22" ,goto pl(pnt)

"123"rick6: dig4, continue;

5.1 Talking Frequency Counter

"124"
"125"
"126"
"127n
"128"
"129"

dig4+GL,
digs,
dig3+GL,

"130"SPKH2: dig4,

"131" digd+GL,
"132" hundred,
"133" hundred+wr,
"134"sty5:

"135" and,
"136" and+wr,
"137"sty6:

"138" dig3,

"139" dig3+GL,
"140"

"141"

"142"lug4: dig2,
"143" dig2+GL,
"144"1lug5: point,
"145" point+wr,
"146"sty20:

"147" dig1,
"148" digl+GL,
"149"

"150"

"151"lug3: dig3,
"152" dig3+GL,
"153"

"154"

"155"

"156" dig2,
"157" dig2+GL,
"158"

"159"

"160"

"161"1lug6: dig2,
"162" dig2+GL,
"163"

)

’

call pl (BCD3b); "Announce D4"
continue;

continue;

,cmp tm(OF#h) to pl(00#h); "D3 = 0? "
,if (not equal) then goto pl (sayd3);
,goto pl(pnt);

100.0 Scale:KHz D4 D3 D2.D1
continue; "D4 is not zero"

call pl(announ); "D4 is latched"
continue; "Hundred. . ."
continue;

if (not intr) then goto pl(sty5);
continue;

continue; "And...."

if (not intr) then goto pl(styé6);
continue;

continue;

cmp tm(OF#h) to pl(00#h); "D3=0? "
if (not equal) then goto pl(lug3)
continue;

call pl(announ); "D2 is announced"
continue;

continue;

if (not intr) then goto pl (sty20);
continue;

call pl(announ); "D1 is announced"
call pl (KHZ);

goto pl(start);

continue;

continue;

cmp tm(0f#h) to pl(01#h); "D3=1?"

if (equal) then goto pl(lugé);
call pl (BCD3b);

continue;

continue;

cmp tm(OF#h) to pl (00#h); "D2=0?"
if (not equal) then goto pl (lug4)
goto pl(lugs);

continue;

call pl(BCD4);

goto pl(lug5);

" DISPLAY FORMAT:
"164"SPMHZ: dig4,

"165"
"166"
"167"
"168"stys8:
"169"
"170"
"171"

digd+GL,
point,
point+wr,

digs,
dig3+GL,

dig2,

.000 Scale: MHz "

continue;

call pl(announ); "D4 is latched"
continue;

continue; "Point"

if (not intr) then goto pl(sty8)
continue;

call pl(announ); "D3 is latched"
continue;

207

DISPLAY FORMAT

208

5. Test and Measurement Circuits

"i72n dig2+GL, call pl (announ); "D2 is selected"
"173" digl, continue;

"174" digl+GL, call pl (announ); "D1 is selected"
"175" ,call pl (MHZ);

"17e" ,goto pl(start);

" *x*x*x*x Routine for enabling counters IC8-IC9 for 1 second ****x "
"177"count:resetl, load pl(99);

"178"stay: cken, while (creg <> 0) loop to pl(stay);
"179" ,ret;

" ROUTINES BCD3 AND BCD3b "
"180"BCD3: ,cmp tm(OF#h) to pl (01#h);

"181" ten+GL, if (equal) then goto pl(nl0);
"182"BCD3b: ,cmp tm(OF#h) to pl (02#h);

"183" twenty+GL, if (equal) then goto pl (n20);
"184" ,cmp tm(OF#h) to pl (03#h);

"185" thirty+GL, if (equal) then goto pl (n30);
"186" ,cmp tm(OF#h) to pl (04#h);

"187" forty+GL, if (equal) then goto pl (n40);
"188" ,cmp tm(0OF#h) to pl (05#h);

"189" fifty+GL, if (equal) then goto pl(n50);
"190" ,cmp tm(OF#h) to pl (06#h);

"191" sixty+GL, if (equal) then goto pl (n60);
192" ,cmp tm(OF#h) to pl(07#h);
"193"seventy+GL, if (equal) then goto pl(n70);
"194" ,cmp tm(OF#h) to pl (08#h);

"195" eighty+GL, if (equal) then goto pl(n80);
"196" ninety+GL, goto pl (n90);

"197"n10: ten+wr, goto pl(xb);

"198"n20: twenty+wr, goto pl(xb);

"199"n30: thirty+wr, goto pl(xb);

"200"n40: forty+wr, goto pl(xb);

"201"n50: fifty+wr, goto pl (xb);

"202"n60: sixty+wr, goto pl(xb);

"203"n70: seventy+wr, goto pl (xb);

"204"n80: eighty+wr, goto pl(xb);

"205"n90: ninety+wr, goto pl (xb);

"206"xb: ,if (not intr) then goto pl (xb);
"207" ,ret;

" ROUTINE BCD4 "

"208" BCD4: ,cmp tm (OF#h) to pl (00#h);

"209" ten+GL, if (equal) then goto pl(nl0);
"210" ,cmp tm(OF#h) to pl (01#h);

"211" eleven+GL, if (equal) then goto pl(nll);
"212" ,cmp tm(OF#h) to pl(02#h);

"213" twelve+GL, if (equal) then goto pl(nl2);
"214" ,cmp tm(OF#h) to pl (03#h);

5.1 Talking Frequency Counter

then goto pl(finish);

else wait;

else wait;

else wait;

"215"thirteen+GL, if (equal) then goto pl(n13);
"216" ,cmp tm(OF#h) to pl(04#h);
"217"fourteen+GL, if (equal) then goto pl(ni4);
"218" ,cmp tm(OF#h) to pl(05#h);
"219"fifteen+GL, if (equal) then goto pl (nl5);
"220" ,cmp tm(OF#h) to pl(06#h);
"221"sixteen+GL, 1if (equal) then goto pl (n1é6);
ra222" ,emp tm(OF#h) to pl(07#h);
"223"seventeen+GL, if (equal) then goto pl(nl7);
n224" ,cmp tm(OF#h) to pl(08#h);
"225"eighteen+GL, if (equal) then goto pl(nl8);
"226"nineteen+GL, goto pl(nl19);
"227"nll: eleven+wr, goto pl(finish);
"228"n12: twelve+wr, goto pl(finish);
"229"n13: thirteen+wr, goto pl(finish);
"230"n14: fourteentwr, goto pl (finish);
"231"nl15: fif teen+wr, goto pl (finish);
"232"nl16: sixteen+wr, goto pl(finish);
"233"nl7: seventeentwr, goto pl(finish);
"234"n18: eighteentwr, goto pl(finish);
"235"n19: nineteen+wr, goto pl (finish);
"236"announ: ,goto tm(OF#h);
"237"n0: zero+wr, goto pl (finish);
"238"nl: one+wr, goto pl(finish);
"239"n2: twotwr, goto pl(finish);
"240"n3: three+wr, goto pl(finish);
"241"n4: four+wr, goto pl (finish);
"242"n5: five+wr, goto pl (finish);
"243"n6: six+wr, goto pl(finish);
"244"n7: seventwr, goto pl(finish);
"245"n8: eight+wr, goto pl (finish);
"246"n9: nine+wr, goto pl(finish);
"247"finish: ,if (not intr)
"248" ,ret;
S P
"249"HZ: pulses, continue;
"250" pulses+wr, continue;
"251" ,if (intr) then goto pl (stop)
"252"KHZ:kilo, continue;
"253" kilo+wr, continue;
"254" ,if (intr) then goto pl (HZ)
"255"MHZ: million, continue;
"256" million+wr, continue;
"257" ,if (intr) then goto pl (HZ)
"258"stop: wr, ret;
S
.org 511#d
"259" ,goto pl(start);

END.

209

210 5. Test and Measurement Circuits

of the 74HC137 in a logic high in order to maintain the selection of one of the
four 74HC173 latches. This feature permits the FPC to perform several tasks
of comparison with the selected BCD digit. In this manner, the FPC selects
one of the four BCD digits to execute the subroutine of comparisons in order
to determine the decimal value of the selected digit. The 74HC137 (I1C6) is
also used to assert a logic low to the /WR input of the Digitalker via output
Y5. When the 74HC137 is not working, the output YO (not shown) stays in a
logic low while the rest of the outputs remain in a logic high.

Table 5.2 shows that the main process of the program is in lines 10 to 20 of
the microcode program. The routines “SPHZ,” “SPKHZ,” and “SPKHZ2”
required by the FPC Am29CPL154 to determine the magnitude and the scale
of a frequency reading are shown in Figures 5.2, 5.3, and 5.4, respectively.
The routine “SPMHz” is used for input frequencies within the range of 1.000
t0 9.999 MHz. Figures 5.5 and 5.6 show the comparison subroutines that very
often are used to determine the decimal value of the digit under measurement.

CPHDD

b2
CALL BCD3b |

Announce D1 =

Figure 5.2 Flowchart for subroutine "SPHZ.”

5.1 Talking Frequency Counter 211

Announce D3
CALL BCD4

CALL BCDIb
e T N0
<=0

T

ye;[/

"KiloHertz"

Figure 5.3 Flowchart for subroutine “SPKHZ.”

To perform a complete reading with the circuitry of Figure 5.1, the process
shown in Table 5.2 must take place. When the circuit is first turned on, a soft-
ware reset pulse is applied with the instruction ‘“.org 511#d” that makes the
program jump to the next instruction, located in line 257. Because the default
test condition is the output /INTR of the Digitalker, the instruction in line 257
makes the program jump to the instruction labeled “‘start,” which is located in
line 10. As we have seen in previous chapters, the /INTR output of the Digi-
talker gives a logic one when it is ready to be triggered to start saying a deter-
mined word. Output lines PO to P7 of the FPC are used for loading the 8-bit
binary address that the Digitalker requires to announce a word (see Fig-
ure 5.1.) The instruction ““call pl(count)” in line 10 of Table 5.2 calls the rou-
tine named ‘““count” located in line 177 and resets counter ICS.

212 5. Test and Measurement Circuits

"Point..“]

Announce D1

"KiloHertz"

¢ Start
—

Figure 5.4 Flowchart for subroutine “SPKHZ2.”

The first step that the routine “count” performs is loading the CREG
counter contained in the FPC with the decimal number 99. The instruction
“load pl(99)” in line 177 also clears the dual BCD counters (IC8a to IC8d)
prior to starting the counting sequence. Line 178 contains the instruction
“while (creg <> 0),”which keeps decrementing counter CREG of the FPC
while output P10 named ‘“‘enable’” remains at a logic high. Output P10 enables
counters IC8a to IC8d to start counting the input frequency ““fi” for a period
of one second. When counter CREG is zero, the program jumps to the instruc-
tion “ret” in line 179, which performs a return to line 11. The instruction
“cmp tm(30#h) to pl(00#h)” is used to test if one or more overflows have
occurred. The bits ““A” and “B” of IC5 are routed to the testable inputs T4
and T5 of the FPC; therefore, the test mask 30#h must be used to read the
binary value of T4 and T5. Inputs T4 and TS5 are compared against zero in line
12. If T4 and TS are equal to zero, the program jumps to the routine named

‘e

5.1 Talking Frequency Counter 213

“SPHZ.” If T4 and TS5 are not zero, the program jumps to the next instruction
in line 13. The set of instructions located in lines 13 to 20 are also used to
determine if more overflows occur, so the program can jump to the routine
that corresponds to the scale of the frequency under measurement.

The routine “SPHZ” is used for measuring frequencies within the range of
0 to 9999 hertz. The flowchart used for developing the microcode is shown in
Figure 5.2. The following two examples may be helpful in understanding the
flowchart.

Suppose we are measuring a low input frequency of 8 hertz; that is, 0008
Hz. In this case, the least significant digit D1 is the only one that contains the
magnitude of the reading. Routine “SPHz” starts by comparing digit D4
against zero. Since digit D4 is equal to zero, it then compares digit D3 and
then digit D2. Because D3 and D2 are both equal to zero, the program reaches
the box named ‘“Announce D1.” Announcing the value of digit D1 is per-
formed by calling the routine ‘““announ” in line 234. The instruction *‘goto
tm(OF#h)” in line 234 uses the inputs TO to T3 to jump to the lines within the
range of zero to nine, depending upon the value of the digit D1. As can be
seen in lines zero to nine of Table 5.2, the instructions in that range contain a
“goto pl(nX)” command that makes the program jump to the exact location
where the speech word for the decimal number is located. In this case, digit
D1 makes the program branch to label “n8” located in line 243 where the
word “‘eight” is stored. Notice that line 8 of the program also contains the
word “eight” in order to issue the speech data to the address bus of the Digi-
talker. In addition, when the program jumps to line 243, the word “eight’ is
still present while the /WR input of the Digitalker is pulsed low for 10 ms.
This causes the Digitalker to issue the word ‘‘eight,” and the program will
jump to line 245 in order to wait for the /INTR input to go high. When the
Digitalker has finished saying the word ‘‘eight,” its /INTR output goes to a
logic high, making the FPC return to line 33. The instruction in line 33 now
calls subroutine “HZ,”” which is used to deliver the word “hertz” to the Digi-
talker. Because the word “‘hertz” is not contained in the ROM vocabulary of
the Digitalker, the word “‘pulses” was selected. When the program returns
from routine ““HZ,” it then goes to label “start’” in order to initiate a new
frequency measurement.

As a second example, assume that our frequency under measurement is
1500 hertz. The flowchart of Figure 5.2 will determine that D4 is not zero and
that digit D4 must be announced; consequently, digit D4 is enunciated by call-
ing subroutine ‘“‘announ.” In this case, the operator will hear the word ““one.”
The next step is to issue the word “‘thousand” since digit D4 represents the
thousands of hertz under measurement. The left upper corner of the flowchart
(see Figure 5.2) shows that the program now has to determine if digit D3 is
equal to zero. In this case, digit D3 is not zero, so the program proceeds
to announce the value of digit D3, which is “five” followed by the word

214 5. Test and Measurement Circuits

“hundred.” The flowchart now indicates that the next step is to determine if D2
and D1 are equal to zero. Since D2 and D1 are both equal to zero, the program
will issue the word “pulses.” Thus the operator will hear the phrase “one
thousand five hundred pulses” that corresponds to the input frequency under
measurement. The reader can try several values within the range of 0 to 9999
Hz with the routine *“SPHZ”’; it performs all possible measurements correctly.

In the same way, routine “SPKHZ” performs all possible frequency mea-
surements within the range of 10.00 to 99.99 kHz. Notice that the decimal
point between D3 and D2 is also considered in the flowchart presented in Fig-
ure 5.3. Routine “SPKHZ2” shown in Figure 5.4 gives the measurements for
input frequencies within the range of 100.0 to 999.0 kHz. The routine
“SPMHz” located in line 164 gives the frequency readings within the range of
1.000 to 9.999 MHz. It is a small routine because it only scans and issues the

BCD3

CRETURN

Figure 5.5 Flowchart for subroutine “BCD3.”

5.1 Talking Frequency Counter 215

01 = 02 Y25 50 ren
no
yes
no
< e T
no yes
0=
no yes
no
no
D1 =77 /€3 [Seventeen
no
01 = 87 yes Eighteen
no

Figure 5.6 Flowchart for subroutine BCD4.

decimal value of the four digits from left to right and adds the words “‘point”
and “megahertz” (see lines 167 and 175, respectively).

Subroutines BCD3 and BCD4, shown in Figures 5.5 and 5.6, respectively,
are frequently used by the program to solve the cases of decimal numbers
formed by two numbers. For example, ‘““twenty four” or numbers less than
20, as in the number ‘“seventeen.”

The routine presented in this section is extremely useful for measuring
variables that have to be represented in digital format. With a few variations to
the section “DEFINE,” the routine shown in Table 5.2 can be easily adapted
for controlling another type of speech processor for any specific application.

5.3 A Direct Current Voltmeter 217

S1is depressed, the monostable generates a 1.1 ms pulse that sets the Q output
of flip-flop IC7 high. The resulting negative transition at the speech processor
chip’s /ALD input (pin 20) loads the current EPROM output and causes the
processor to assert a low logic level at the /SBY output (pin 8). This action
changes the IC8b output to a logic one, causing the processor to hold /SBY
low for an interval appropriate to that particular allophone. Note that you
must connect an audio amplifier and speaker or headphone to the output as
indicated.

The processor initiates the next allophone cycle by driving /SBY high.
Each audible report requires 3 to 25 allophones, which you can get from the
dictionary located in Section 2 of Chapter 2. In essence, you must program
the EPROM in 250 blocks of 3 to 25 bytes each.

An input of A12—A5=00000001 (corresponding to 0.1 V input), for ex-
ample, produces the word *“zero point one” from the audio amplifier. The al-
lophones representing these words are stored in the EPROM as shown in Table
5.3. Table 5.3 shows that, after each report, the hex data instructions 4 and 44
internally reset the speech processor and, via the EPROM’s O6 output, they
reset the counter and the flip-flop as well. Table 5.3 represents only a part of
the whole set of data within the ranges of 0.0 to 3.0 V and 24.9 to 25.0 V.

5.3 Designing a Direct Current Voltmeter'
with the Digitalker Kit DT1050

The circuit presented in Figure 5.8 converts inputs of 0 to 25.5 V into a plain-
English output with a resolution of 0.1 V. The voltmeter uses an MM54104
Digitalker chip from National Semiconductor as the speech synthesizer (ICS).
Two ROMs (IC6 and IC7) contain in compressed form the frequency and am-
plitude data required for spoken expressions at 144 addressable locations. Fig-
ure 5.8 shows the external filter, audio amplifier, and the external speaker that
the system requires to enunciate the voltage measurements.

Resistors R1 and R2 divide the input voltage to be measured by 10. Press-
ing the test switch to take a reading sends a 4 ms negative pulse to the A/D
converter from the Nand gate IClc, configured as a half-monostable. The
ADCO0804 A/D converter generates an 8-bit binary-coded output word, DBO
to DB7, the digital equivalent of the voltage input. These eight bits serve as
the address input to pins A4 to All of the 27C64 EPROM (IC4). Half of a
4520 dual counter (IC2a) scans those memory locations in sequence by driv-
ing the lower address bits AO to A3 of the EPROM. As a result, the EPROM
delivers a preprogrammed sequence of five instructions to the Digitalker.
After each report, Nand gates ICla and IC1b reset both ICla and IC2b binary
counters.

'Reprinted and adapted with permission from Electronic Design, (Vol. 36 No. 24) 10/27/88.
Copyright 1987 Penton Publishing.

218 5. Test and Measurement Circuits

TABLE 5.3

EPROM Program that Contains All the Speech Data for the dc Talking Voltmeter

Input Hex Hex

voltage data data

0.0 volts 00 2B, 3C, 35, 2, 23,35, 2D, 11, 37, 4, 44

0.1 20 2B, 3C,35,2,9,5,B,11, 2, 2E,F,F,B, 4, 44

0.2 40 2B, 3C,35,2,9,5,B,11,2,D, 1F, 4, 44

0.3 60 2B, 3C,35,2,9,5,B,11,2,10,E, 13, 4, 44

0.4 80 2B, 3C,35,2,9,5,B,11, 2,28, 28,34, 4,44

0.5 A0 2B, 3C,35,2,9,5,B, 11,2, 28,28, 6,23, 4, 44

0.6 co 2B, 3C, 35,2,9,5,B,11,2,37,37,C, 2,27, 37, 4, 44

0.7 EO 2B, 3C, 35,2,9,5,B,11,2,37,37,17,7,23,C,B, 4, 44

0.8 100 2B, 3C,35,2,9,5,B,11,2,14,2,D, 4, 44

0.9 120 2B, 3C,35,2,9,5,B,11,2,38,18,6,B, 4, 44

1.0 140 2E,F,F,B, 2,23,35,2D, 11, 4, 44

1.1 160 2E,F,F,B,2,9,5,B,11,2,39,F,F,B, 4, 44

1.2 180 2E,F,F,B,2,9,5,B,11,2,D, 1F, 4, 44

1.3 1A0 2E,F,F,B,2,9,5,B,11,2,10,E, 13,4, 44

1.4 1C0 2E,F,F,B,2,9,5,B,11,2,28,28,3A,4,44

1.5 1E0 2E,F,F,B,2,9,5,B,11,2,28,28,6,23,4,44

1.6 200 2E,F,F,B,2,9,5,B,11,2,37,37,C, 2,29,37, 4, 44

1.7 220 2E,F,F,B,2,9,5,B,11,2,37,37,7,7,23,C,B, 4, 44

1.8 240 2E,F,F,B,2,9,5,B,11,2,14, 2D, 4, 44

1.9 260 2E,F,F,B,2,9,5,B,11,2,38,18,6,B, 4, 44

2.0 280 D, 1F, 2, 23, 35, 2D, 11, 37, 4, 44

2.1 2A0 D, 1F,2,9,5,B,11,2,39,F,F,F,B, 4, 44

2.2 2C0 D,1F,2,9,5,B,11,2,D, 1F, 4, 44

2.3 2E0 D,1F,2,9,5,B,11,2,10,E, 13, 4, 44

2.4 300 D,1F,2,9,5,B,11, 2,28, 28,3A, 4, 44

2.5 320 D,1F, 2,9,5,B,11, 2, 28,28, 6,23, 4,44

2.6 340 D, 1F,2,9,5,B,11,2,37,37,C, 2,29,37,4, 44

2.7 360 D,1F,2,9,5,B,11,2,37,37,7,7,23,C,B, 4, 44

2.8 380 D,1F,2,9,5,B, 11,2, 14, 2D, 4, 44

2.9 3A0 D, 1F,2,9,5,B,11,2,38,18,6,B, 4, 44

3.0 3C0 10,E, 13,2, 23,35, 2D, 11, 37, 4, 44

24.9 1F20 D,30,7,7,B,2,D,13,2,28,28,34,2,9,5,B,11, 38,18, 6,
B, 4, 44

25.0 D,30,7,7,B,2,D,13, 2,28, 28, 6,23,2,23,35,2D, 11,
37,4,44

25.1

D,30,7,7,B,2,D,13,2,28,28,6,23,2,9,5,B,11, 2E,F,F,
B, 4, 44

25.2 D,30,7,7,B,2,D,13, 2,28, 28,6,23,2,9,5,B,11,D, 1F,
4,44

25.3 D,30,7,7,B,2,D,13, 2, 28, 28,6,23,2,9,5,B, 11, 10, E,
13,4, 44

25.4 D,30,7,7,B,2,D,13,2,28,28,6,23,2,9,5,B, 11, 28, 28,
34,4, 44

25.5 D,30,7,7,B,2,D,13,2,28,28,6,23,2,9,5,B, 11, 28, 28,

6,23,4,44

220 5. Test and Measurement Circuits

TABLE 5.4
EPROM Program for the 255 Blocks of 1C4

Hex Hex
add data Message

0 1F, 7A, 1F, 8E, 81 zero point zero volts

10 1F,7A,1, 8E, 81 zero point one volts

20 1F, 7A, 2, 8E, 81 zero point two volts

30 1F, 7A, 3, 8E, 81 zero point three volts

40 1F, 7A,4, 8E, 81 zero point four volts

50 1F, 7A,5, 8E, 81 zero point five volts

60 1F, 7A, 6, 8E, 81 zero point six volts

70 1F,7A, 7, 8E, 81 zero point seven volts

80 1F, 74, 8, 8E, 81 zero point eight volts

90 1F,7A,9, 8E, 81 zero point nine volts

A0 1, 7A, 1F, 8E, 81 one point zero volts

BO 1,7A,1, 8E, 81 one point one volts

Cco 1,7A,2, 8E, 81 one point two volts

DO 1,74, 3, 8E, 81 one point three volts

EO 1,7A,4,8E, 81 one point four volts

FO 1,7A,5, 8E, 81 one point five volts
100 1,7A, 6, 8E, 81 one point six volts
110 1,7A,7, 8E, 81 one point seven volts
120 1,7A,8, 8E, 81 one point eight volts
130 1,7A,9, 8E, 81 one point nine volts
140 2,7A, 1F, 8E, 81 two point zero volts
FAO 19,5, 7A, 1F, 8E twenty five point zero volts
FBO 19,5,7A,1, 8E twenty five point one volts
FCO 19,5, 7A,2,8E twenty five point two volts
FDO 19,5, 7A, 3, 8E twenty five point three volts
FEO 19,5,7A,4,8E twenty five point four volts
FFO 19,5,7A,5, 8E twenty five point five volts

also enables Nand gate IC1d to load that word into the Digitalker. This cycling
continues until ICla and ICIb reset both IC2 counter halves, preparing the
circuit for another reading.

5.4 Using a Field Programmable
Controller to Design a Compact
Autorange Direct Current Voltmeter

The circuit shown in Figure 5.9 measures a dc input voltage within the range
of 0 to 1.999 V. An automatic floating point can be added by controlling a
switching network for the input voltage that also indicates the scale to the FPC
Am29CPL154. Notice that the talking dc voltmeter does not contain a digital

222 5. Test and Measurement Circuits

The time base section is formed by IC7. The oscillator/divider MM5369EST
(IC7) uses a 3.57 MHz crystal in order to give a stable 100 Hz output fre-
quency, which feeds the FPC Am29CPL154 (IC10). The FPC (IC10) is pro-
grammed to control the “initiate conversion” input of A/D TSC8750. The
FPC is also used to enable the input voltage under measurement received by
the TSC8750 (see Figure 5.9). To perform a voltage reading, the FPC has to
know if an overflow has occurred in order to select the next higher scale. If a
new scale is selected, the FPC announces the voltage in the scale of O to
20 V. If no overflow occurs in the new selected scale, the FPC reads the mea-
sured voltage through the testable inputs TO to T3. This way, the FPC starts
the routine for driving the speech processor Digitalker (MM54104). The Digi-
talker kit was selected for this application because it contains a vocabulary
with numbers and words that are used for voltage measurements.

We will now examine the operation of the entire circuit of Figure 5.9 in
more detail. When the circuit is first turned on, the FPC Am29CPL154 resets
PAL20R4, which is the chip that registers the overflows that may occur when
the selected input voltage causes an overflow. The FPC then proceeds to clear
the PAL20R4 by sending a positive transient pulse via output P15. In this man-
ner, the FPC resets the PAL prior to starting a voltage reading. Now, the FPC
enables the input Vin to the ADC TSC8750 in order to determine its magni-
tude. When the ADC TSC8750 ends the conversion process in 10 ms, the FPC
checks if an overflow has occurred by reading output Z of the PAL16R4.

If the testable input T4 is in a logic high, the FPC selects the next higher
scale and starts a new voltage measurement by enabling the input that contains
the 200K resistor. Now the TSC8750 will be measuring voltages within the
range of 0 to 19.99 V. This scale is selected by the FPC by sending a logic
high to the analog selector CD4051. If no overflow occurs in this scale, the
FPC will proceed to read the measured voltage through the inputs TO to T3.
Then the FPC will perform the routine for vocalizing the voltage reading.

Table 5.5 shows the three cases that might occur when the input signal
under measurement contains a magnitude that ranges from 0 to 20 V.

Table 5.5 shows three cases that represent all possible ranges for the input

TABLE 5.5
Input Voltages for the Autorange DC Voltmeter
Voltage Input Resistor Display
range voltage selected reading P8 P9 P10
0-199.9 mV 100.1 mV 20 K 100.1 1 0 O
0-1.999 V 1.125 V 200K 1.1 2 5 0O 1 O
0-19.99 V 5.150 V 2 M 5.1 50 0o 0 1

5.4 A Compact Direct Current Voltmeter 223

voltage under measurement. In the first row, the dc voltmeter accepts up to
199.9 mV via the 20K resistor. Notice that the FPC selects the input voltage
“Vin” with outputs P8, P9, and P10 equal to 100, respectively. If the first
overflow occurs, the FPC will select the second resistor of 200K. With the
200K resistor selected, the FPC will start a new conversion process in order to
get the new reading in the voltage scale. The FPC will detect the change of
scale by reading the input T4. If a second overflow occurs, the FPC will
change the input node from 200K to 2M. Once the 2M resistor is selected, the
ADC TSC8750 will be capable of performing voltage readings within the
range of 0 to 19.99 V. If the input voltage under measurement, for example, is
equal to or higher than 19.99 V, the FPC will make the speech processor an-
nounce the word “over range.” After that message, the FPC will start a new
voltage reading. The logical values of the output “Z”’ of the PAL will serve to
indicate to the FPC (IC10) the scale of the reading. This way, the speech pro-
cessor can speak a voltage reading in millivolts or volts.

Table 5.6 shows the microcode program for the FPC Am29CPL154. As
shown in Figure 5.9, the FPC is clocked by a 100 Hz frequency that is gener-
ated by IC7 and associated components. This means that the FPC will perform
each instruction in 10 ms (10,000 ws); therefore, the FPC will issue out-
put pulses with 10 ms of duration. The output pulses are named ‘“‘convers”
and “GL.”

Table 5.6 presents the software program for the FPC Am29CPL154. The
“‘comments” section in the software program explains in detail the steps fol-
lowed by the FPC in order to drive the speech processor correctly. In this case,
the FPC Am29CPL154 is capable of reading the input voltage of the 3.5 digits
parallel BCD converter by driving a 3-to-8 decoder 74HC137 (1C6). IC6 is an
active low decoder that selects the BCD output of each counter by applying a
logic zero at the input /OC of the selected 4-bit latch (74HC173). Because the
IC’s 74HC173 contain tri-state outputs, bus conflicts are avoided; therefore,
the four 74HC173s share the same bus that provides the digital voltage reading
to the FPC Am29CPL154. The FPC drives the 74HC137 by asserting a 3-bit
data via outputs P12, P13, and P14. The next step consists of driving the GL
input to a logic high while the outputs P12 to P14 maintain the data. It is nec-
essary to keep the input GL of the 74HC137 in a logic high in order to main-
tain the selection of one of the four latches 74HC173. This feature permits the
FPC to perform several comparisons with the selected BCD digit. In this man-
ner, the FPC selects one of the four BCD digits to execute the subroutine
of comparisons to determine the decimal value of the selected digit. The
74HC137 (IC6) is also used to assert a logic low to the /WR input of the Digi-
talker via output Y5. When the 74HC137 is not working, the output YO stays
in a logic low while the rest of the outputs remain in a logic high.

Table 5.6 shows that the main process of the program is in lines 10
to 20 of the microcode program. The routines “SPMV,” “SPVOLT,” and

224

5. Test and Measurement Circuits

TABLE 5.6

Software Program for the FPC Am29CPL154

DEVI

CE (CPL154)

DEFAULT = 1;

DEFI
hran

zero
four
eigh
twel
sixt
twen
= 18
seve
thou
over
rstP
scal
scal
scal

DEFA

NE "test inputs"
ge = t4 busy = t7 intr = t6 equal = eq

"Output control bits are given name assginments"

= 1F#h
= 04#h
t = 08#h

one = 01#h two = 02#h three = 03#h
five = 05#h six = 06#h seven = 07#h
nine = 09#h ten = OA#h eleven = OB#h

ve = 0C#h thirteen = OD#h fourteen = OE#h fifteen = OF#h

een = 10#h

seventeen = 11#h eighteen = 12#h nineteen = 13#h

ty = 14#h thirty = 15#h forty = 16#h fifty = 17#h sixty

#h
nty = 19#h
sand = 1D#h

eighty = 1A#h ninety = 1B#h hundred = 1C#h

milli = 6C#h volt = 8E#h ss = 81#h kilo = 62#h

= 75#h point = 9A#h wr = 5000#h and = 3C#h

AL = 8000#h
el = 0000#h
e2 = 0100#h
e3 = 0300#h
ULT_OUTPUT =

"P15" digl = 1000#h "P12" convrs = 400#h
dig2 = 2000#h "P13"

"pg" dig3 = 3000#h "P12+P13" GL = 0800#h
digd = 4000#h; "P14"

0000#h;

OUT_POLARITY = 1111011111111111#b; "GL is high when not specified"

TEST_CONDITION

INTR; "Default test condition"

BEGIN

"o" zero, goto pl(no0)

" one, goto pl(nl);

nan two, goto pl(n2)

"3 three, goto pl(n3);

ngn four, goto pl(n4);

"5 five, goto pl(n5);

"6" six, goto pl (n6)

nqn seven, goto pl(n7)

"g" eight, goto pl(n8)

ngn nine, goto pl(n9);

" — s ~ - s e e s o e s e o o ot o o e s o o e i o "

" MAIN PROCESS "

" ~— N i P VP "
"10"start: rstPAL+scalel, call pl(voltage);

"11n ,if (not hrange) then goto pl(SPmV); "over range?"
"i2n rstPAL, continue;

"13" ,call pl(voltage2)

"iqn ,if (not hrange) then goto pl (SPVOLT1); "over range?"
"1s" rstPAL, continue;

"16" ,call pl(voltage3)

"7 rstPAL, continue;

"18" ,if (not hrange) then goto pl (SPVOLT2); "over range?"
""" ,call pl(msgerr)

5.4 A Compact Direct Current Voltmeter 225

"20" ,goto pl (start)

"

" "

" DISPLAY FORMAT: 10.00 Scale: Volts (0-20V) D4 D3.D2 D1"

"21"SPVOLT2: dig4, continue; "D4 is necesarily not zero"
n22" dig4+GL, continue; "D4 is latched"

"23" ,cmp tm(OF#h) to pl(00#h); "D4=0? "
24" ,if (not equal) then goto pl(rick5);
"25"sayd3: dig3, continue; "say D3 because D4=0"
"26" dig3+GL, call pl(announ); "D3 is latched"
"27"pnt: point, continue; "Point. . "

"28" point+wr, continue;

"29"idle: ,if (not intr) then goto pl(idle);
"3o" dig2, continue;

"31" dig2+GL, continue;

"32" ,cmp tm(OF#h) to pl(00#h); "D2=0? "
"33" ,if (not equal) then goto pl(rick2);
"34" ,continue;

"35" ,call pl (announ); "announce D2"
"36"pat: digi, continue;

"3 digl+GL, call pl (announ); "announce D1"
"38"paty: ,call pl(HZ); "Volts"

"39" ,goto pl(start);

"40"rick2: digl, continue;

"4l digl+GL, continue;

nq2n ,cmp tm(OF#h) to pl (00#h);

"43" ,if (not equal) then goto pl(rick3);
"4qn dig2, continue;

"45" dig2+GL, call pl(BCD3);

46" ,goto pl (paty);

"47"rick3: dig2, continue;

"48" dig2+GL, continue;

"49" ,cmp tm(OF#h) to pl (01#h);

"50" ,if (not equal) then goto pl(rick4);
"51" ,call pl(BCD4);

"52" ,goto pl (paty);

"53"rick4: dig2, continue;

"54" dig2+GL, call pl(BCD3b);

"55" ,goto pl (pat)

"56"rick5: dig4, continue;

"5 dig4+GL, continue;

"58" ,cmp tm(OF#h) to pl(01#h); "D4=1? "
"59" ,if (not equal) then goto pl(rické);
"60" dig3, continue;

"e1" dig3+GL, call pl(BCD4); "Announce D3"
"e2" ,goto pl(pnt)

"63"rick6: dig4, continue;

"e4n dig4+GL, call pl(BCD3b); "Announce D4"
"65" dig3, continue;

"66" dig3+GL, continue;

"eT" ,cmp tm(OF#h) to pl(00#h); "D3 = 0? "
"68" ,if (not equal) then goto pl (sayd3);

"69" ,goto pl(pnt)

226 5. Test and Measurement Circuits

" DISPLAY FORMAT: 000.0 - 199.9 Scale: mV (0-200 mV) D4 D3 D2.D1 "

"70"SPmV: dig4, continue; "D4 is not zero"

"71" dig4+GL, call pl (announ); "D4 is latched"
"2" hundred, continue; "Hundred. . . "

"3 hundred+wr, continue;

"74"sty5: ,if (not intr) then goto pl(sty5)
"s" and, continue;

"T6" and+wr, continue; "And...."
"T7"sty6: ,if (not intr) then goto pl(sty6)
"8n dig3, continue;

"9 dig3+GL, continue;

"80" ,cmp tm(OF#h) to pl(00#h); "D3=0? "
"g1" ,if (not equal) then goto pl (lug3);
"g82"lugd: dig2, continue;

"83" dig2+GL, call pl(announ); "D2 is announced"
"84"lug5: point, continue;

"g5" point+wr, continue;

"86"sty20: ,if (not intr) then goto pl(sty20)
"g8T" digi, continue;

"gg" digl+GL, call pl(announ); "D1 is announced"
"89" ,call pl(KHZ); "Millivolts"

"90" ,goto pl(start)

"91"lugd: dig3, continue;

"g2n dig3+GL, continue;

"93" ,cmp tm(0f#h) to pl (01#h); "D3=1?"
"g4n ,if (equal) then goto pl (lugé)

"95" ,call pl (BCD3b);

"96" dig2, continue;

"9 dig2+GL, continue;

"g8" ,cmp tm(OF#h) to pl (00#h); "D2=0?"
"gg" ,if (not equal) then goto pl(lug4);
"100" ,goto pl (lugs)

"101"1lugé: digz, continue;

"i02" dig2+GL, call pl (BCD4)

"103" ,goto pl (lugs);

" "

" DISPLAY FORMAT: 1.000 - 1.999 Scale: Volts (0-2V) D4.D3D2D1"

"104"SPVOLT1:dig4, continue;

"105" dig4+GL, call pl (announ);"D4 is latched"
"106" point, continue;

"107" point+wr, continue; "Point"
"108"sty8: ,if (not intr) then goto pl(sty8)
"109" dig3, continue;

"110" dig3+GL, call pl(announ); "D3 is latched"
"111" dig2, continue;

"i12n dig2+GL, call pl (announ); "D2 is selected"
"113" digil, continue;

"114" digl+GL, call pl (announ); "D1 is selected"
"115" ,call pl (HZ);

"116" ,goto pl(start)

5.4 A Compact Direct Current Voltmeter

" *x*x%x* Routine to initiate conversion process in scalel "
"117"voltage: convrs+scalel, continue;
"118"stay: scalel, if (busy) then goto pl(stay);
"119" ,ret;

" ROUTINES BCD3 AND BCD3b)
"120"BCD3: ,cmp tm(OF#h) to pl (01#h);
"121" ten+GL, if (equal) then goto pl (n10)
"122"BCD3b: ,cmp tm(OF#h) to pl(02#h);
"123" twenty+GL, if (equal) then goto pl (n20)
"124" ,cmp tm(OF#h) to pl (03#h);
"125" thirty+GL, if (equal) then goto pl (n30)
126" ,cmp tm(OF#h) to pl (04#h);
"127" forty+GL, if (equal) then goto pl (n40)
"128" ,cmp tm(0OF#h) to pl(05#h);
"129" fifty+GL, if (equal) then goto pl (n50)
"130" ,cmp tm(OF#h) to pl (06#h);
"131" sixty+GL, if (equal) then goto pl (n60)
"i3a2" ,cmp tm(OF#h) to pl(07#h);
"133"seventy+GL, if (equal) then goto pl (n70)
"134" ,cmp tm(OF#h) to pl (08#h);
"135" eighty+GL, if (equal) then goto pl (n80);
"136" ninety+GL, goto pl (n90)

"137"n10: ten+wr, goto pl (xb);

"138"n20: twenty+wr, goto pl(xb);

"139"n30: thirty+wr, goto pl(xb);

"140"n40: forty+wr, goto pl (xb);

"141"n50: fifty+wr, goto pl (xb);

"142"n60: sixty+wr, goto pl (xb);

"143"n70: seventy+wr, goto pl (xb);

"144"n80: eighty+wr, goto pl (xb);

"145"n90: ninety+wr, goto pl(xb);

"146"xb: ,if (not intr) then goto pl(xb);
"147" ,ret;

"148" BCD4:
"149" ten+GL,
w150

"151" eleven+GL,
w152

"153" twelve+GL,
"154"

"155"thirteen+GL,
156"
"157"fourteen+GL,
w1ggn

,cmp tm(OF#h) to
if (equal) then
,cmp tm(OF#h) to
if (equal) then
,cmp tm(OF#h) to
if (equal) then
,cmp tm(OF#h) to
if (equal) then
,cmp tm(OF#h) to
if (equal) then
,cmp tm(OF#h) to

pl (00#h) ;
goto pl(nl0);
pl (01#h);
goto pl(nll);
pl (02#h);
goto pl(n12);
pl (03#h);
goto pl(n13);
pl (04#h);
goto pl(nl4);
pl (05#h) ;

228 5. Test and Measurement Circuits

"159"fifteen+GL, 1if (equal) then goto pl(ni5);

"160" ,cmp tm(OF#h) to pl(06#h);
"161"sixteen+GL, if (equal) then goto pl (n16);
"1e2" ,cmp tm(0OF#h) to pl(07#h);
"163"seventeen+GL, if (equal) then goto pl (n17);
"164" ,cmp tm(0OF#h) to pl (08#h);

"165"eighteentGL, if (equal) then goto pl(n18);
"166"nineteen+GL, goto pl(nl9);

"167"n1l: eleven+wr, goto pl(finish);

"168"n12: twelve+wr, goto pl(finish);

"169"n13: thirteentwr, goto pl(finish);

"170"n14: fourteen+wr, goto pl(finish);

"171"nl15: fif teen+wr, goto pl (finish);

"172"nl6: sixteen+wr, goto pl (finish);

"173"nl17: seventeen+wr, goto pl(finish);

"174"n18: eighteentwr, goto pl(finish);

"175"n19: nineteen+wr, goto pl(finish);

"176"announ: ,goto tm(OF#h);

"177"n0: zero+wr, goto pl(finish);

"178"nl: one+wr, goto pl (finish);

"179"n2: two+wr, goto pl (finish);

"180"n3: three+wr, goto pl(finish);

"181"n4: four+wr, goto pl(finish);

"182"n5: five+wr, goto pl (finish);

"183"n6: six+wr, goto pl(finish);

"184"n7: seven+wr, goto pl(finish);

"185"n8: eight+wr, goto pl (finish);

"186"n9: nine+wr, goto pl (finish);

"187"finish: ,if (not intr) then goto pl(finish);
"188" ,ret;

" e e e e e e o s e o P o o o o e o Pl P ol P o e e e e P s o e s e s e e "
"189"HZ:volt, continue;

"190" volt+wr, continue; "VOLT..."

"191" ,if (intr) then goto pl(ssa) else wait;
"192"ssa: ss, continue; "S..oo"

"193" ss+wr, continue;

"194" ,if (intr) then goto pl(stop) else wait;
"195"KHZ:milli, continue;

"196" milli+wr, continue;

"197" ,if (intr) then goto pl (HZ) else wait;
"198"stop: wr, ret;

"199"msgerr: over, continue; "OVER. .. "

"200" over+wr, continue;

"201" ,if (intr) then goto pl (HZ) else wait;

" kx**x* Routine to initiate conversion process in scale2 "
"202"voltage2: convrs+scale2, continue;

"203"accnt: scale2, if (busy) then goto pl (accnt);
"204" ,ret;

5.4 A Compact Direct Current Voltmeter 229

" x*x*x* Routine to initiate conversion process in scale3

"205"voltage3: convrs+scale3, continue;
"206"accnt3: scale3, if (busy) then goto pl (accent3);
"207" ,ret;
.org 511#d
"208" ,goto pl(start)
END.

“SPVOLTS2” are used by the FPC Am29CPL154 to determine the magnitude
and the scale of a frequency reading. Routine “SPMV” is used for an input
voltage within the range of 0.000 to 199.9 mV.

To perform a complete voltage reading with the circuitry of Figure 5.9, the
process shown in Table 5.6 must take place. When the circuit is first turned
on, a software reset pulse is applied with the instruction *“.org 511#d,” which
makes the program jump to the next instruction, located in line 257. Because
the default test condition is the output /INTR of the Digitalker, the instruction
in line 257 makes the program jump to the instruction labeled ““start,” located
in line 10. As we have seen in previous chapters, the /INTR output of the Digi-
talker gives a logic one when it is ready to be triggered in order to start saying
a determined word. Output lines PO to P7 of the FPC are used for loading the
8-bit binary address that the Digitalker requires to announce a word (see Fig-
ure 5.9). The instruction “‘call pl(voltage)” in line 10 of Table 5.6 calls the
routine ““voltage” located in line 177 and resets the PAL16R4. The first step
that this routine performs is asserting a logic high pulse via the output P15 to
the “initiate conversion” input of the ADC TSC8750. The instruction *‘if
(busy) then goto pl(stay)” in line 177 waits for the output “BUSY” (line 22 of
IC1)” to go high prior to starting a new voltage reading.

The instruction ““ret” in line 179 performs a return to line 11. The instruc-
tion “cmp tm(30#h) to pl(00#h)” is used to test if one or more overflows
have occurred. The bit named “A” of IC2 is routed to the testable input T4 of
the FPC; therefore, the test mask 10#h must be used to read the binary value
of T4. Input T4 is compared against one in line 12; if T4 is equal to zero, the
program jumps to the routine “SPHZ.” On the other hand, if T4 is different
from zero the program jumps to the next instruction, located in line 13. The
set of instructions located in lines 13 to 20 are also used to determine if more
overflows occur in order to send the program to the routine that corresponds to
the scale of the input voltage under measurement.

In the same way, the routine “SPmV” solves all the possible voltage mea-
surements within the range of 0 to 199.9 mV. Notice that the decimal point
between D3 and D2 is considered in that routine. Routine *“*SPVOLT1” shown

230 5. Test and Measurement Circuits

in Table 5.6 gives the measurements for input voltages within the range 0 to
1.999 V. Routine “SPVOLT2” located in line 164 gives the digital voltage
readings within the range of 0 to 19.99 V. It is a small routine because it only
scans and issues the decimal value of the four digits from left to right and adds
the words ““point” and “‘volts” (see lines 167 and 175, respectively).

Subroutines BCD3 and BCD4 are frequently used by the complete program
for decimal numbers that are formed by two numbers—for example ““twenty
four” —or that are less than 20, as in the number “‘seventeen.”

5.5 Designing a Circuit to Announce?
Alternating Current Line Voltage

With a few passive components for monitoring ac voltages and a speech pro-
cessing chip, a circuit can announce the measured voltage of ac lines. The
range of the ac-voltage monitor presented in this section is 100 to 140 Vac,
with a resolution of 1 V. The speech processor (SPO256-AL?2) interprets an
8-bit binary input code from an A/D converter. The processor’s pulse-code
modulated output then passes through a filter and amplifier before driving the
circuit’s speaker to vocalize the corresponding number (see Figure 5.10).

In this application, the allophone-based speech processor requires 20 to 31
allophones for each audible report. Each time switch S1 is pressed, the speech
processor program enunciates the monitored voltage readings from 100 to 140
Vac, depending on the code at the input of a 27C64 EPROM (see Table 5.7).
For an input voltage of 120 Vac, for example, the speaker announces ‘“‘one
hundred and twenty volts.”

The voltage-monitoring circuit consists of a bridge rectifier, filter capaci-
tors, and a 10K load resistor. A divider, Ra and Rb, limits the input voltage to
a maximum 2.55 V. The A/D converter, IC4, then sends the voltage reading to
the 27C64 EPROM (IC5).

Pressing S1 sends a negative transient pulse to the (/WR) input of the A/D
converter, IC4, which has a 100 us conversion process and generates an inter-
rupt (/INTR) high output during the process. The resulting binary-coded read-
ing then, latched in the A/D converter, supplies the EPROM’s current upper-
address inputs A5 through A12, which select a block of memory within the
EPROM. Next, a CD4520 counter (IC3) scans those memory locations in se-
quence by driving the lower address bits AO through A4.

As a result, the EPROM delivers a preprogrammed sequence of instruc-
tions to the speech processor. Hexadecimal data instructions, 4H and 44H, at
the end of each program line supply a reset signal from the EPROM output 06

?Reprinted and adapted with permission from Electronic Design, (Vol. 37 No. 2) January 26,
1989. Copyright 1989 Penton Publishing.

5.5 AC Line Voltage Circuit 231

A-d converter

INTR

Figure 5.10 A SPO256-AL2 chip, using a stored program to synthesize speech, an-
nounces monitored alternating current voltage readings between 100 and 140 Vac.

TABLE 5.7
EPROM Program for the AC-Voltmeter
Hex Hex
address data
c20 2E,F,F,B,39,F,F,B,21,27,C,C, 15, 23,35, 2D,D, 37, 4, 44
C40 2E,F,F,B,39,F, F,B,21,27,C,C, 15, 2E,F,F, 23, 35, 2D, 37, 4, 44
C60 2E,F,F,B,39,F,F,B,21,27,C,C, 15,D, 1F, 23, 35, 2D, 37, 4, 44
C80 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D,E, 13, 23, 35,2D, D, 37, 4, 44
CAO 2E,F,F,B,39,F,F,B,21,27,C,C, 15,1D,E, 13, 23, 35, 2D, D, 37, 4, 44
CCo 2E,F,F,B,39,F,F,B,21,27,C,C, 15, 28, 28, 3A, 33,35, 2D,D, 37,4, 44
CEO 2E,F,F,B,39,F,F,B,21,27,C,C, 15, 28, 28, 3A, 33,35,2D,D, 37,4, 44
DOO 2E,F,F,B,39,F,F,B,21,27,C,C, 15, 28, 28, 6, 23, 23, 35, 2D, 37,4, 44
D20 2E,F,F,B, 39,F,F,B,21,27,C,C, 15,37,31,C, 2, 29,317, 23,35,2D,D, 37,
4,44
D40 2E,F,F,B,39,F,F,B,21,27,C,C, 15,37,31,C, 2,29, 317,23, 35,2D,D, 37,
4,44
D60 2E,F,F,B,39,F, F,B,21,27,C,C,15,37,37,17,17,23,C,B, 23,35,2D,D,
37,4,44
D80 2E,F,F,B,39,F,F,B,21,217,C,C,15,37,317,7,17,23,C,B, 23, 35,2D,D,

37,4,44

232

DAO
DCO
DEO
EO00
E20
E40
E60
E80
EAO
ECO
EEO
FO0O0
F20
F40
F60
F80
FAO
FCO
FEO
1000
1020
1040
1060
1080
10A0
10CO
10E0

1100

1120

5. Test and Measurement Circuits

2E,F,F,B,39,F,F,B,21,27,C,C,15,14,2,D, 23,35,2D,D, 37,4, 44
2E,F,F,B,39,F,F,B, 21,27,C,C,15,14,2,D, 23, 35,2D,D, 37, 4, 44,
2E,F,F,B,39,F,F,B,21,27,C,C,15,38,18,6,23,35,2D,D, 37,4, 44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,7,7,B,23,35,2D,D, 37, 4, 44
2E,F,F,B,39,F,F,B,21,27,C,C,15,C,2D,7,7,23,C,B, 23,35, 2D,D, 37,
4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,2D, 23, 23, 35, 2D, D, 37
4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,2D, 23, 23, 35, 2D, D, 37,
4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,13,47,D, 13,B, 23, 35, 2D, D, 37
4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,28,28,3A,D,13,B, 23, 35,2D,D, 37
4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,28,C,28,D, 13,B, 23, 35, 2D, D, 37,
4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,37,37,C,29,317,D, 13,B, 23, 35, 2D,
D,37,4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,317,37,C,29,37,D, 13, B, 23, 35, 2D,
D,37,4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,37,37,17,23,C,B,D, 13, B, 23, 35,
2D, D, 37,4, 44

2E,F.F,B,39,F F,B,21,27,C,C,15,14,2,D,13,B, 23,35, 2D, D, 37, 4, 44
2E,F,F,B,39,F,F,B,21,27,C,C,15,14,2,D,13,B,23,35,2D,D, 37,4, 44
2E,F,F,B,39,F,F,B,21,27,C,C,15,B,6,B,D, 13,B, 23, 35, 2D, D, 37,
4,44

2E,F,F,B,39,F, F,B,21,27,C,C,15,D,30,7,7,B,D, 13, 23, 35, 2D, D, 37,
4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D, 13, 2E,F,F,B, 23,
35,2D,D, 37,4, 44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,D, 1F, 23, 35, 2D,
D,37,4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,D, 1F, 23, 35, 2D,
D,37,4,44

2E,F,F,B,39,F,F,B, 21,27,C,C,15,D,30,7,7,B,D,13,1D,E, 13, 23, 35,
2D,D, 37,4, 44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,1D,E, 13, 23, 35,
2D, D, 37,4, 44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D, 13, 28, 28, 34, 23,
35,2D,D, 37,4, 44
2E,F,F,B,39,F,F,B,21,217,C,C,15,D,30,7,7,B,D, 13, 28, 28, 6, 23,
4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D, 13,37,37,C, 29, 37,
23,35,2D,D, 37,4, 44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,37,37,C, 29, 37
23,35,21,D,37,4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D,13,37,37,7, 7,23,
C.B, 4,44
2E,F,F,B,39,F,F,B,21,27,C,C,15,D,30,7,7,B,D, 13,14, 2,D, 23, 35,
2D, D,37,4,44
2E,F,F,B,39,F,F,B,21,217,C,C,615,D,30,7,7,B,D,13,38,18,6,B, 23,
35,2D,D, 37,4, 44

5.5 AC Line Voltage Circuit 233

1140 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D, 34, 2,D, 13, 23, 35, 2D, D, 37,
4,44

1160 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D, 34,2,D,13,2E,F,F,B, 23, 35,
2D, D, 37,4, 44

1180 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D, 34,2,D,13, 2E,F,F, B, 23, 35,
2D,D, 37,4, 44

11A0 2E,F,F,B,39,F, F,B,21,27,C,C,15,1D, 34,2,D, 13, 2E,F,F,B, 23,35,
2D,D, 37,4, 44

11CO 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D, 34,2,D,13,1D,E, 13, 23, 35, 2D,
D,37,4,44

11E0 2E,F,F,B,39,F,F,B,21,27,C,C, 15,1D, 34,2,D, 13, 28, 28, 3A, 23, 35,
2D,D, 37,4, 44

1200 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D, 34, 2,D, 13, 28, 28, 3A, 23, 35,
2D,D,37,4, 44

1220 2E,F,F,B,39,F F,B,21,27,C,C,15,1D, 34,2,D, 13, 28, 28, 6, 23, 23, 35,
2D,D,37,4, 44

1240 2E,F,F,B,39,F, F,B,21,27,C,C,15,1D, 34,2,D, 13, 28, 28, 6, 23, 23, 35,
2D,D, 37,4, 44

1260 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D, 34,2,D,13,37,37,C, 29,37, 23,
35,2D,D, 37,4, 44

1280 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D, 34,2,D, 13,37,37,7,17,C,B, 23,
35,2D,D, 37,4, 44

12A0 2E,F,F,B,39,F,F,B,21,27,C,C,15,1D, 34,2,D, 13, 14, 2,D, 23, 35, 2D,
37,4,44

12C0 2E,F,F,B,39,F F,B,21,27,C,C,15,1D, 34,2,D, 13, 14, 2,D, 23, 35, 2D,
37,4,44

12E0 2E,F,F,B,39,F, F,B,21,27,C,C,15,1D, 34,2,D, 13, 38,18, 6,B, 23, 35,
2D,D,37,4, 44

1300 2E,F,F,B,39,F,F,B,21,27,C,C,15,28,34A,2,D,13,23,35,2D,D, 37, 4,
44

1320 2E,F,F,B,39,F,F,B,21,27,C,C, 15,28,3A,2,D,13,23,35,2D,D, 37, 4,
44

for the counter and flip-flop 1C7. At the completion of the conversion, the
/INTR output returns to logic zero, and the half-monostable formed by 1C2c
sends a positive transient pulse that latches IC7’s Q output high. The IC7 out-
put enables the IC2d Nand gate.

If the processor is not working, its standby output (/SBY) is high. Conse-
quently, IC2d’s Nand output drives the speech processor’s address-load input
(/ALD) low to start an allophone cycle. During this cycle, the processing chip
holds its /SBY output low for an interval appropriate to that particular allo-
phone. Each logic-low /SBY transition advances counter IC3 one count
through the Nand gate (starting from zero, following closure of S1). When the
speech processor finishes its report and resets, /SBY returns high again, and
the Nand gate output goes low, causing the /ALD to load the next EPROM
output into the speech processor and initiate the next allophone cycle.

234 5. Test and Measurement Circuits

5.6 Designing a Circuit to
Announce Alternating Current
Line Frequency Cycles

The circuit shown in Figure 5.11 measures the frequency of the ac line to
which it is connected. A 120 Vac to 6 Vac transformer with a maximum output
of 500 mA is utilized to send the positive cycle of the ac line frequency. The
negative cycle is clamped by a IN4001 switching diode. The 500 ohm resistor
limits the current through the LED contained in the logic optocoupler with a

l 1N4001N ‘_?—"LW J_UL
120Vac ll 6Vac 3 _l_) E—
500

H11L2GE —l-_:

60 Hz
fin enable
5V fv reset1
1]2 1
16V 6 P15 P10 To
RH_. N
9{I1Cta A1 1A SW1-8
1/2 B 2A 1 PO-P7 frmy
D1 Y4 e T0-T3 H—
VR Ic2 ' PItf——= "
ICth a2 1B 74HC257 5y
1/2 B2 28 Vee
8la51g 2 28 _ 100K
I 02 48 0c RST
8 __J15 I3 ID.]
= = AM29CPL 151 =
5V
CLK
| 100K
> T4
E0.1 B
- test
GND
<+

Figure 5.11 Schematic for the speech synthesized alternating current line frequency
meter.

5.6 Circuit for AC Line Frequency Cycles 235

TABLE 5.8
Input Frequencies for AC-line Frequency Counter
Frequency Input Display Units
range frequency reading
50- 69 Hz 60 60 Hz

Schmitt trigger output (HI1L2GE) manufactured by Harris Semiconductor.
The optocoupler converts the sine wave input cycles to square wave pulses
which feed the input frequency to the dual BCD counters (ICla and IC1b).

The two BCD digits (D2 and D1) that measure the units and tens of units of
the ac line frequency are routed to the FPC Am29CPLI151 by using a quad
2-to-1 multiplexer (74HC257). Table 5.8 shows the range of the frequency
meter which varies from 50 to 69 Hz.

Table 5.9 contains the microcode program for the FPC Am29CPLI151. As
shown in Figure 5.11, the FPC is clocked by a 100 Hz frequency generated by
IC4 and associated components. In this form, the FPC will perform each in-
struction in 10 ms (10,000 ws); issuing output pulses with 10 ms of duration.
The output pulses are named “reset,” “cken,” and “SELD2.” Thanks to the
stable, low frequency of 100 Hz, the output “enable” (P10 of IC10) is gener-
ated by merely loading the CREG counter of the FPC with the number 99.
Because the FPC Am29CPL151 contains a 6 CREG counter of six bits, the
number 99 is loaded in two steps and then counter CREG is decremented and
tested against zero. Notice that while the CREG counter is being decre-
mented, the output “enable” permits counters ICla and ICIb to count of the
incoming pulses received at the input CLK (pin 1 of ICla).

Table 5.9 presents the software program for the FPC Am29CPL151. The
“comments” section in the software program explains in detail the steps being
followed by the FPC to drive the speech processor correctly. In this case, the
FPC Am29CPL151 is capable of reading the input frequency of two BCD
counters (ICla, and ICIb) by using a multiplexer 74HC257 (IC2). IC2 is a
dual quad-channel multiplexer that selects the BCD output of each counter by
changing the logic at the input SEL of IC2. The FPC drives the 74HC257 by
asserting a logic high via output P9 in order to read the MSD digit. It is neces-
sary to keep the input SEL of the 74HC257 in a logic high in order to maintain
the selection of the second digit. Digit D1 is always selected by default when
not specified. This feature permits the FPC to perform several tasks of com-
parison with the selected BCD digit. In this manner, the FPC selects one of
the two BCD digits to execute the subroutine of comparisons in order to de-
termine the decimal value of the selected digit. Output P11 of the FPC is used
to assert a logic low to the /WR input of the Digitalker.

236

5. Test and Measurement Circuits

TABLE 5.9
Software Program for the FPC Am29CPL151

DEVICE (CPL151)
DEFAULT = 1;
DEFINE "test inputs"
intr = té equal = eq test = t4

"Output control bits are given name assginments"
zero = 1F#h one = 0l#h two = 02#h three = 03+h
four = 04#h five = 05#h six = 06#h seven = 07#h
eight = 08#h nine = 09#h fifty = 17#h sixty = 18#h
pulses = 9C#h selD2 = 100#h wr = 800+#h error = xx#h
reset = 8000#h cken = 400+#h;
DEFAULT_OUTPUT = 0800#h;

TEST_CONDITION = INTR; "Default test condition"

BEGIN

"o Zero+wr, goto pl(no0)

" one+wr, goto pl(nl)

n2n two+wr, goto pl(n2);

"3 three+wr, goto pl(n3);

"qn four+wr, goto pl(n4)

"5 five+wr, goto pl(n5)

"e" six+wr, goto pl(n6é)

" seven+wr, goto pl(n7)

"g" eight+wr, goto pl(n8)

"9 nine+wr, goto pl(n9);

0 "
" MAIN PROCESS "
[T "
"10"start: ,if (test) then goto pl(start)

"11"RESET+wr, load pl (59)

"12"stay: ckentwr, while (creg <> 0) wait else load pl(39);
"13"stayl: ckentwr, while (creg <> 0) loop to pl(stayl);

" DISPLAY FORMAT: 00 Scale: Hz D2 D1 "
"14"SELD2+wr, continue;

"15"SELD2+wr, cmp tm(OF#h) to pl(05#h); "pD2 = 57"
"16" fifty+wr, if (equal) then goto pl(readD1);

"17"SELD2+wr, continue;

"18"SELD2+wr, cmp tm(OF#h) to pl(06#h); "D2 = 67"
"19" sixty+wr, if (equal) then goto pl(rdD1)

"20" error+wr, call pl(msgerr);

"21"readD1: fifty, continue; "/WR is pulsed low"
"22"stay2: ,if (not intr) then goto pl (stay2)

"23" ,cmp tm(OF#h) to pl (00#h); "D1 = 07"
"24" ,if (equal) then goto pl(start)

"25" ,goto tm(OF#h);

"26"rdD1: sixty, if (test) then goto pl(stay2);"/WR = 0 "
"27"msgerr: error, continue; "/WR is pulsed low"
"28"stay3: ,if (not intr) then goto pl(stay3);

5.7 Monitoring Respiratory Rate 237

"29" ,goto pl(start);

"30"n0: zero, goto pl(finish); "/WR is pulsed low"

"31"nl:one, goto pl(finish);

"32"n2: two, goto pl(finish);

"33"n3: three, goto pl (finish);

"34"n4: four, goto pl (finish);

"35"n5: five, goto pl(finish);

"36"n6: six, goto pl(finish);

"37"n7: seven, goto pl(finish);

"38"n8: eight, goto pl(finish);

"39"n9: nine, continue;

"40"finish: ,if (not intr) then goto pl(finish);

"41"HZ: pulses+wr, continue; "Pulses"

"4z pulses, continue;

"43" ,if (intr) then goto pl(start) else wait;
.org 63#d

"4qn ,goto pl(start);

END.

When the operator presses the “test’” switch, the program jumps to line 2,
which resets the dual BCD counters while the internal CREG counter of the
FPC is loaded with the number 59. The dual BCD counters (ICla and IC1b)
perform a complete digital reading because the input “enable” is held at a
logic high for an interval of 1.000 s. In this case, the FPC makes the Digi-
talker announce digital readings within the range of 50 to 69. In addition, the
Digitalker enunciates the word *“pulses’™ after each digital ac line frequency
reading is vocalized.

5.7 Using a Speech Processor to Monitor
Respiratory Rate

To a seriously injured patient or one undergoing surgery, respiratory rate is
critical to immediate survival. With a respiratory sensor placed under an oxy-
gen mask, medical workers can monitor respirations per minute on a liquid
crystal display. In addition, a speech synthesizer will announce the readings
and warn of possible respiratory failures.

The sensor is a circuit that detects air pressure. Because the pressure of
expired air is higher than that of inhaled air, the sensor, placed in the airway at
the bottom of an oxygen mask, can monitor the patient’s respiratory flow. The
circuit then converts these air-pressure signals to respirations per minute
readings.

Edmund Scientific sells the sensing device, an ultrasensitive 0.004 psi air-
pressure switch (Catalog No. E36,839). Single-pole, normally open switch

5.7 Monitoring Respiratory Rate 239

the sensor switch closes. This positive pulse is detected by the FPC
Am29CPL154 using the testable input T7.

The FPC (IC3) enables timer IC2, a 5 kHz oscillator that drives a piezo-
electric buzzer, to produce an audible tone for every pulse received. The posi-
tive pulse also causes the FPC to pass bursts of crystal-controlled 100 Hz sig-
nals from the MM5369EST oscillator chip IC5 by making the input COUNT
DOWN high.

Once the period reading is stored in the binary counters 74HC193, the FPC
enables the latch 74HC373 in order to send the binary reading to the six test-
able inputs TO to TS. The binary reading is used by the FPC to jump directly
to the location indicated by the same digital reading. When the program jumps
to the location specified by the digital input reading, the new specified loca-
tion will contain the equivalent in respirations per minute (RPM). This new
equivalent reading in RPM is fed back and is loaded into the binary counters
74HC193 to be used for the speech processor’s program. Also, outputs PO to
P7 of the FPC are used for loading the speech data into the speech synthesizer.
Thanks to the 74HC257, the FPC can make use of several subroutines to de-
termine the magnitude of the respiratory rate, so the Digitalker can announce
it correctly.

The routine for measuring the period is in lines 3 to 6. The routine used for
converting the period measured in binary format to an equivalent in respira-
tions per minute is within lines 7 to 94. The *‘speech” routine for controlling
the Digitalker starts in line 95.

To understand how the software program works, we will assume that we
are measuring a respiratory rate with a period of 3.0 s. To measure the period
within two respirations, the program will stay in line 3 (see Table 5.10) wait-
ing for the first respiratory pulse. When the first pulse is received at input T7,
the program jumps to line 4, which clears counters 74HC193 to a zero state in
order to prepare them for a new digital period reading. The instruction in line
4 loads the internal CREG counter with the number 49. Then the instruction
“while (creg <> 0) loop to pl(stay)” in line 5 decrements the internal CREG
counter until it reaches a value of zero. Because the FPC is being clocked at
100 Hz, the internal counter CREG will be decremented in 0.5 s; the piezo-
buzzer will sound for 0.5 s while the external counters 74HC193 keep measur-
ing the period. The program then jumps to line 6 in order to wait for the next
respiratory pulse. When the second respiratory pulse is received, the program
jumps to line 7 where the instruction *““goto tm(00111111#b)”’ sends the pro-
gram to an address specified by the binary value of the respiratory period.
This binary value is selected by the 74HC373 under control of the FPC.

Lines 8 to 63 are used to specify the equivalent constant in respirations per
minute defined as “K.” In this case, a period of 3.0 s will make the program
jump to line 30. As shown in Table 5.10, line 30 contains the constant K20,
equal to number 20 in hexadecimal. At the same time, the instruction in line

240

5. Test and Measurement Circuits

TABLE 5.10
Software Program for the Respiratory Rate Meter

DEVICE (CPL154)

DEFAULT=1;

DEFINE "test inputs"
intr=t6 equal=eq resp=t7

" Output control bits and words from the Digitalker are assigned"
HIGH=5B#h "address of word high from DT1050 vocabulary"

zero=1F#h one=01#h
six=06#h

thirteen=0D#H fourteen=0E#H

=11#H eighteen=12#H nineteen=13#H twenty

sixty=18#h

selD2=100#h wr=800#h
1d=1000#h digl1=8000#h dig2=200#h

=15#H fifty = 17#h
pulses=9C#h
buzzer=8000#h

two=02#h
seven=07#h eight=08#h nine=09#h eleven—0B#H twelve=0C#H

three=03#h four=04#h five=05#h

fifteen=0F#H sixteen=10#H seventeen

14#h thirty=15#H forty

clear=400#h Ena=100#h

R=31#h P=2F#h M=2A#h high = 5B#h

danger=4C#h low=67#h rate=7D#h HC373=4000#h HC257=2000#h
K60=60#h K55=55#h K50=50#h K46=46#h K42=42#h K40=40#h
K38=38#h K35=35#h K33=33#h K32=32#h K30=30#h K29=29#h
K27=27#h k26=26#h K25=25#h K24=24#h K23=23#h K22=22#h
K21=21#h K20=20#h K19=19#h K18=18#h K17=17#h K16=16#h
K15=15#h K14=14#h K13=13#h K12=12#h K11=11#h K10 = 10#h
K9 = 09#H;

DEFAULT_OUTPUT=0800#h;
TEST_CONDITION=INTR;

"/WR is high when not specified"
"Default test condition"

BEGIN

" 1 second delay to restart and initialize system"
"1"start: wr+ld+HC373+clear,

"2"same: wr+buzzer+ld+HC373,

"3" stay: wr+ld+HC373,

"4 wr+clear+1d+HC373,

"5" sty: wr+ena+ld+HC373+buzzer,

"6"stay2: wr+ena+l1d+HC373,

"7"wr+1d+HC373+buzzer,

load pl(99);

while (creg <> 0) loop to pl(same);
if (not resp) then goto pl(stay);
load pl(49);

while (creg <> 0) loop to pl(sty);
if (not resp) then goto pl(stay2);

goto tm(00111111#b); "Mask TO to T5"

"8"wr+1d+HC257,
"9"wr+1d+HC257
"10"wr+K60+1d+HC257,
"11"wr+K55+1d+HC257
"12"wr+K50+1d+HC257,
"13"wr+K46+1d+HC257
"14"wr+K42+1d+HC257
"15"wr+K40+1d+HC257
"16"wr+K38+1d+HC257
"17"wr+K35+1d+HC257,
"18"wr+K33+1d+HC257,

pl (highrate);
pl (highrate);
pl (rpm60) ;
pl(rpm55) ;
pl (rpm50) ;
pl (rpm46) ;
pl(rpm42);
pl (rpm40);
pl (rpm38);
pl (rpm35);
pl(rpm33);

5.7 Monitoring Respiratory Rate

"19"wr+K32+1d+HC257, goto
"20"wr+K30+1d+HC257, goto
"21"wr+K29+1d+HC257, goto
"22"wr+K27+1d+HC257, goto
"23"wr+K27+1d+HC257, goto
"24"wr+K25+1d+HC257, goto
"25"wr+K24+1d+HC257, goto
"26"wr+K23+1d+HC257, goto
"27"wr+K22+1d+HC257, goto
"28"wr+K21+1d+HC257, goto
"29"wr+K21+1d+HC257, goto
"30"wr+K20+1d+HC257, goto
"31"wr+K19+1d+HC257, goto
"32"wr+K19+1d+HC257, goto
"33"wr+K18+1d+HC257, goto
"34"wr+K18+1d+HC257, goto
"35"wr+K17+1d+HC257, goto
"36"wr+K17+1d+HC257, goto
"37"wr+K16+1d+HC257, goto
"38"wr+K16+1d+HC257, goto
"39"wr+K15+1d+HC257, goto
"40"wr+K15+1d+HC257, goto
"41"wr+K15+1d+HC257, goto
"42"wr+K14+1d+HC257, goto
"43"wr+K14+1d+HC257, goto
"44"wr+K14+1d+HC257, goto
"45"wr+K13+1d+HC257, goto
"46"wr+K13+1d+HC257, goto
"47"wr+K13+1d+HC257, goto
"48"wr+K13+1d+HC257, goto
"49"wr+K12+1d+HC257, goto
"50"wr+K12+1d+HC257, goto
"51"wr+K12+1d+HC257, goto
"52"wr+K12+1d+HC257, goto
"53"wr+K11+1d+HC257, goto
"54"wr+K11+1d+HC257, goto
"55"wr+K11+1d+HC257, goto
"56"wr+K11+1d+HC257, goto
"57"wr+K11+1d+HC257, goto
"58"wr+K10+1d+HC257, goto
"59"wr+K10+1d+HC257, goto
"60"wr+K10+1d+HC257, goto
"61"wr+K10+1d+HC257, goto
"62"wr+K9+1d+HC257, goto
"63"wr+1d+HC257, goto

R Load input of counters

pl (rpm32);
pl (rpm30) ;
pl (rpm29);
pl (rpm27);
pl (rpm27);
pl (rpm25);
pl(rpm24);
pl (rpm23);
pl(rpm22);
pl(rpm21);
pl(rpm21);
pl (rpm20);
pl(rpm19);
pl(rpml19);
pl (rpm18);
pl(rpm18);
pl(rpml7);
pl(rpm17);
pl(rpml6);
pl (rpmi6) ;
pl(rpml5);
pl (rpmi15);
pl (rpmi15);
pl (rpml4);
pl(rpmi4);
pl (rpmi4);
pl (rpm13);
pl (rpml3);
pl (rpmi3);
pl(rpm13);
pl(rpmi2);
pl(rpmi2);
pl(rpmi12);
pl(rpmi2);
pl (rpm11);
pl(rpmll);
pl(rpmll);
pl(rpmll);
pl(rpm11);
pl(rpmll);
pl (rpm1o0);
pl (rpm10);
pl (rpm1o);
pl(rpm9);
pl (lowrate) ;

T4HC193 is pulsed low --------- "

"64"rpm60: wr+K60+HC257, goto pl (speech);
"65"rpm55: wr+K55+HC257, goto pl (speech);
"66"rpm50: wr+K50+HC257, goto pl (speech);
"67"rpm46: wr+K46+HC257, goto pl(speech);
"68"rpm42: wr+K42+HC257, goto pl (speech);
"69"rpm40: wr+K40+HC257, goto pl (speech);
"70"rpm38: wr+K38+HC257, goto pl (speech)
"71"rpm35: wr+K35+HC257, goto pl(speech);

yL]

242

"72"rpm33:
"73"rpm32:
"74"rpm30

"75"rpm29:
"76"rpm27:
"77"rpm26:
"78"rpm25:
"79"rpm24:
"80"rpm23:
"81"rpm22:
"82"rpm21:
"83"rpm20:
"84"rpml9:
"85"rpml8:
"86"rpml7:
"87"rpml6:
"88"rpmls

"89"rpml4:
"90"rpml3:
"91"rpml2:

wr+K33+HC257,
wr+K32+HC257,
wr+K30+HC257,
wr+K29+HC257,
wr+K27+HC257,
wr+K26+HC257,
wr+K25+HC257,
wr+K24+HC257,
wr+K23+HC257,
wr+K22+HC257,
wr+K21+HC257,
wr+K20+HC257,
wr+K19+HC257,
wr+K18+HC257,
wr+K17+HC257,
wr+K16+HC257,
wr+K15+HC257,
wr+K14+HC257,
wr+K13+HC257,
wr+K12+HC257,
"92"rpmll: wr+K11+HC257,
"93"rpml10: wr+K10+HC257,
"94"rpm9: wr+K9+HC257,

"95"speech: wr+1d+HC257+dig2,
"96"wr+1d+HC257+dig2,
"97"wr+1d+HC257+dig2,
"98"wr+1d+HC257+dig2,
"99"wr+1d+HC257+dig2+twenty,
"100"wr+Ld+HC257+dig2,
"101"wr+1d+HC257+dig2+thirty,
"102"wr+1d+HC257+dig2,
"103"wr+1d+HC257+dig2+forty,
"104"wr+1d+HC257+dig2,
"105"wr+1d+HC257+dig2+fifty,
"106"wr+1d+HC257+dig2,
"107"wr+1d+HC257+dig2+sixty,
"108"wr+1d+HC257+digl,
By default D2
"109"BCD4: wr+1d+HC257,
"110"wr+1d+HC257
"111"wr+1d+HC257,
"112"wr+1d+HC257+eleven,
"113"wr+1d+HC257,
"114"wr+1d+HC257+twelve,
"115"wr+1d+HC257,
"116"wr+1d+HC257+thirteen,
"117"wr+1d+HC257,
"118"wr+ld+HC257+fourteen,
"119"wr+1d+HC257,

_____ =1,

5.

goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto
goto

pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)
pl (speech)

continue;
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm (OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
continue;

and D1 is compared

cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm (OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to
if (equal) then
cmp tm(OF#h) to

Test and Measurement Circuits

)
)
5
5
s
)
5
5
)
’
5
5
5
)
)
i
)
i
5
5
s
s

i

pl(00#h); "D2=0?
goto pl(BCD4);
pl(02#h); "D2=2?"
goto pl(n20);
pl(03#h); "D2=3?"
goto pl(n30);
pl(03#h); "D2=4?"
goto pl(n40);

pl (03#h); "D2=5?"
goto pl(n50);
pl(03#h); "D2=6?"
goto pl(n60);

pl (00#h);
goto pl (n10);
pl(01#h);
goto pl(nll);
pl (02#h);
goto pl(ni12);
pl (03#h) ;
goto pl(nl3);
pl (04#h);
goto pl(nl4);
pl (05#h) ;

5.7 Monitoring Respiratory Rate

"120"wr+1ld+HC257+fifteen, if (equal) then goto pl(ni5);
"121"wr+1d+HC257, cmp tm(OF#h) to pl(06#h);
"122"wr+ld+HC257+sixteen, if (equal) then goto pl(n16);
"123"wr+1d+HC257, cmp tm(OF#h) to pl (07#h);
"123"wr+ld+HC257+seventeen, if (equal) then goto pl(nl7);
"124"wr+1d+HC257, cmp tm(OF#h) to pl (08#h);
"125"wr+1d+HC257+eighteen, if (equal) then goto pl(ni18);
"126"wr+1d+HC257+nineteen, goto pl(n19);

B e /WR is pulsed low in the instructions below
"127"n11: eleven+1d+HC257, goto pl (finish);

"128"n12: twelve+1d+HC257, goto pl(finish);

"129"n13: thirteen+1d+HC257, goto pl(finish);

"130"n14: fourteen+1d+HC257, goto pl(finish);

"131"n15: fif teen+1d+HC257, goto pl(finish);

"132"nl16: sixteen+1d+HC257, goto pl(finish);

"133"nl7: seventeen+1d+HC257, goto pl(finish);

"134"n18: eighteen+Ld+HC257, goto pl(finish);

"135"n19: nineteen+l1d+HC257, goto pl(finish);
"136"finish: wr+HC257+1d, 1if (not intr) then goto pl (finish);
"137"wr+HC257+1d, cmp tm(OF#h) to pl (00#h); "D1 = 0?"
"138"wr+HC257+1d, if (equal) then goto pl (rpm2);
"139"wr+HC257+1d, cmp tm(OF#h) to pl (01#h); "D1 = 1?"
"140"wr+HC257+1d, if (equal) then goto pl (nl);
"141"wr+HC257+1d, cmp tm(OF#h) to pl (02#h); "D1 = 2?"
"142"wr+HC257+1d, if (equal) then goto pl (n2);
"143"wr+HC257+1d, cmp tm(OF#h) to pl (03#h); "D1 = 37"
"144"wr+HC257+1d, if (equal) then goto pl (n3);
"145"wr+HC257+1d, cmp tm(0F#h) to pl (04#h); "D1 = 4?"
"146"wr+HC257+1d, if (equal) then goto pl(n4);
"147"wr+HC257+1d, cmp tm(OF#h) to pl (05#h); "D1 = 5?"
"148"wr+HC257+1d, if (equal) then goto pl (n5);
"149"wr+HC257+1d, cmp tm(0F#h) to pl (06#h); "D1 = 67"
"150"wr+HC257+1d, if (equal) then goto pl (né6);
"151"wr+HC257+1d, cmp tm(OF#h) to pl (07#h); "D1 = 77"
"152"wr+HC257+1d, if (equal) then goto pl (n7);
"153"wr+HC257+1d, cmp tm(OF#h) to pl (08#h); "D1 = 87"
"154"wr+HC257+1d, if (equal) then goto pl (n8);
"155"wr+HC257+1d, goto pl(n9);

"156"n0: zero+HC257+1d, goto pl(fin);"/WR is pulsed low"
"156"nl: one+HC257+1d, goto pl(fin);

"157"n2: two+HC257+1d, goto pl(fin);

"158"n3: three+HC257+1d, goto pl(fin);

"159"n4: four+HC257+1d, goto pl(fin);

"160"n5: five+HC257+1d, goto pl(fin);

"161"n6: six+HC257+1d, goto pl(fin);

"162"n7: seven+HC257+1d, goto pl(fin);

"163"n8: eight+HC257+1d, goto pl(fin);

"164"n9: nine+HC257+1d, goto pl(fin);

"165"fin: wr+HC257+1d, if (not intr) then goto pl(fin);
"166" wr+HC257+1d ,call pl(rpm);

"167" wr+HC257+1d+clear, goto pl(start);

"168"n20: twenty+HC257, goto pl(fin);

243

244

5. Test and Measurement Circuits

"169"n30: thirty+HC257, goto pl(fin);

"170"n40: forty+HC257, goto pl(fin);

"171"'n50: fifty+HC257, goto pl(fin);

"172"n60: sixty+HC257, goto pl(fin);

I e "

"173"rpm: wr+1d+HC257+R, continue;

"174" 1d+HC257+R, call pl(stand);

"175" wr+1d+HC257+P, continue;

"176" 1d+HC257+P, call pl(stand);

"7 wr+1d+HC257+M, continue;

"178" 1d+HC257+M, call pl(stand);

"179" wr+1d+HC257, ret;

"180" stand: wr+1d+HC257, if (not intr) then goto pl(stand);

"181" wr+1d+HC257, ret;

M e e ke e n

"182"rpm2: wr+l1d+HC257, call pl(rpm);

"183" wr+1d+HC257, goto pl(start);

"184"lowrate: wr+1d+HC257+DANGER, continue;

"185" 1d+HC257+DANGER, call pl(stand);

"186" wr+1d+HC257+LOW, continue;

"187" 1d+HC257+LOW, call pl(stand);

"188"RATEL: wr+1d+HC257+RATE, continue;

"189" 1d+HC257+RATE, call pl(stand);

"190" wr+1d+HC257, goto pl(start);

"191"highrate: wr+1d+HC257+DANGER, continue;

"192" 1d+HC257+DANGER, call pl(stand);

"193" wr+1d+HC257+HIGH, continue;

"194" 1d+HC257+HIGH, call pl(stand);

"195" wr+1d+HC257+RATE, goto pl(ratel);
.org 511#d

"196" ,goto pl(start);

END.

20 *“goto pl(rpm20)”’ makes the program jump to the label “rpm20” located
in line 83. Notice that the instruction in line 83 does not specify the output
“Id” in order to generate a low transition at the input LOAD of counters
74HC193. This low transition will load the number 20 into counters 74HC193.
Note that counters 74HC193 now contain the number 20 at its outputs. In fact,
the FPC solves the equation

&

F
T

where the constant 60 represents sixty seconds in a minute, and “T” is the
period in seconds.

The instruction *“goto pl(speech)” in line 83 now makes the program jump
to the routine ““speech” in order to start the procedure for the Digitalker. The

5.8 A Fault-Tolerant Respiratory Rate Meter 245

routine ““speech” compares the two BCD digits selected by the 74HC257
under control of the FPC Am29CPL154. When this routine finds the correct
value of the first digit, it loads the address where the number is located in the
Digitalker. Then the program gives a logic low pulse to the /WR input of the
Digitalker to start a speech sequence. The FPC will keep monitoring the status
of the Digitalker by reading its /INTR output at the testable input T6 (see Fig-
ure 5.12). In this case the word “twenty . . .”” is announced by the Digitalker,
after which the program executes the instruction *‘call pl(rpm)” in line 166.
Subroutine “rpm” announces the message “RPM™ after the word “‘twenty,”
where the word “RPM” stands for respirations per minute. Once the message
“twenty RPM” is announced, the program jumps to the label *‘start” located
in line 1.

Labels “lowrate” and ‘‘highrate” are used to make the Digitalker speak the
respective word when a period between two respirations is out of range, in this
case higher than 6.3 s and lower than 1.0 s, respectively.

5.8 Designing a Fault-Tolerant
Respiratory Rate Meter

A respiratory rate meter with fault tolerance can be built using the same tech-
niques and circuitry presented in Section 5.7, but in this case we will use re-
dundancy techniques to avoid errors that could affect the output reading. We
will use the method of triplicated modular redundancy (TMR) in order to iso-
late a single-bit fault and avoid a failure of the complete device.

Notice that if the respiratory rate meter announces an incorrect reading,
medical workers can respond erroneously because they trust the reliability of
the measurement performed by this device. The technique of using voters to
isolate a single fault is now explained briefly as an introduction to the topic of
redundancy.

Because it is impossible to have components which are totally reliable, re-
dundancy techniques must be employed to increase the probability of system
survival during the time t.

For a system M, R(t) is defined as the probability that the system will not
have failed up until time t. The principal goal of a fault design is to prolong
the average life of the system; this measure is referred to as the mean time
before failure (MTBF) defined as:

0

MTBF = f —tdR

Assuming that the MTBF is constant (1/\), and defining A as the failure rate,
then R(t) is:

R(t) = e™

246 5. Test and Measurement Circuits

By using the circuitry of the respiratory rate meter presented in the previous
section in triplicated form at the subsystem level to keep components to a
minimum, a high-reliability respiratory meter can be achieved. The correction
logic is made with a majority logic voter configured for three inputs. The voter
realizes the function

v(x,y,z) = Xy + yz + xz.

The scheme for the TMR voter is shown in Figure 5.13. Input errors and
faults presented in V will be corrected, and any single fault of each module is
permitted. Note that input sensors are equal but independent.

The reliability of the basic TMR configuration is

R = Rv * (Rm® + 3Rm? (1 — Rm))
R = Rv * (3Rm? — 2Rm’)

where Rv and Rm are the reliabilities of the voter and a single copy of the
triplicated module, respectively. The TMR configuration has a single point of
failure: the voter. In the circuit of Figure 5.13 the only solution is to make the
voter more reliable through a fault-avoidance and/or fault-tolerance technique.

A TMR system will fail only if two or more subsystems Mi fail; that is,
some failure in two or more copies may occur in such a way that an error is not
avoided. Assuming that each of the subsystems has probability R(t) of surviv-
ing to time t, the triplicated system probability of survival is R'(t) defined by

R,(l) = e™NM c—)\l e M 4 36_2}“(1 — C—M) = g~ 2\ — 26—3)\1
Probability Probability of

of all three any two of the
of the subsystems
subsystems surviving
surviving

The concept of triplicated modular redundancy can also be applied on the
subsystem level, as illustrated in Figure 5.14. In this case a single error in any
subsystem will be corrected at the system output. In addition, multiple errors

o —
, L1 LXK
[I — .
~ .
¥ 1 ;}’/_x'\.“ -
L2 _1’_;(' VR S
£y 3 y.
e
y 7
M P ;,/
. L3 -
Al —

Figure 5.13 Basic TMR voter.

248

5. Test and Measurement Circuits

TABLE 5.11

Program Utilized to Design TMR Voters with the Chip PAL16L8

TITLE TRIPLE TMR VOTERS
PATTERN
REVISION A
AUTHOR R. JIMENEZ
COMPANY SHUGART CORPORATION
DATE 11/10/89
CHIP VOTER PAL16L8
,pins 3 4 5 6 7 8 9 10
Z A B C D E F GND
NC /P /M /N /O /Q /R /L NC VCC
;pins 11 12 13 14 15 16 17 18 19 20
; VOTER
; PAL16L8
H ! \/ H
B X -{1 20}- vcc
; Yy -{ 2 19} -> NC
; z -{ 3 18} -> /L
B A -{ 4 17}-> /R
; B -{5 16} -> /Q
; c-{86 15}-> /0
B D -{ 7 14}-> /N
; E -{ 8 13} -> /M
; F-{9 12}-> /P
; GND -{10 11}- NC
; e i
EQUATIONS
M = X*Y ;FIRST TMR VOTER
+ X*Z
+ Y*Z
N = A*B , SECOND TMR VOTER
+ A*C
+ B*C
0 = D*E ; THIRD TMR VOTER
+ D*F
+ E*F
P = M*N ; VOTING THE VOTERS
+ M*0
+ N*O
Q= /M ; MONITORING OUTPUTS
R = /N
L=/0
SIMULATION
TRACE_LON XY ZMABCNDEFOPQRL

5.8 A Fault-Tolerant Respiratory Rate Meter 249

; LOOK ALL TMR VOTERS ; LOOK THE VOTING
VOTER

SETF XY Z A B /C D /E F

CHECK M N 6] P
SETF X Y /Z A /B C D /E /F

CHECK M N /0 P
SETF X/Y Z A /B /C /D E F

CHECK M /N 6] P
SETF X /Y /Z /A B C /D E /F

CHECK /M N /0 /P
SETF /X Y Z /A B /C /D /E F

CHECK M /N /0 /P
SETF /X Y /Z /A /B C /D /E /F

CHECK /M /N /0 /P
SETF /X /Y Z /A /B /C D E F

CHECK /M /N 6] /P
SETF /X /Y /Z A B C D E /F

CHECK /M N o P

; LOOK AT THE INDICATOR OUTPUT

SETF X Y Z A B C D E F
CHECK /Q /R /L
TRACE_OFF

Using the TMR voters contained in the PAL16L8, Figure 5.14 shows the
fault-tolerant version of the respiratory rate meter. Here three 7555 timers use
the same RC components to detect respiration using the sensor network. If any
one of the three timers, for example, is stuck at zero or stuck at one, the voter
V1 will isolate the fault and will give the correct output generated by the rest
of the timers operating in good conditions. The voter will also accept one of
the timers stuck at zero and a second timer stuck at one while the third timer
keeps operating correctly. Such failures are called compensating failures.

On the other hand, the period measured by counters 74HC193 is voted be-
fore reaching the inputs of the triplicated latches 74HC373 and the triplicated
tri-state selectors 74HC257. Three FPCs sharing a TMR clock execute the
program in triplicated form. The result of the respiratory measurement is
voted before driving the speech processor. The program stored in the internal
EPROM of each FPC is the same used by the FPC in the design presented in
Table 5.10. Voting the FPCs has the advantage of being able to withstand fail-
ures in two different locations in two different EPROMs that are contained in
each FPC. For example, consider what happens when a failure is present in
memory location 65 on one memory of the FPC and a failure in memory loca-
tion 67 on another. Since these failures are on two different FPCs, they do not
act together in the voting process to cause an error.

250 5. Test and Measurement Circuits

TABLE 5.12
JEDEC File for the PAL16L8

PAL16L38

VOTER*

QV512*

QP20*

QF2048*

GO*FO*

L0256 11111111111111111111111111111111*
L0288 11111111111111111101111111111111*
L0512 11111111111111111111111111111111%*
L0544 11111111111111111111110111111111%
L0768 11111111111111111111111111111111*
L0800 11111111111111111111111111011111*
L1024 11111111111111111111111111111111*
L1056 11111111111111111111011101111111%*
L1088 11111111111111111111011111110111%*
L1120 11111111111111111111111101110111*
L1280 11111111111111111111111111111111*
L1312 11111111011101111111111111111111%*
L1344 11111111011111110111111111111111%*
L1376 11111111111101110111111111111111+*
L1536 11111111111111111111111111111111*
L1568 01011111111111111111111111111111*
L1600 11010111111111111111111111111111*
L1632 01110111111111111111111111111111%*
L1792 11111111111111111111111111111111*
L1824 11111111111111111111111011101111%*
L1856 11111111111111111110111111101111%*
L1888 11111111111111111110111011111111*
V0001 111110101NXLLLLHHHXN*

V0002 110101100NXLLLHHHLXN*

V0003 10110001 1NXLLHLHLHXN*

V0004 100011010NXHHLHLHLXN*

V0005 011010001NXHLHHHLLXN*

V0006 010001000NXHHHHLLLXN*

V0007 001000111NXHHHLLLHXN*

V0008 000111110NXLHLLLHHXN*

V0009 111111111NXLLLLHHHXN*

C55B0*

EDBB

PALASM XPLOT, V2.23 - MARKET RELEASE (2-1-88)

(C) - COPYRIGHT MONOLITHIC MEMORIES INC, 1988

Title TRIPLE TMR VOTERS Author : RICARDO JIMENEZ
Pattern : Company :

Revision : A Date 11/10/89

252

5. Test and Measurement Circuits

TABLE 5.13

EPROM Program for the Moisture Meter

Reading Hex Add

Hex Data

© 00 ND U W N O

NN DNNNDNIDNINRHE M e e e e e e
0 0 U WNH O © WO U R WN O

%
%
%
%
%
%
%
%
%
%
%o
%
%
%
%
%
%
%
%
%

00
40

2B, 3C, 35,4, 44

2E,F,F,B, 4,44

D, 1F, 4, 44

1D,E, 13,4,44

28,28,3A,4,44

28,28,6,23,4,44
317,37,C,C,2,29,37,4,44
317,37,7,7,23,C,B, 4, 44

14,2,D,4,44

B,18,6,B,4,44

D,7,7,B,4,44
C,2D,7,7,23,C,23,4,44
D,30,7,7,2D, 23,4, 44

1D, 33,2,D,13,B,4, 44
28,3A,1,2,D,13,B, 4,44
28,C,28,1,2,D,13,B,4,44
37,37,C,2,29,37,2,D,13,B,4,44
37,37,17,23,1D,B,2,D,13,B, 4, 44
14,2,D,13,B,4, 44
B,6,B,2,D,13,B,4,44
D,30,7,7,B,2,D,13,2,4,44
b,30,7,7,B,2,D,13,2,2E,F,F,B, 4,44
D,30,7,7,B,2,D,13,2,D,1F, 4,44
D,30,7,7,B,2,D,13,2,1D,E, 13,4, 44
D,30,7,7,B,2,D,13,2,28,28,3A,4,44
D,30,7,7,B,2,D,13,2,28,28,6,23,4, 44
D,30,7,7,B,2,D,13,2,37,37,C,C,2,29,37,4,44
D,30,7,7,B,2,D,13,2,37,37,7,7,23,C,B, 4,44
D,30,7,7,B,2,D,13,2,14,2D, 4, 44
D,30,7,7,B,2,D,13,2,B,18,6,B,4,44
1D,34,1,2,D,13,4, 44

100

B,6,B,2,D,13,2,28,28,6,23,4,44
B,6,B,2,D,13,2,37,37,7,7,23,C,B, 4,44
B,6,B,2,D,13,2,37,37,7,7,23,C,B, 4,44
B,6,B,2,D,13,2,14,2,D,4, 44
B,6,B,2,D,13,2,B,18,6,B,4,44

2B, 3C,35,2,39,F,F,B,1,21,27,C,C,1,15,4,44

5.10 A CMOS MSI Capacitance Meter 253

needed. This is achieved by turning the 1 megaohm pot while the 20K pot is
adjusted at approximately 10K. When the sensor probe is out of the water, a
reading of “‘zero” will be announced by the speech processor SPO256-AL2.
Now you can measure moisture levels within the range of 0 to 100. For ex-
ample, a rose plant needs moisture levels within the range of 70 and 80. If the
measured level for this plant is within this range, the plant does not need any
water. For more information about moisture levels for all kind of plants, see
the manual included with the moisture sensor. The EPROM program is given
in Table 5.13.

5.10 Designing a CMOS MS|?

Capacitance Meter

The problem with many digital capacitance-measuring circuits lies in TTL or
LS technology, which draws high current and mandates a high part count.
Also, liquid-crystal displays (LCDs) use far less current than LED displays. A
four-digit LED display draws about 250 mA, compared with about 20 uA for
LCDs.

A speech-synthesized CMOS MSI circuit with an LCD solves both prob-
lems (see Figure 5.16). The circuit, a four-digit LCD autoranging capacitance
meter, requires only the insertion of the unknown capacitor (Cx). The circuit
automatically selects the scale and the display’s decimal point position. The
circuit’s range is 1 pF to 1000 wF. It consumes only 250 mA at 5 V.

Timer T1, operating in a linear monostable mode, charges Cx through a
constant-current source formed by transistor Q1 and resistors RS to R8 in ac-
cordance with the scale. ICI, a 74HC4066 quad bilateral switch, automati-
cally selects one of these resistors. The time between pulse outputs from T1
then depends on the value of Cx.

Whenever the output (pin 3) of timer T1 is high, timer T2’s reset input (pin
4) oscillates at the fixed frequency f1 of about 45,000 Hz. IC3, a 74HC4017
decade counter/divider, divides this frequency by 10 to f2. The higher fre-
quency serves the picofarad (pF) range; the lower frequency, the microfarad
(uF) range. IC4, a 74HC4051 analog multiplexer/demultiplexer, selects f1 or
f2 and routes it to the counter input of the BCD counters CD4518 (pin 1 of
IC6a).

When the Cx capacitor charges to the threshold value of T1 (two-thirds
of Vdd), T1’s output pin 3 goes low; then this pin is read by the FPC
Am29CPL154. The input of T1 is triggered by the FPC when the user presses
the switch “test,” causing that pin 3 output to go high. At this point, IC5

*Reprinted and adapted with permission from Electronic Design, Vol. 36, no. 20, September
8, 1988. Copyright 1988, Penton Publishing.

256 5. Test and Measurement Circuits

A potentiometer (Ra) nulls the stray collector-base capacitance of tran-
sistor Q1. Diodes D1 and D2 protect the T1 timer from possible overcharges
caused by inserting a charged capacitor. When first turned on, the circuit
starts in the picofarad range, because 1C2, another 74HC4017, delivers a high
from its QO output, which controls IC1, IC4, and the range LEDs through an
IC7 XOR gate (one-fourth of CD4071). Accordingly, IC1, which controls the
constant charging current of Cx, selects the 10 megaohm resistor, R8. Also,
IC4 selects the higher frequency fl because R8 is for small capacitors that
need a high frequency to properly measure the charging time. Finally, the
XOR gate output stays high to make the LED D4 glow, indicating that the
LCD’s digital reading is in picofarads. The circuit enters the picofarad range
automatically after announcing the value of the capacitor under measurement.
To start a measurement, press the S1 switch to reset IC2 to start with QO high.
The maximum pF scale reading is 9999 pF.

A Cx with a higher value, for example 0.020 uF, causes an overflow pulse
from the /carry output (pin 28) of the 1C6 counter. This output activates the
clock input of the IC2 decade-counter, which makes 1C2’s Q1 output go high
and selects the 100 kilohm resistor R7. Cx then charges more rapidly than it
would with the 10 megaohm resistor and generates no overflow pulse. Also the
decimal point DP1 now glows because the XOR gate driving it also depends
on QI of IC2. The reading display then is 0.020 uF. On this scale, the maxi-
mum reading is 9.999 uF.

To interface the autoranging capacitance meter with the speech processor
Digitalker, we use the FPC Am29CPL154. The right side of Figure 5.16
shows the FPC controlling a 2-to-7 decoder to select each of the four digits.
As can be seen in Figure 5.16, outputs PO to P7 send the speech data to the
SW1-SW8 address inputs of the Digitalker. Output Y5 of IC11 is used to pulse
the /WR input of the Digitalker low. Input T7 of the FPC is used for monitor-
ing when the speech processor has completed saying a word. Outputs P10 and
P15 of the FPC are used to trigger timer T1 and reset Johnson counter IC2,
respectively. Testable inputs T4 and T5 of the FPC are used to determine the
position of the decimal point when a reading has been performed. This way,
the FPC knows the scale of the digital reading in order to process it and make
the Digitalker articulate the message corresponding to the capacitor under
measurement. To start a reading, the user has to insert the unknown capacitor
Cx near timer T1, and then press the switch S1 in order to cause a logic low at
the testable input T6 of the FPC (I1C10).

The routine used by the FPC is similar to the one presented in the first sec-
tion of Chapter 5. In this case, the routine is adapted in the main process sec-
tion to control timer T1 and counter IC2. Table 5.14 shows the software pro-
gram required to generate the JEDEC file and program the FPC Am29CPL154
for this particular function.

5.10 A CMOS MSI Capacitance Meter 257

TABLE 5.14
Software Program for the Speech Synthesized Autoranging Capacitance Meter

DEVICE (CPL154)

DEFAULT = 1,
DEFINE "test inputs”
intr = t7 equal = eq

test = t6 "T6 reads switch S1 or output timer T1"

"Output control bits are given name assginments"

zero = 1F#h one = 0l#h two = 02#h three = 03#h
four = 04#h five = 05#h six = 06+#h seven = 07#h
eight = 08#h nine = 09+#h ten = 0A#h eleven = 0B#h

twelve = 0C#h thirteen = 0D#h fourteen = OE#h fifteen = OF#h
sixteen = 10#h seventeen = 11#h eighteen = 12#h nineteen = 13#h
twenty = 14#h thirty = 15#h forty = 16#h fifty = 17#h sixty

= 18#h

seventy = 19#h eighty = 1A#h ninety = 1B#h hundred = 1C#h
thousand = 1D#h U = 34#h P = 2F#h F = 25#h

point = 9A#h digl = 1000#h wr = 5000#h and = 3C#h
resetl = 8000#h dig2 = 2000#h selP8 = 100#h

inl = 400#h dig3 = 3000#h

GL = 800#h dig4 = 4000#h;

DEFAULT_OUTPUT = 0000#h;
OUT_POLARITY = F7FF#h;
TEST_CONDITION = INTR; "Default test condition"

BEGIN

"o zero, goto pl(n0)
"y one, goto pl(nl);
nan two, goto pl(n2);
n3n three, goto pl (n3);
g four, goto pl(n4)
"5 five, goto pl(n5)
e six, goto pl (n6)
"n seven, goto pl(n7)
"gn eight, goto pl(n8);
"gn nine, goto pl(n9)

" MAIN PROCESS "

"10"start:resetl, if (test) then goto pl(start)

"1l ,cmp tm (30#h) to pl (00#h); "testing overflow"
nian ,if (equal) then goto pl (pF); "pF scale "

"13" resetl, call pl(count)

"14n ,cmp tm (30#h) to pl (10#h); "testing overflow"
"5 ,if (equal) then goto pl (uF1); "uF scale "

"1e" resetl, call pl (count);

" ,cmp tm (30#h) to pl (20#h); "testing overflow"

"1g8" ,if (equal) then goto pl(uF2); "uF scale"

258

5. Test and Measurement Circuits

"ign resetl, call pl(count);

"20" ,goto pl (uF3);

" DISPLAY FORMAT: 0000 Scale: pF D4 D3 D2 D1 "
"21"pF:dig4, continue;

"22" dig4+GL, continue; " Digit 4 is selected by IC 74HC137"
23" ,cmp tm(OF#h) to pl (00#h); "D4 = 07"
"24" dig3s, if (not equal) then goto pl (spkD4);

"25" dig3+GL, continue;

n26" ,cmp tm(0OF#h) to pl (00#h); "D3 = 0? "
"27" dig2, if (not equal) then goto pl (spkD3);

28" dig2+GL, continue;

"29" ,cmp tm(OF#h) to pl (00#h); "D2 = 0?"
"30" ,if (not equal) then goto pl (ptyc)
"31"spkdl:digl, continue;

"32" digl+GL, call pl (announ); "Announce D1 "
"33"hrtz: ,call pl(HZ); "Hertz"

"34" ,goto pl(start);

"35"spkd4: digd, continue;

"36" dig4+GL, call pl (announ); "Announce D4"

"37" thousand, continue;

"38"thousand+wr, continue; "Thousand. . . "
"39"same:dig3, if (not intr) then goto pl (same);

"40" dig3+GL, continue;

"41" ,cmp tm(OF#h) to pl (00#h); "D3 = 07"
42" ,if (not equal) then goto pl (spkD3);

"43" dig2, continue;

"44" dig2+GL, continue;

"45" ,cmp tm(OF#h) to pl (00#h); "D2 = 0?"
"46" ,if (not equal) then goto pl (ptyand);
"47"spkand: and, continue;

"48" and+wr, continue; "And..."
"49"same2: ,if (not intr) then goto pl (same2);

"50" ,goto pl (spkdl)

"51"spkd3:dig3, continue;

"52" dig3+GL, call pl (announ); "Announce D3"

"53" hundred, continue;

"54" hundred+wr, continue; "Hundred. .. "
"55"same3: dig2, if (not intr) then goto pl (same3);

"56" dig2+GL, continue;

"5 ,cmp tm(OF#h) to pl (00#h); "D2 = 07"
"58" ,if (not equal) then goto pl (ptyand);

"59" digl, continue;

"60" digl+GL, continue;

"el" ,cmp tm (OF#h) to pl (00#h); "D1 = 0?"

ngan
g3 "

"64"ptyand: and,
"65" and+wr,

"66"samed: dig2,

,if (not equal) then goto pl (spkand);
,goto pl(hrtz);

continue;

continue;

if (not intr) then goto pl (same4);

"67"ptyc: dig2+GL, continue;

ngg"
nggn

,cmp tm(0F#h) to pl(0l#h); "D2 = 17"
,if (not equal) then goto pl(ptyb);

5.10 A CMOS MSI Capacitance Meter

"7o" digi, continue;

"71" digl+GL, call pl (BCD4); "Announce D1"
"an ,goto pl(hrtz)

"73"ptyb:dig2, continue; "Announce D2"
"74" dig2+GL, call pl (BCD3b);

"s" digl, continue;

"76" digl+GL, continue;

" ,cmp tm(OF#h) to pl (00#h); "D1 = 07"
"gn ,if (equal) then goto pl (hrtz)

"7g" ,call pl (announ); "Announce D1"
"8o" ,goto pl(hrtz);

" DISPLAY FORMAT: 10.00 Scale: uF2 D4 D3.D2 D1"
"81"uF2:dig4, continue; "D4 is necesarily not zero"
"gan digd4+GL, continue; "D4 is latched"

"83" ,cmp tm(OF#h) to pl (00#h); "D4=0?
"8qn ,if (not equal) then goto pl (ricks5);
"85"sayd3: dig3, continue; "say D3 because D4=0"
"8e" dig3+GL, call pl(announ); "D3 is latched"
"87"pnt: point, continue; "Point. . "

"gg" point+wr, continue;

"g9"idle: ,if (not intr) then goto pl (idle);
"go" dig2, continue;

"g1" dig2+GL, continue;

"g2" ,cmp tm(OF#h) to pl (00#h); "D2=0? "
"g3" ,if (not equal) then goto pl (rick2);
"gq" ,continue;

"g5" ,call pl(announ); "announce D2"
"g6"pat: digl, continue;

"g7" digl+GL, call pl(announ); "announce D1"
"g8"paty: ,call pl (KHZ); "announce KiloHertz"
"99" ,goto pl(start)

"100"rick2: digl, continue;

"101" digl+GL, continue;

"102" ,cmp tm(0OF#h) to pl(00#h);

"103" ,if (not equal) then goto pl(rick3);
"104" dig2, continue;

"105" dig2+GL, call pl (BCD3);

"106" ,goto pl (paty);

"107"rick3: dig2, continue;

"108" dig2+GL, continue;

"109" ,cmp tm(0OF#h) to pl (01#h);

"110" ,if (not equal) then goto pl(rick4);
"111" ,call pl (BCD4);

"112n ,goto pl (paty);

"113"rick4: dig2, continue;

"114" dig2+GL, call pl (BCD3b);

"115" ,goto pl(pat);

"116"rick5: dig4, continue;

"1 dig4+GL, continue;

"118" ,cmp tm(0OF#h) to pl(01#h); "D4=1? "
"119" ,if (not equal) then goto pl (ricksé);

259

"

260 5. Test and Measurement Circuits

"120" dig3, continue;

"121" dig3+GL, call pl (BCD4); "Announce D3"
ni22n ,goto pl(pnt);

"123"rick6: dig4, continue;

"124" diga+GL, call pl (BCD3b); "Announce D4"
"125" dig3, continue;

"126" dig3+GL, continue;

"i27" ,cmp tm(OF#h) to pl(00#h); "D3 = 0? "
"128" ,if (not equal) then goto pl (sayd3);
129" ,goto pl (pnt)
T "
" DISPLAY FORMAT: 100.0 Scale: ur3 D4 D3 D2.D1 "
"130"uF3:dig4, continue; "D4 is not zero"

"131" dig4+GL, call pl(announ); "D4 is latched"
"132" hundred, continue; "Hundred. . ."

"133" hundred+wr, continue;

"134"sty5: ,if (not intr) then goto pl(sty5)
"135" and, continue;

"136" and+wr, continue; "And...."
"137"sty6: ,if (not intr) then goto pl(sty6)
"138" dig3, continue;

"139" dig3+GL, continue;

"140" ,cmp tm(OF#h) to pl(00#h); "D3=0? "
"141" ,if (not equal) then goto pl(lug3);
"142"lug4d: dig2, continue;

"143" dig2+GL, call pl (announ); "D2 is announced"
"144"lug5: point, continue;

"145" point+wr, continue;

"146"sty20: ,if (not intr) then goto pl(sty20)
"147" digi, continue;

"148" digl+GL, call pl(announ); "D1 is announced"
"149" ,call pl(KHZ);

"150" ,goto pl(start)

"151"lugd: dig3, continue;

"152" dig3+GL, continue;

"153" ,cmp tm(0f#h) to pl(0l#h); "D3=1?"
"154" ,if (equal) then goto pl (lugé)

"155" ,call pl (BCD3b);

"156" dig2, continue;

"157" dig2+GL, continue;

"158" ,cmp tm(OF#h) to pl(00#h); "D2=0?"
"159" ,if (not equal) then goto pl (lug4);
"160" ,goto pl (lugs)

"161"lug6: dig2, continue;

"162" dig2+GL, call pl (BCD4);

"163" ,goto pl(lugs)

" DISPLAY FORMAT: 1.000 Scale: uF1 "

"164"uF1:dig4, continue;
"165" dig4+GL, call pl (announ);"D4 is latched"
"166" point, continue;

"1e7" point+wr, continue; "Point"

5.10 A CMOS MSI Capacitance Meter

"168"sty8: ,if (not intr) then goto pl(sty8)
"169" dig3, continue;

"170" dig3+GL, call pl (announ); "D3 is latched"
"17m dig2, continue;

"y7an dig2+GL, call pl (announ); "D2 is selected"
"173" digl, continue;

"174" digl+GL, call pl (announ); "Dl is selected"
"175" ,call pl(MHZ);

"176" ,goto pl(start)

" e o e e s s W
" * % % ¥k Xk kxkx M

Routine to trigger timer T1

"177"count: selP8, continue; "pin 3 of Tl is selected"
"178" selP8+inl, continue; "timer T1 is triggered"
"179"stay: selP8, if (test) then goto pl(stay);"wait for T1
to go low"

"180" ,ret;

" ROUTINES BCD3 AND BCD3b "
"180"BCD3: ,cmp tm(OF#h) to pl (01#h);

"181" ten+GL, if (equal) then goto pl(ni0);
"182"BCD3b: ,emp tm(OF#h) to pl(02#h);

"183" twenty+GL, if (equal) then goto pl(n20)
"184" ,emp tm(OF#h) to pl(03#h);

"185" thirty+GL, if (equal) then goto pl (n30);
"186" ,cmp tm(OF#h) to pl (04#h);

"187" forty+GL, if (equal) then goto pl (n40)
"188" ,cmp tm(0F#h) to pl(05#h);

"189" fifty+GL, if (equal) then goto pl (n50)
"190" ,cmp tm(OF#h) to pl(06#h);

"191" sixty+GL, if (equal) then goto pl (n60);
"192" ,cmp tm(OF#h) to pl(07#h);
"193"seventy+GL, if (equal) then goto pl (n70)
"194" ,cmp tm(OF#h) to pl (08#h);

"195" eighty+GL, if (equal) then goto pl (n80);
"196" ninety+GL, goto pl(n90)

"197"n10: ten+wr, goto pl(xb);

"198"n20: twenty+wr, goto pl(xb);

"199"n30: thirty+wr, goto pl(xb);

"200"n40: forty+wr, goto pl(xb);

"201"n50: fif ty+wr, goto pl (xb)

"202"n60: sixty+wr, goto pl (xb);

"203"n70: seventy+wr, goto pl(xb);

"204"n80: eighty+wr, goto pl(xb);

"205"n90: ninety+wr, goto pl(xb);

"206"xb: ,if (not intr) then goto pl(xb);
"207" .ret;

261

5. Test and Measurement Circuits

"208" BCD4: ,cmp tm(OF#h) to pl (00#h);

"209" ten+GL, if (equal) then goto pl(n10);

"210" ,cmp tm(OF#h) to pl (01#h);

"211" eleven+GL, 1if (equal) then goto pl(nll);

n212" ,cmp tm (OF#h) to pl (02#h);

"213" twelve+GL, if (equal) then goto pl(nil2);

"214" ,cmp tm(OF#h) to pl (03#h);

"215"thirteen+GL, if (equal) then goto pl(nl3);

"216" ,cmp tm(0OF#h) to pl (04#h);

"217"fourteen+GL, if (equal) then goto pl(nl4);

"218" ,cmp tm(OF#h) to pl (05#h);

"219"fifteen+GL, if (equal) then goto pl (ni5);

"220" ,cmp tm(OF#h) to pl (06#h);

"221"sixteen+GL, 1if (equal) then goto pl(nl6);

"222" ,cmp tm(OF#h) to pl (07#h);

n223"seventeent+GL, if (equal) then goto pl(nl7);

"224" ,cmp tm(OF#h) to pl (08#h);

"225"eighteen+GL, if (equal) then goto pl(n18);

"226"nineteen+GL, goto pl (nl9);

"227"nll: eleven+wr, goto pl(finish);
"228"nl12: twelve+twr, goto pl (finish);
"229"n13: thirteen+wr, goto pl(finish);
"230"n14: fourteen+wr, goto pl (finish);
"231"n15: fifteen+wr, goto pl (finish);
"232"nl16: sixteen+wr, goto pl(finish);
"233"nl17: seventeentwr, goto pl (finish);
"234"n18: eighteent+wr, goto pl (finish);
"235"n19: nineteen+twr, goto pl (finish);
"236"announ: ,goto tm(OF#h);
"237"n0: zero+wr, goto pl (finish);
"238'"nl: one+wr, goto pl (finish);
1239"n2: two+wr, goto pl (finish);
"240"n3: three+wr, goto pl(finish);
"241"n4: four+wr, goto pl (finish);
"242"n5: five+wr, goto pl (finish);
"243"n6: six+wr, goto pl (finish);
"244"n7: seven+wr, goto pl(finish);
"245"n8: eight+wr, goto pl (finish);
"246"n9: nine+wr, goto pl (finish);
"247"finish: ,if (not intr) then goto pl (finish);
248" ,ret;

"249"HZ: P, continue;

"250" P+wr, continue;

"251" ,if (intr) then goto pl (stop) else wait;
"252"FF: F, continue;

"253" F+wr, continue;

"254" ,if (intr) then goto pl(stop)

else wait;

5.11 A Talking Solid State Barometer 263

"255"KHZ: U, continue;
"256" U+wr, continue;
"257" ,if (intr) then goto pl (FF) else wait;
"258"MHZ:million ,goto pl (KHZ);
"259"stop: wr, ret;
.org 511#d
"260" ,goto pl(start);
END.

5.11 Designing a Talking
Solid State Barometer

The circuit shown in Figure 5.17 is a 0 to 200 mmHg pressure meter that vo-
calizes readings each time the user presses a switch. The 3-1/2 digit A/D con-
verter will give 199.9 mmHg full-scale. This meter provides a resolution of
0.1 mmHg. The same circuit can also be used for other pressure ranges simply
by changing the sensor and gain.

The resistor divider network composed of two 100K resistors and pot R1
provides the offset adjustment for the circuit. The sensor used in this project is
the BPO1 manufactured by Sensym (1255 Reamwood Avenue, Sunnyvale, CA
94089). The BPOI consists of a highly linear, low noise semiconductor pres-
sure sensor in combination with a precision thick film ceramic, housed in a
compact nylon case. This package offers small size and excellent isolation to
external package stresses. It also provides convenient mounting holes and
pressure ports for ease of use with standard plastic tubing.

Since the BPOI provides an output which is ratiometric to its supply volt-
age, using the electrical parameters of the data sheet, the expected output volt-
age will be 10 mV at 200 mmHg when operating from a 5 V supply. For the
components values shown, a full-scale input voltage of 200 mV (Vo) is re-
quired for the TSC8750 in order to display a full-scale output of 1999. This
way, the gain required for the instrumentation amplifier is 20. The output volt-
age equation and the gain equation derived are given below and are now used
to solve for the unknown resistance, Rt:

Vout = Vin [2(1 + R/Rt)] + Vo
or, rewriting
Vout = Vin Av + Vo

where Av = 2(1 + R/Rt).

Vo is the initial output Vo for zero pressure applied. From the last equation,
with R1 = 10K, Rt is found to be 1.1K. The full-scale span adjustment is fine
tuned by using pot R3, which sets the reference voltage of the A/D converter.

266 5. Test and Measurement Circuits

TABLE 5.15
Software Program for the Talking Barometer

DEVICE (CPL154)

DEFAULT = 1,

DEFINE "test inputs"
busy = t7 intr = t6 equal = eq

"Output control bits are given name assginments"

zero = 1F#h one = 01#h two = 02#h three = 03#h
four = 04+#h five = 05#h six = 06#h seven = 07#h
eight = 08#h nine = 09#h ten = 0A#h eleven = O0B#h

twelve = 0C#h thirteen = 0D#h fourteen = OE#h fifteen = OF#h
sixteen = 10#h seventeen = 11#h eighteen = 12#h nineteen = 13#h
twenty = 14#h thirty = 15#h forty = 16#h fifty = 17#h sixty

= 18#h

seventy = 19#h eighty = 1A#h ninety = 1B#h hundred = 1C#h
thousand = 1D#h milli = 6C#h volt = 8E#h ss = 81#h kilo = 62#h
over = 75#h point = 9A#h digl = 1000#h wr = 5000#h and = 3C#h
1000#h convrs = 4000#h

digl = 1000#h

dig2 = 2000#h

dig3 = 3000#h

dig4 = 4000#h

GL = 0800#h;

DEFAULT-OUTPUT = 0000#h;
OUT_POLARITY = F7FF#h;
TEST_CONDITION = INTR; "Default test condition"

BEGIN

"o" zZero, goto pl(n0)

" one, goto pl(nl)

nan two, goto pl(n2)

"3" three, goto pl(n3);

"qn four, goto pl(n4)

"s" five, goto pl(n5)

"e" six, goto pl(n6)

wn seven, goto pl(n7)

"gn eight, goto pl (n8)

"gn nine, goto pl(n9);

" MAIN PROCESS ;
"10"start: scalel, continue;

"ll1"voltage: convrs+scalel, continue; "pin 21 is pulsed high"
"12"stay: scalel, if (busy) then goto pl (stay);

" DISPLAY FORMAT: 000.0 - 199.9 Scale: mV (0-200 mV) D4 D3 D2.D1"

"13"SPmV:dig4, continue; "D4 is not zero"

5.12 A Talking Darkroom Timer

"14" dig4+GL, call pl (announ); "D4 is latched"
"15" hundred, continue; "Hundred. .. "

"16" hundred+wr, continue;

"17"sty5: ,if (not intr) then goto pl(sty5);
"1i8" and, continue;

"i9" and+wr, continue; "And...."
"20"sty6: ,if (not intr) then goto pl (sty6)
"21" dig3, continue;

22" dig3+GL, continue;

"23" ,cmp tm(OF#h) to pl (00#h); "D3=0? "
"24" ,if (not equal) then goto pl (lug3);
"25"lugd: dig2, continue;

"26" dig2+GL, call pl(announ); "D2 is announced"
"27"lug5: point, continue;

"28" point+wr, continue;

"29"sty20: ,if (not intr) then goto pl(sty20)
"30" digl, continue;

"31" digl+GL, call pl(announ); "D1 is announced"
"3a" ,call pl (KHZ); "Millivolts"

"33" ,goto pl(start);

"34"lug3d: digs, continue;

"35" dig3+GL, continue;

"36" ,cmp tm(0f#h) to pl(01#h);

"37" ,if (equal) then goto pl (lugé)

"38" ,call pl(BCD3b);

"39" dig2, continue;

"40" dig2+GL, continue;

"41" ,cmp tm(OF#h) to pl (00#h); "D2=0?"
"42" ,if (not equal) then goto pl (lug4);
"43" ,goto pl (lug5)

"44"1ug6: dig2, continue;

"435" dig2+GL, call pl (BCD4);

"46" ,goto pl (lug5)

" ROUTINES BCD3 AND BCD3b "

"47"BCD3: ,cmp tm(OF#h) to pl (01#h);

"48" ten+GL, if (equal) then goto pl (nlo0);

"49"BCD3b: ,cmp tm(OF#h) to pl(02#h);

"D3=1?7"

"50" twenty+GL, if (equal) then goto pl (n20);

51"

"52" thirty+GL, if

,cmp tm(0F#h) to
(equal) then

pl (03#h) ;
goto pl(n30);

"126" ,cmp tm(OF#h) to pl(04#h);
"127" forty+GL, if (equal) then goto pl (n40)
"128" ,cmp tm(0F#h) to pl (05#h);
"129" fifty+GL, if (equal) then goto pl (n50)
"130" ,cmp tm(OF#h) to pl(06#h);
"131" sixty+GL, if (equal) then goto pl (n60);
"i32" ,cmp tm(0F#h) to pl (07#h);
"133"seventy+GL, if (equal) then goto pl (n70)
"134" ,cmp tm(OF#h) to pl(08#h);
"135" eighty+GL, if (equal) then goto pl (n80)

"136" ninety+GL,

goto pl(n9o0);

267

268

"137"n10: tentwr, goto pl¢
"138"n20: twenty+wr, goto pl(
"139"n30: thirty+wr, goto pl(
"140"n40: forty+wr, goto pl(
"141"n50: fifty+wr, goto pl(
"142"n60: sixty+wr, goto pl(
"143"n70: seventy+wr, goto pl(
"144"n80: eighty+wr, goto pl(
"145"n90: ninety+wr, goto pl(
"146"xb: ,if (not
"147" ,ret;

ROUTINE BCD4

"148" BCD4: ,cmp tm (OF#h)
"149" ten+GL, if (equal)
"150" ,cmp tm(OF#h)
"151" eleven+GL, if (equal)
"152" ,cmp tm(OF#h)
"153" twelve+GL, 1if (equal)
"154" ,cmp tm(OF#h)
"155"thirteen+GL, if (equal)
"156" ,cmp tm(OF#h)
"157"fourteen+GL, if (equal)
"158" ,cmp tm(OF#h)
"159"fifteen+GL, 1if (equal)
"160" ,cmp tm (OF#h)
"161"sixteen+GL, 1if (equal)
"i62" ,cmp tm(OF#h)
"163"seventeen+GL, if (equal)

"164"
"165"eighteen+GL, if (e
"166"nineteen+GL, goto
"167"nll: eleventwr,

"168"nl12:
"169"n13:
"170"n14:
"171"nl5:
"172"nl16:
"173"nl7:
"174"n18:
"175"n19:

twelve+wr,
thirteen+wr,
fourteen+wr,
fifteen+wr,
sixteen+wr,
seventeen+wr,
eighteentwr,
nineteen+wr,

"176"announ:
"177"n0: zero+wr,
"178"nl: one+wr,
"179"n2: two+wr,
"180"n3: three+wr,
"181"n4: four+wr,
"182"n5:
"183"n6:
"184"n7:

five+wr,
six+wr,
seven+wr,

,cmp tm(OF#h)

qual)

pl(n19
goto
goto
goto
goto
goto
goto
goto
goto
goto

,goto
goto
goto
goto
goto
goto
goto
goto
goto

5. Test and Measurement Circuits

xb) ;
xb) ;
xb);
xb) ;
xb) ;
xb) ;
xb) ;
xb) ;
xb) ;

intr) then goto pl (xb);

to
then
to
then
to
then
to
then
to
then
to
then
to
then
to
then
to
then
)5

pl (finish);

pl (00#h) ;
goto pl (nl10);
pl (01#h);
goto pl(nll);
pl (02#h);
goto pl(nl12);
pl (03#h) ;
goto pl(nl13);
pl (04#h);
goto pl(ni4);
pl (05#h);
goto pl(n15);
pl (06#h) ;
goto pl (n16)
pl (07#h);
goto pl(ni7);
pl (08#h) ;
goto pl(ni8);

pl (finish);
pl (finish);
pl (finish);
pl (finish);
pl (finish);
pl (finish);
pl (finish);
pl (finish);

tm (OF#h) ;

pl (finish);
pl (finish);
pl (finish);
pl (finish);
pl (finish);
pl (finish);
pl(finish);
pl (finish);

5.12 A Talking Darkroom Timer 269

"185"n8: eight+wr, goto pl(finish);

"186"n9: nine+wr, goto pl (finish);

"187"finish: ,if (not intr) then goto pl (finish);

"188" ,ret;

M e s s e P e o e o L o Tt s e o o s s o i Pt g e £ e st "

"189"HZ:volt, continue;

"190" volt+wr, continue; "mm Hg..."

"191" ,if (intr) then goto pl(ssa) else wait

"192"ssa: ss, continue; "S.oLo"

"193" ss+wr, continue;

"194" ,if (intr) then goto pl(stop) else wait;

"195"KHZ:milli, continue;

"196" milli+wr, continue;

"197" ,if (intr) then goto pl(HZ) else wait;

"198"stop: wr, ret;

"199"msgerr: over, continue; "OVER. .."

"200" over+wr, continue;

"201" ,if (intr) then goto pl (HZ) else wait;
.org 511#d

"208" ,goto pl(start)

END.

the testable inputs TO and T1 of the FPC Am29CPL152. Output P12 of the
FPC is used to control Nand gate IClc, which in turn drives the internal LED
contained in the optocoupler MOC3010. The optocoupler MOC3010 is used to
isolate the ac power line from the circuit. Outputs P8 to P11 of the FPC drive
the BCD-to-seven segment decoder/driver CD4543. Accordingly, output P13
is used to blank the LED display when the subroutine ““light” is being per-
formed in order to avoid a reading of *“0” when P8 to P11 are not specified in
the microcode program.

When pushbutton “stp” is closed momentarily, the user will hear the word
“start” then the ac lamp will be turned on for the previously selected time. If
the user needs to produce the same interval in the ac lamp, he just has to press
the “‘stp” switch again.

Every time you push the “time” switch, the FPC begins its upward count.
The current BCD number present at its outputs (P8 to P11) is decoded by
CD4543 and is displayed on a common-cathode, seven-segment LED readout.
The FPC’s program is designed to increment its position every time the
“time” switch is pressed; this causes the program to increment the number
displayed in the readout and make the speech processor speak the new number
of seconds that the light should be on.

When the number of seconds is correct, it is time to press the STP button;
this button starts the light. If the user presses ““stp” again when the light is on,
the light will be turned off immediately.

5.12 A Talking Darkroom Timer 271

and then will turn on the ac lamp for an interval of 9 s. When this period ends,
the speech processor will speak the word ““stop” to indicate that the process is
complete. The program then returns to the routine that gives nine seconds of
light. If the operator wants to expose several films to periods of nine seconds
of light, he will keep pressing the “stp” switch. If not, he will have to press
the “time” switch to select a new timing interval of light.

‘ START ’

SUB LIGNT

SAY STAR

) YES ‘r ——-y
YES LOAD PL
Te-0 5 LIGHT

1 SE6
| S |

SAY THO
) YES 'r ——y
Teen DiiaSr=o LMD PL L Lren
SAY STOP) 2 SEG L J

RETURN

ALL THE BLOCKS HAVE THE SANE FORMAT

SAY NINE

le

" VES ‘r I
vss @ L B
9 SE6
| R |

Figure 5.19 Flowchart for the darkroom timer.

272 5. Test and Measurement Circuits

TABLE 5.16
Software Program for the Speech Synthesized Darkroom Timer

DEVICE (CPL152)

DEFAULT = 1;
DEFINE "test inputs"
ti = to
stp = t1
sby = t2

"allophones and pauses are given name assignments"
pa2 = 01#h " e "
pa3 = 02#h " t6->11 28,- vee "
pad = 03#h " po0<-:2 27,<-clk "
pa5 = 04#h " pl<-13 26,<-cc "
oy = 05#h " p2<-14 25,<-t0 "
ay = 06#h " p3<-15 Am29CPL 24)<-t1 "
eh = 07#h " p4<-.6 152 23i1<-t2 "
kk3 = 08#h " p5<-17 221<-t3 "
pp = 09#h " p6<-:8 21i<-t4 "
jh = 0A#h " p7<-19 20/<-t5 "
nnl = O0B#h " p8<-110 19:<-/reset"
ih = 0C#h " p9<-i11 18:->pl5 "
tt2 = 0D#h " plo=-i12 17:->pl4 "
rrl = OE#h " pll<-:13 16,->pl3 "
ax = OF#h " Gnd-i14 15i->p12 "
mm = 10#h " e "
ttl = 11#h

dhl = 12#h iy = 13#h ey = 1l4#h dd1 = 15#h uwl = 16#h
ao 17#h aa — 18#h yy2 = 19#h ae = 1A#h hh1l = 1B#h
bb1l = 1C#h th = 1D#h uh = 1E#h uw2 = 1F#h aw = 20#h

dd2 = 21#h gg3 = 22#h vv = 23#h ggl = 24+#h sh = 25#h

zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h = 2E#h xXr = 2F#h

wh = 30#h yyl = 31#h ch = 32#h erl - 33#h er2 = 34+#h
ow = 35#h dh2 = 36#h ss = 37#h nn2 = 38#h hh2 = 39#h
or = 3A#h ar = 3B#h yr = 3C#h gg2 = 3D#h el = 3E#h

bb2 = 3F#h;

"control the light activator and led display readout "
AClight = 1000#h BI = 2000#h "Blanking Display"

k1 = 100#h k2 = 200#h k3 = 300#h k4 = 400#h
k5 = 500#h k6 = 600#h k7 = 700#h k8 = 800#h k9 = 900#h;

"the position of the display readout is p8 to pll (A thru D)"
DEFAULT_OUTPUT = 0000#h;
TEST_CONDITION = SBY; '"/STANDBY is the default test condition"

BEGIN

"Wait for ti to go high"

"l1"start: , if (not ti) then goto pl(start)
"2"stl: ww+kl, call pl(read); " say ONE "

5.12 A Talking Darkroom Timer

"3" ax+kl, call pl(read)

"4 ax+kl, call pl(read);

"5 nnl+kl, call pl(read);

e pa3+kl, call pl(read);

"Trst1l: k1, if (ti) then goto pl(st2);
ngn k1, if (not stp) then goto pl(still)
"gn k1, load pl(4);

"10" k1, call pl(light);

"1 k1, goto pl(stll)

"12"st2: tt2+k2, call pl(read); " say TWO "
"13" uw2+k2, call pl (read);

"14" pa3+k2, call pl(read);

"15"st21: k2, if (ti) then goto pl(st3);
"16" k2, if (not stp) then goto pl(st21);
"7 k2, load pl(9);

"18" k2, call pl(light)

"ig" k2, goto pl(st21)

"20"st3: th+k3, call pl(read); " say THREE "
"21" rr1+k3, call pl(read);

"2 iy+k3, call pl(read);

"23" pa3+k3, call pl(read);

"24"st31: k3, if (ti) then goto pl(st4)
"25" k3, if (not stp) then goto pl(st31)
"2e6" k3, load pl(14);

27" k3, call pl(light);

"2g" k3, goto pl(st31);

"29"st4: ff+k4, call pl(read); " say FOUR "
"30" ff+k4, call pl(read);

"31" or+k4, call pl (read);

"32" pa3+k4, call pl(read);

"33"st41: k4, if (ti) then goto pl(st5);
"34" k4, if (not stp) then goto pl(st4l)
"35" k4, load pl(19)

"36" k4, call pl(light);

"3 k4, goto pl(st4l)

"38"st5: ff+k5, call pl(read); " say FIVE "
"39" ff+k5, call pl(read);

"40" ay+k5, call pl(read);

41" vv+k5, call pl(read);

"q2" pa3+k5, call pl(read)

"43"st51: k5, if (ti) then goto pl(st6)
"44" k5, if (not stp) then goto pl(st51)
45" k5, load pl(24);

"46" k5, call pl(light)

47" k5, goto pl(st51)

"48"st6: ss+k6, call pl(read); " say SIX "
49" ss+k6, call pl(read);

"50" ih+k6, call pl (read)

"51" ih+k6, call pl (read)

"52" pa3+k6, call pl(read);

"53" kk2+k6, call pl(read);

"54" ss+k6, call pl(read);

"55" pa3+k6,

call pl(read);

273

274

"56"st61: k6, if (ti)

"57" k6, if (not stp)
"58" k6, load pl(29);
"59" k6, call pl(light);
"6o" k6, goto pl(st6l)
"61"st7: ss+k7, call pl(read);
"e2" ss+k7, call pl(read);
"63" eh+k7, call pl(read);
"eqn eh+k7, call pl(read);
"e5" vv+k7, call pl(read);
"66" eh+k7, call pl(read);
"eT" nnl+k7, call pl(read);
"68" pa3+k7, call pl(read)
"69"st71: k7, if (ti)

"To" k7, if (not stp)
" k7, load pl(34);
"2 k7, call pl(light);
"3" k7, goto pl(st71);
"74"st8: ey+k8, call pl(read);
"5 pa3+k8, call pl(read);
"76" tt2+k8, call pl(read);
" pa3+k8, call pl(read);
"78"st81: k8, if (ti)

"T9" k8, if (not stp)
"80" k8, load pl(39);
"g1" k8, call pl(light);
ng2n k8, goto pl(st81);
"83"st9: nn2+k9, call pl(read);
"84 aa+k9, call pl(read);
"85" ay+k9, call pl(read);
"86" nn1+k9, call pl(read);
"8 pa3+k9, call pl(read);
"88"st91: k9, if (ti)

ngg" k9, if (not stp)
"90" k9, load pl(44);
"91" k9, call pl(light);
"g2n k9, goto pl(st9l);
"subroutine READ"

"93"read: BI, continue;
"94"styal: BI, if (not sby)

SBY"

"95" BI, ret;

"subroutine light"

"96"light: BI+ss, call pl(read);
"g7" BI+ss, call pl(read);
"98" BI+pa3, call pl(read);
"og" BI+tt2, call pl(read);
"100" BI+ar, call pl(read);
"101" BI+pa3, call pl(read);
"102" BI+tt2, call pl(read);

5. Test and Measurement Circuits

then goto pl(st7);
then goto pl(sté6l);

" say SEVEN "

then goto pl(st8);
then goto pl(st71);

" say EIGHT "

then goto pl(st9);
then goto pl(st81);

" say NINE "

then goto pl(stl);
then goto pl(st9l);

"allows sby to go low in 300 ns"
then goto pl(styal);

"reading

" say START "

5.13 A Talking Current Meter 275

"103"1ight2: AClight+pa5, continue;

"104" AClight+pal, continue;
"105"stay2: AClight+pal, 1if (not sby) then goto pl(stay2);
"106" AClight+pal, if (stp) then goto pl(stop);
"107" AClight+pal, while (creg<>0) loop to pl(light2);
"108"stop: ss, call pl(read);
"109" ss, call pl(read); " say STOP "
"110" pa3, call pl(read);
"111t tt1l, call pl(read);
"112" aa, call pl(read);
"113" aa, call pl(read);
"114" pa3, call pl(read);
"115" pp, call pl(read);
"116" pa3, call pl(read);
"1 , ret;
org 127#d
"118" , goto pl(start);
END.

5.13 Talking Current Meter

The circuit shown in Figure 5.20 is a talking current meter that vocalizes read-
ings within the range of 0 to 200 mA. Its resolution is 1 mA. The conversion
of current to voltage is performed by using an A/D converter (ADC) with par-
allel BCD outputs (TSC8750). The resulting digital conversion is read and
controlled by an FPC which also drives the speech processor Digitalker.

The use of a shunt resistor converts the current to a voltage. In this case, a
shunt resistor of 1 ohm (1/4 W) is used at the input pin of the ADC TSC8750.
When measuring current, the 199 mV scale is used. This limits the voltage
drop to 1 mV per count. The relationships for finding the values of resistors
Rin and Rref are:

Rin = Vin Full-Scale ~ 0.2V
10 A 10 nA

Vref -5V
—20 nA =20 nA

20K

Rref =

I
|
N
9
(=]
~

The process for controlling the ADC TSC8750 is similar to the one shown
in Section 10 of this chapter. In this case, the TSC8750 is controlled by output
P14 of the FPC. When the user connects the terminal cables for measuring a
current, he presses the “test” switch to cause a negative transient pulse at the
input T4 of the FPC. The testable input T4 is being monitored by the instruc-
tion “start: if (test) then goto pl (start),” as shown in Table 5.17; this instruc-

5.13 A Talking Current Meter 277

the conversion process of the ADC TSC8750 is complete, line 13 of the pro-
gram reads the logic status of the output “busy” of the ADC. The instruction
“hold: ,if (busy) then goto pl(hold)” will keep reading the function pin
“busy” in order to wait for the end of the conversion process. When the out-
put “busy” goes to a logic low, the FPC jumps by default to the next instruc-
tion where the routine for reading the digital value of digits D1, D2, and D3,
is performed. As soon as the FPC detects a digit different from zero, the FPC
causes the Digitalker to announce the digital number according to its position.
D3 is the most significant digit and D1 is the less significant digit. (In this
application Digit D4 is left unconnected because we are measuring only cur-
rents within the range of 1 to 199 mA with a resolution of 1 mA.) Notice that
the routine (from line 21 to 160) also monitors the value of digit D4; this will
not affect the function of the FPC and the Digitalker. This allows you to
change the scale of the readings without having to alter the software for your
specific need. Bear in mind that the software program presented in Table 5.17
will be able to handle current measurements when the digits D1 to D4 are not
using a decimal point. If you want to use a decimal point, consider using the
entire routine presented in Table 5.1.

TABLE 5.17
Software Program for the Talking Current Meter

DEVICE (CPL154)

DEFAULT = 1;

DEFINE "test inputs"
intr = t7 equal = eq
test = t4 busy = t5

"Output control bits are given name assginments"

zero = 1F#h one = 0l#h two = 02#h three = 03#h
four = 04+#h five = 05#h six = 06+#h seven = 07#h
eight = 08#h nine = 09#h ten = 0A#h eleven = 0B#h

twelve = 0C#h thirteen = 0D#h fourteen = OE#h fifteen = OF#h
sixteen = 10#h seventeen = 11#h eighteen = 12#h nineteen = 13#h
twenty = 14#h thirty = 15#h forty = 16#h fifty = 17#h sixty

= 18#h

seventy = 19#h eighty = 1A#h ninety = 1B#h hundred = 1C#h
thousand = 1D#h U = 34#h P = 2F#h F = 25#h

point = 9A#h digl = 1000#h wr = 5000+#h and = 3C#h
resetl = 8000#h dig2 = 2000#h selP8 = 100#h

inl = 400#h dig3 = 3000#h

GL = 800#h dig4 = 4000#h;

DEFAULT_OUTPUT = 0000#h;
OUT_POLARITY = F7FF#h;
TEST_CONDITION = INTR; "Default test condition"

278 5. Test and Measurement Circuits

BEGIN

"o" zero, goto pl(n0);
" one, goto pl(nl)
"2 two, goto pl(n2);
ng three, goto pl(n3);
g four, goto pl(n4);
n"5" five, goto pl(n5)
"e" six, goto pl(n6)
nn seven, goto pl(n7);
"8 eight, goto pl(n8)
ngn nine, goto pl(n9);

"10"start: ,if (test) then goto pl(start);

"1 inl, continue; "ADC initiates conversion"
"2 ,continue;

"13"hold: ,if (busy) then goto pl (hold);

" DISPLAY FORMAT: 0000 Scale: mA D4 D3 D2 D1 "

"21" dig4, continue;

"22" dig4+GL, continue; " Digit 4 is selected by IC 74HC137"
"23" ,cmp tm(OF#h) to pl (00#h); "D4 = 07"
"24" dig3, if (not equal) then goto pl (spkD4);

"25" dig3+GL, continue;

"26" ,cmp tm(OF#h) to pl (00#h); "D3 = 0?7 "
"27" dig2, if (not equal) then goto pl (spkD3);

"28" dig2+GL, continue;

"29" ,cmp tm(OF#h) to pl (00#h); "D2 = 07"
"30" ,if (not equal) then goto pl (ptyc);
"31"spkdl:digl, continue;

"32" digl+GL, call pl (announ); "Announce D1 "
"33"hrtz: ,call pl(HZ); "mA"

"34" ,goto pl(start)

"35"spkd4: dig4, continue;

"36" dig4+GL, call pl(announ); "Announce D4"

"37" thousand, continue;

"38"thousand+wr, continue; "Thousand. . . "
"39"same: dig3, if (not intr) then goto pl(same);

"40" dig3+GL, continue;

"41" ,cmp tm(OF#h) to pl(00#h); "D3 = 07"
ng2" ,if (not equal) then goto pl (spkD3);

"43" dig2, continue;

"44" dig2+GL, continue;

"45" ,cmp tm(OF#h) to pl(00#h); "D2 = 0?"
"46" ,if (not equal) then goto pl (ptyand);
"47"spkand: and, continue;

"4g8" and+wr, continue; "And..."
"49"same2: ,if (not intr) then goto pl (same2);

w5 ,goto pl(spkdl);

5.13 A Talking Current Meter

"51"spkd3:dig3,

"52" dig3+GL,
"53" hundred,
nggqn

"55"same3: dig2,
"56" dig2+GL,
wgn

58"

"59" digl,
"60" digl+GL,
ng1"

g

g3
"64"ptyand: and,
"e5" and+wr,

"66"same4: dig2,

continue;
call pl (announ) ;
continue;

hundred+wr, continue;

if (not intr)
continue;
,cmp tm (OF#h)
,if (not equal)
continue;
continue;
,cmp tm(0F#h)
,if (not equal)
,goto pl (hrtz);
continue;
continue;

if (not intr)

"67"ptyc:dig2+GL, continue;

"68 "
ngg ™
w7o"
wgqn
ngon
"73"ptyb:dig2,
"74" dig2+GL,
"5 digi,
"76" digl+GL,
wgn
w7gn
nqgn
wgon

digl,
digl+GL,

"80"BCD3:

"81" ten+GL,
"82"BCD3b:

"83" twenty+GL,
ngan

"85" thirty+GL,
uggn

"87" forty+GL,
nggn
"89" fif ty+GL,
ngo"
"91" sixty+GL,
ngon

"93"seventy+GL,
nggqn

"95" eighty+GL,
"96" ninety+GL,

,cmp tm(OF#h)
,if (not equal)
continue;

call pl (BCD4);
,goto pl (hrtz);
continue;

call pl (BCD3b);
continue;
continue;
,cmp tm(OF#h)
,if (equal)
,call pl (announ);
,goto pl (hrtz);

,cmp tm(OF#h) to

if (equal) then
,cmp tm(OF#h) to
if (equal) then
,cmp tm(0F#h) to
if (equal) then
,cmp tm(OF#h) to
if (equal) then
,cmp tm(OF#h) to
if (equal) then
,cmp tm(OF#h) to
if (equal) then
,cmp tm(0OF#h) to
if (equal) then
,cmp tm(OF#h) to
if (equal) then
goto pl (n90);

"Announce D3"

"Hundred. .. "
then goto pl (same3);

to pl (00#h);

then goto pl (ptyand);

to pl (00#h);
then goto pl (spkand) ;

then goto pl(same4);

to pl (01#h);
then goto pl (ptyb);

"Announce D1"

"Announce D2"

to pl (00#h);
then goto plhrtz);

pl (01#h);
goto pl(nlo);
pl (02#h);
goto pl (n20);
pl (03#h);
goto pl (n30);
pl (04#h) ;
goto pl(n40);
pl (05#h);
goto pl(n50);
pl (06#h) ;
goto pl (n60);
pl (07#h) ;
goto pl (n70);
pl (08#h);
goto pl (n80);

07"

07"

170

"D1 = 07"

"Announce D1"

279

280

"97"nl10: ten+wr, goto pl(xb);
"98"n20: twenty+wr, goto pl (xb);
"99"n30: thirty+wr, goto pl(xb);
"100"n40: forty+wr, goto pl(xb);
"101"n50: fif ty+wr, goto pl(xb);
"102"n60: sixty+wr, goto pl(xb);
"103"n70: seventy+wr, goto pl(xb);
"104"n80: eighty+wr, goto pl(xb);
"105"n90: ninety+wr, goto pl(xb);
"106"xb: ,if (not intr)
"107" ,ret;

5. Test and Measurement Circuits

then goto pl (xb);

"108" BCD4: ,cmp tm(OF#h) to pl (00#h);
"109" ten+GL, if (equal) then goto pl(nlo0);
"110" ,cmp tm(0OF#h) to pl(01#h);
"111" eleven+GL, if (equal) then goto pl(nll);
"112" ,cmp tm(OF#h) to pl(02#h);
"113" twelve+GL, 1if (equal) then goto pl(nl2)
"114" ,cmp tm(OF#h) to pl (03#h);
"115"thirteen+GL, if (equal) then goto pl(ni3);
"116" ,cmp tm(OF#h) to pl (04#h);
"117"fourteen+GL, if (equal) then goto pl(nl4);
"118" ,cmp tm(OF#h) to pl (05#h);
"119"fifteen+GL, if (equal) then goto pl(nis);
"120" ,cmp tm(0OF#h) to pl (06#h);
"121"sixteen+GL, if (equal) then goto pl(nlé6);
"22" ,cmp tm(OF#h) to pl(07#h);
"123"seventeen+GL, if (equal) then goto pl(nl7)
"124" ,cmp tm(OF#h) to pl (08#h);
"125"eighteen+GL, if (equal) then goto pl(nl8);
"126"nineteen+GL, goto pl (n19);

"127"nll: eleventwr, goto pl (finish);
"128"n12: twelve+wr, goto pl (finish);
"129"n13: thirteen+wr, goto pl (finish);
"130"n14: fourteen+wr, goto pl (finish);
"131"nl15: fif teentwr, goto pl (finish);
"132"n16: sixteentwr, goto pl(finish);
"133"nl17: seventeentwr, goto pl(finish);
"134"n18: eighteen+wr, goto pl (finish);
"135"n19: nineteen+wr, goto pl(finish);
"136"announ: ,g0to tm(OF#h);

"137"n0: zero+wr, goto pl(finish);
"138"nl: one+wr, goto pl(finish);
"139"n2: two+wr, goto pl(finish);
"140"n3: three+wr, goto pl(finish);
"141"n4: four+wr, goto pl(finish);
"142"n5: fivetwr, goto pl(finish);
"143"n6: six+wr, goto pl(finish);
"144"n7: seven+wr, goto pl (finish);

5.14 A Liquid-Level Enunciator 281

"145"n8: eight+wr, goto pl (finish);
"146"n9: nine+wr, goto pl (finish);
"147"finish: ,if (not intr) then goto pl (finish);
"148" ,ret;
"149"HZ: m, continue; "Milli amperes"
"150" P+wr, continue;
"151" ,if (intr) then goto pl(stop) else wait;
"152"FF: F, continue;
"153" F+wr, continue;
"154" ,if (intr) then goto pl(stop) else wait;
"155"KHZ: U, continue;
"156" U+wr, continue;
"157" ,if (intr) then goto pl(FF) else wait;
"158"MHZ:million ,goto pl(KHZ);
"159"stop: wr, ret;
.org 511#d
"160" ,goto pl(start);
END.

5.14 Designing a Liquid-Level*
Annunciator

A chemist might find that a liquid-level annunciator circuit comes in handy to
detect the liquid level of chemical-reactor vessels in his lab. The annunciator
circuit contains a speech processor and loudspeaker that gives an audible re-
port of the level of liquid in a vessel each time the user presses the read
switch, S1. For example, for a liquid-level input of nine, the loudspeaker an-
nounces ‘“‘nine.”

Measuring liquid level requires only one chip, IC7, a 74HC147 10-to-4-line
priority encoder (see Figure 5.21). Each of its nine inputs is connected to a
level-sensor electrode in the vessel, and each input has a 20K pull-up resistor
(R1 to R9) to provide a logic one when its level-sensor electrode is dry. All the
electrodes deliver logic one inputs when the vessel is empty; logic zeros when
it is full.

When the user pushes switch S1, a quad clocked-D latch CD4042 (IC1)
latches the chip’s encoded outputs and triggers IC2b—half of a CMOS dual
CD4520 up-counter configured as a flip-flop. The inverted outputs from the
latch (/Q1 to /Q4) deliver positive-acting logic, liquid-level values to the
upper-address inputs of the 27C16 EPROM (A4 to A7). The other half of the

*Reprinted with permission from Electronic Design, Vol. 37, no. 4, February 23, 1989.
Copyright 1989, Penton Publishing.

282 5. Test and Measurement Circuits

+5Vde +
+ W 7805 Regulator % o T ™ 5V
b +5V | ;1 v
Ry {R2[Rs[Rq{Ry AN20k |45 _ai-mm, 0,0,
ol o v°°' I 1hen
10-4line

Encoder
167 T4HC147 . 16 [3

Vessel

Cry
100

=

Figure 5.21 The annunciator’s circuit loudspeaker gives an audible report of a ves-
sel’s liquid when S1 is pressed.

CD4520 counter (IC2a) scans the lower-address memory locations (A1l to A3)
in sequence.

After the user closes S1, setting the Q1 output of IC2b high, each negative-
going output pulse from Nand gate IC6 to the speech processor’s address-load
input (/ALD) loads the processor with the currently addressed EPROM data.
This block of EPROM memory data delivers a preprogrammed sequence of
instructions to the speech processor 1C4, an SPO256-AL2. For example,
when the liquid level reaches five (ABCD = 0101 from IC7), the loudspeaker
announces the number *“five.”

The processor, while delivering speech, holds its standby output (/SBY)
low for an interval appropriate to that particular allophone. The low /SBY re-
sets the Nand gate output to deliver a positive-going output. Starting with a
zero count, the positive-going output of the Nand gate advances counter 1C2
one step, following the closure of S1.

Each audible report requires one to seven allophones. Following each re-
port, the last two hex-data instructions in the program, 4 and 44, reset the
speech processor internally. Also, by its output 06, the EPROM resets counter
IC2 and flip-flop IC2b, making the circuit ready for the next reading.

CHAPTER 6

Speech-Synthesized Burglar Alarms

6.1 Designing a Burglar Alarm with
Artificial Voice

The features found in most alarm systems for home or car usage can be built
around one field programmable controller, a speech synthesizer, and several
optocouplers. The vocal warning alarm described in this section takes ad-
vantage of the allophone-based speech processor SPO256-AL2 to warn the
trespasser.

Figure 6.1 shows the entire circuit for the burglar alarm where a hidden
switch (S1) inside the car or the house turns on the entire system. As can be
seen, the performance of the alarm is based on the program stored in the FPC
Am29CPL152. Figure 6.2 shows the flowchart indicating the steps that must
be followed to detect a possible intrusion in the protected area.

We will design the alarm circuit to detect when a normally closed switch
(S2) is open momentarily; therefore, the first step for the alarm is to check if
the sensor is in the closed position. If so, the FPC will make the speech pro-
cessor announce the message, ““Check sensors...” repetitively until the prob-
lem has been fixed. When this happens, the operator will turn off the alarm
before starting to adjust the input sensor. On the other hand, if the sensors are
properly adjusted, when the alarm is turned on, the circuit inhibits it for 12 s
before becoming active to let the user exit and close the door without prob-
lems. This delay is indicated in the flowchart of Figure 6.2 with the label
“rick.” The 12 s delay is controlled by the routine located in lines 14 to 16 in
Table 6.1.

Now the alarm can detect, for example, the opening of a door or window

283

6.1 Artificial Voice Burglar Alarm 285

SPO256-AL2 by default. This set of instructions contain the allophones that
have to be issued. Subroutine “‘read” sends the data byte zero to make the
SPO256-AL2 start speaking the programmed allophone (see line 49). The in-
struction ““if (not sby) then goto pl (sty6)” is used to make the FPC wait for
the SPO256-AL2 to finish speaking each allophone.

When the FPC has completed sending sequentially the allophones for the
message ‘“You have ten seconds,” the FPC continues with the program in line
38 (see Table 6.1). Lines 38 to 40 contain the instructions to generate a 12 s
delay. This delay is made by using the largest pause “pa5” available in the
speech processor. Pause ““pa5” makes the speech processor generate a 200 ms
silence. In this form, the instruction “load pl(59)” in line 38 loads the CREG
counter of the FPC with the constant 59 to generate the pause “pa5” 60 times;
that is, a 12 s delay. The instruction *“while (creg <> 0) loop to pl(stay)” is
responsible for decrementing and testing CREG against zero until the 60 loops
have taken place.

After the 12 s delay, the program activates the siren for 100 s, as can be
seen in lines 41 to 47 of Table 6.1. This long delay is generated by loading the

' /i\

1

no i

=17 T~ -

3o T oneck SENSORs -
~ /
Jyes

12 seconds delay

— yes

<'gnsor=1’?
\\ /.
R

"YOU HAVE TEN SECONDS"
. L,
12 seconds delay

Siren sounds for 100 Sec.

Figure 6.2 Flowchart for developing the microcode program for the burglar alarm
with artificial voice.

286 6. Speech-Synthesized Burglar Alarms

TABLE 6.1
Software Program for the Speech Synthesized Burglar Alarm

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
sby = t1
sensor = tO

"output control bits"

"speech data = 59 allophones plus five pauses"

pa2 = 0l#h pa3 = 02#h pad4 = 03#h pa5 = 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = 08#h pp = 09#h jh = 0A#h nnl = 0B#h ih = oC#h
tt2 = 0D#h rrl1 = OE#h ax = OF#h mm = 10#h ttl1 = 11#h dhl = 12#h
iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = 1A#h hhl = 1B#h bbl = 1C#h th = 1D#h uh
= 1E#h uw2 = 1F#h aw = 20#h dd2 = 21#h gg3 = 22#h Vv
= 23#h ggl = 24+#h
sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h kk2
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h Xr
yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h ow
ss = 37+h nn2 = 38#h hh2 = 39#h or = 3A#h ar
gg2 = 3D#h el = 3E#h bb2 = 3F#h ald = 100#h
siren = 200#h "P9"
ledl = 400#h; "P10"

29#h kkl1 = 2A#h
2F#h wh = 30#h
35#h dh2 = 36#h
3B#h yr = 3C#h

TEST_CONDITION = SBY;
DEFAULT_OUTPUT = 0000#h;

BEGIN

"check for open loops"

"l"start: ,if (not sensor) then goto pl(rick);
"2 ch+ledl, call pl(read);"CHECK SENSORS..."
"3 eh+ledl, call pl(read)

"qn kk1+ledl, call pl(read);

"5 pa5+ledl, call pl(read)

"e" ss+ledl, call pl(read);

nqn eh+ledl, call pl(read);

ngn nnl+ledl, call pl(read);

"g" ss+ledl, call pl(read);

"10" or+ledl, call pl(read);

"1 ss+ledl, call pl(read);

"an pa5+ledl, call pl(read);

"3" led1, goto pl(start);

"14"rick: ,load pl(59); "12 sec delay to leave"
"15"stayl: pa5, call pl(read); "the house or car"
"16" ,while (creg <> 0) loop to pl(stayl)
"wait for input sensor S1 to go low"

"17"waitl: ,if (sensor) then goto pl(waitl)

"i8" yyl, call pl(read); "YOU HAVE TEN SECONDS"
"i9" ih, call pl (read);

"20" uh, call pl(read);

6.1 Artificial Voice Burglar Alarm

n21" pas, call pl(read)

"22" hh2, call pl(read);

"n23" ae, call pl(read);

"24" vv, call pl (read)

nas" pas, call pl (read);

"26" tt2, call pl(read);

n27" eh, call pl(read);

"2g" eh, call pl(read);

n"29" nnl, call pl(read);

"30" pas, call pl (read)

"31" ss, call pl (read);

"3a2" ss, call pl(read);

"33" eh, call pl(read)

"34" kk3, call pl(read);

"35" nnl, call pl(read);

"36" 2z, call pl (read);

"3 pas, call pl(read);

"38" ,load pl(59); "12 sec delay to turn alarm off"
"39" stay:pa5, call pl(read); "pa5 = 200 mS"

"40" ,while (creg <> 0) loop to pl(stay);

" Routine to activate the siren for 100 seconds
"q1n siren, load pl(9)

"42"time: siren, push (CREG) ; "Push 9#d to TOS"
"43" siren, load pl (49); "Delay = 200ms X 50 = 10 sec.
"44"stay2: siren+pa5, call pl(read2)

"45" siren, while (creg <> 0) loop to pl(stay2);
"46" siren, if (sby) then pop to(CREG)

nq" siren, while (creg <> 0) loop to pl(time);
"4g8" ,goto pl (start)

"

"subroutine READ"

"49"read: ,continue; "allows sby to go low in 300 ns"
"50"sty6: ,if (not sby) then goto pl(sty6); "reading SBY"
"51" ,ret;
"subroutine READ2"
"52"read2: siren, continue; "allows sby to go low in 300 ns"
"53"stay3: siren, if (not sby) then goto pl(stay3); ‘"reading
SBY"
"54" siren, ret;

.org 127#d
"55" ,goto pl(start)

END.

287

288 6. Speech-Synthesized Burglar Alarms

stack with the constant 9. This is achieved with the instructions *‘load pl(9)”
and “push (creg),” respectively. Instructions in lines 43 to 45 are used to
make the speech processor generate 50 times the pause ““pa5”; that is, a 10 s
delay; for instance, a total delay of 100 s is obtained. While the 100 s delay is
being performed, the output control bit (P9) assigned “siren,” located in the
left side of the instructions in lines 41 to 47, is utilized to activate the siren.
The optocoupler 740L6000 from Microchip is used to isolate the 5 V power
supply from the 12 V line that is used to activate the siren. Transistor TIP120
is the power-switching device that drives the siren which normally consumes
about 0.5 A at 12 Vdc.

Line 48 contains the instruction “goto pl(start)” in order to make the FPC
jump to the instruction with the label “start”” located in line one of Table 6.1.
In this form, the FPC is ready to start the process again by monitoring the
normally closed input sensor S1.

In this project, the FPC is clocked by a 1 kHz logic oscillator; that is, each
instruction is performed in 1 ms. You can augment the 1 kHz frequency up
to 30 MHz without altering the functions or delays of the alarm. That is pos-
sible because all the delays are generated by means of the speech processor
SPO256-AL2.

By making use of the unused testable inputs from T2 to TS, the alarm pre-
sented here can be easily configured to also detect normally open (NO) sen-
sors. In addition, you can activate more output devices by using the available
outputs P9 to P15 of the FPC Am29CPL152 by using the appropriate interface
circuitry.

Table 6.2 shows the PROM bit pattern generated by the assembler
ASMI14X. As you can see, outputs PO to P7 are dedicated exclusively to store
the speech data that the SPO256-AL2 requires to produce the messages. Out-
put P9 in Table 6.2 contains a logic 1 in lines 40 to 46 to activate the siren.
You can check this by looking at lines 41 to 47 in the program shown in Table
6.1. The same situation occurs to activate the LED that is connected to output
P10 in Figure 6.1.

TABLE 6.2
PROM Bit Contents for the FPC Am29CPL152

PROM Contents:
hex <dec> OE OPCODE POL TEST DATA OUTPUT

000 < 0> [11 11001 i 1 { 0000 | 0001101 i 0000000000000000]
001 < 1> [1 1 11100 ; 0 ; 0001 | 0110000 : 0000010000110010]
002 < 2> [1! 11100 ; 0 i 0001 | 0110000 : 0000010000000111 |
003 < 3> [11 11100 ; 0 ! 0001 ; 0110000 : 0000010000101010 |
004 < 4> [1 1 11100 : O i 0001 : 0110000 i 0000010000000100 |

6.1 Artificial Voice Burglar Alarm

005
006
007
008
009
00A
00B
00C
00D
0OE
0OF
010
011
012
013
014
015
016
017
018
019
01A
01B
01C

021
022
023
024
025
026
027
028
029
02A
02B
02C
02D
02E
02F
030
031
032
033
034
035
07F

< 10>
< 11>
< 12>
< 13>
< 14>
15>
16>
< 17>
< 18>
< 19>
< 20>
< 21>
< 22>
23>
24>
< 25>
< 26>
< 27>
< 28>
< 29>
< 30>
31>
32>
33>
34>
< 35>
< 36>
< 37>
< 38>
< 39>
40>
41>
42>
43>
44>
45>
46>
47>
48>
49>
50>
< 51>

N NN AN AN AN

NN ANA

< 53>
<127>

[R R R T R R R N e e e e = T e T e T T S S S e R T R e N - T e T

OO KH HOKHFHHKHOKF OHFHOOOOHFHOOOOOOOHOHOVOLOOLOOOOOOLOOOLOLOOLHHOLOLOLOLOLOOOOOO O

0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0111
0000
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0111
0001
0001
0001
0001
0111
0001
0111
0001
1111
0001
0001
1111
0001
0001
0001

0110000
0110000
0110000
0110000
0110000
0110000
0110000
0000000
0111011
0110000
0001110
0010000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0110000
0111011
0110000
0100110
0001001
1111111
0110001
0110011
0101011
1111111
0101001
0000000
1111111
0110001
1111111
1111111
0110100
1111111
0000000

'
'
'
'
'
'
'
'
i
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

0000010000110111
0000010000000111
0000010000001011
0000010000110111
0000010000111010
0000010000110111
0000010000000100
0000010000000000
0000000000000000
0000000000000100
0000000000000000
0000000000000000
0000000000110001
0000000000001100
0000000000011110
0000000000000100
0000000000111001
0000000000011010
0000000000100011
0000000000000100
0000000000001101
0000000000000111
0000000000000111
0000000000001011
0000000000000100
0000000000110111
0000000000110111
0000000000000111
0000000000001000
0000000000001011
0000000000101011
0000000000000100
0000000000000000
0000000000000100
0000000000000000
0000001000000000
0000001000000000
0000001000000000
0000001000000100
0000001000000000
0000001000000000
0000001000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000001000000000
0000001000000000
0000001000000000
0000000000000000

289

290 6. Speech-Synthesized Burglar Alarms

6.2 Designing a Simple Fault-Tolerant
Burglar Alarm

When a burglar alarm is going to be used to protect expensive equipment,
jewelry, premises, and so on, the probability of failure must be reduced to a
minimum. One of the most annoying features of intrusion alarms is that they
can be tripped by things other than an intrusion, such as failure of a compo-
nent or an integrated circuit. The result is false alarms that are annoying and
sometimes even dangerous. Because it is impossible to have components
which are totally reliable, redundancy techniques must be employed to increase
the probability of system survival or life of the system during the time t.

By using the burglar alarm circuitry of Figure 6.1 in triplicated form at the
subsystem level in order to keep components to a minimum, a high reliability
burglar alarm can be achieved (see Figure 6.3). The correction logic is made
with four majority logic voters V1, V2, V3, and V4 configured for three in-
puts. The voters realize the function v(xyz) = xy + yz + xz by using a PAL
programmed to contain a maximum of three voters per chip. The PAL selected
for this function is the PAL16L4. The architecture and program to realize this
voter were taken from Table 5.11. The scheme for the fault-tolerant burglar
alarm is presented in Figure 6.3. Input errors and faults presented in each
voter will be corrected; any single fault of each triplicated module is permit-
ted. For example, if any one of the three normally closed (NC) sensors (S1 to
S3) fails to open, voter V1 will mask the fault. The voter will respond only
when any two or more sensors are triggered; that is, only when two or more
Nand gates contained in the three optocouplers are presenting a logic zero at
its outputs. Consider the case when a Nand gate contained in the optocoupler
HIIL1GE on the top is stuck at zero; such a fault is masked by voter V1 to
avoid a failure in the system. In this case, the voter V1 will be waiting for
sensors S2 and/or S3 to be triggered to generate a logic low at the respective
output of the other two optocouplers.

Figure 6.3 also shows a TMR clock used for clocking the FPC
Am29CPLI152. The TMR clock uses three Schmitt-trigger Nand gates sharing
the same RC network to build a 1 kHz logic oscillator. The output frequency
obtained at the output of voter V2 is routed to a second set of three Nand gates
that function as buffers. The output of this second set of Nand gates is voted
by V3 and then connected to the clock input of the FPC Am29CPL152.

The FPC Am29CPL152 is used to monitor the logical status of voter V1. If
voter V1 presents a positive transient pulse at its output, the FPC proceeds to
execute the routine presented in Table 6.1. A small change has been included
in the schematic of Figure 6.3 where the outputs for actuating the siren are
now triplicated. Now, outputs P8, P9, and P10 are used to activate separately
an optocoupler 740L6000. These optocouplers already contain the constant
current source required for driving the internal LED. The output of these op-

292 6. Speech-Synthesized Burglar Alarms

In this form the burglar alarm also tolerates any single fault in each power
transistor (Q1 to Q4) to avoid sounding the siren for a simple bad transistor as
happens in nonfault-tolerant burglar alarms.

6.3 Designing a Vocal Warning Alarm
Using CMOS MSI Chips

By using readily available components, you can build a burglar alarm employ-
ing traditional design techniques with CMOS MSI chips. By programming the
appropriate data into an EPROM memory, you can make your alarm vocalize
the message you want. The circuit presented here is based on the principle
used in Section 2.9 of the book that makes the speech processor speak a se-
quence of numbers that are stored in an EPROM memory.

The burglar alarm presented in Figure 6.4 is programmed to announce two
different messages, each depending on the condition of the alarm. The timing
section of the alarm is made around two Nand gates (1/2 4093) and two timers
(T1 and T2) configured as monostables.

Action begins when switch S2 in Figure 6.4 is set to the ARM position.
Closing this switch turns on dc power to all circuits and causes power-light
emitting diode LED1 to turn on. Once power has been applied to the circuit,
capacitor C1 begins to charge exponentially at a rate determined by the
formula

T1 = RIC1 In [Vdd/(Vdd — Vt+)
substituting Vdd = 5V, and Vt+ = 3.3V, we get
T1 = 1.08 R1C1

From this formula, it would take approximately 50 s to reach a threshold
level of 3.3 V with the component values specified. When the threshold level
is reached, the output at pin 4 of N2 goes high and enables the reset at pin 4 of
timers T1 and T2. Consequently, you have approximately 30 s to vacate your
premises or vehicle before the alarm sounds.

When the alarm is armed and in standby mode, if any attempt is made to
gain entry by opening a door or window (or move your protected vehicle), it
will cause timer T1 to trigger. When this occurs, timer T1 triggers on and its
output at pin 3 signals T1 to turn on for almost 11 s (given by T2 = 1.1
R2C2). The T1 period is the time you have to disarm the alarm before the
siren sounds. During the 11 s period in which the timer is on, the speech pro-
cessor will be vocalizing the countdown, starting at “‘nine . . .” and counting
down to ‘. . . zero.” If the alarm has not been disabled before the count
reaches zero, the output of timer T2 will turn on transistor Q1 via optocoupler
4N32 for a period of approximately 220 s (given by T3 = 1.1 R3C3). This is
how long the siren will sound before the alarm shuts off and resets itself.
When monostable timer T2 shuts off, it goes into standby until the next pulse

294 6. Speech-Synthesized Burglar Alarms

the output 06 of EPROM 27C16, which resets counter CD4520 every time the
speech processing chip’s output at pin 24 ceases sending its message to be
vocalized to the audio-amplifying section of the circuit (not shown). Chapter 2
shows the schematic for the audio amplifier that is currently used by the
SPO256-AL2.

In this project, we use addresses 128 through 172 (80H to ACH) in EPROM
27C16 to store the data for the first message to be vocalized and addresses 256
through 306 to store the data for the second message to be vocalized. By con-
necting seven address outputs of counter CD4520 to the binary address inputs
of EPROM 27C16 as shown, the desired sequential data programmed into the
EPROM can be sent via the output lines (O0 to O5) to the address inputs of
speech processor SPO256-AL2.

Table 6.3 is an example of the data program that can be fed into the
EPROM to make the speech processor vocalize the first message. Most of the
words used in this data program were taken from the technical dictionary pre-
sented in Chapter 2, Section 3. The addresses were calculated according to the

TABLE 6.3
EPROM Program for First Message
Hex Hex Hex Hex
address data address data
80 4 96 2
81 31 97 37
82 1F 98 3
83 2 99 D
84 39 9A 16
85 7 9B 3
86 23 9C 3E
87 3 9D 13
88 1D 9E 23
89 34 9F 4
8A 2 A0 4
8B D Al 4
8C 13 A2 9
8D 2 A3 2D
8E 3 A4 13
8F 37 A5 37
90 37 A6 2
91 7 A7 1B
92 2 A8 18
93 2A A9 3B
94 C AA 13
95 B AB 4
Continued AC 40

6.3 A Vocal Warning Alarm 295

TABLE 6.4
EPROM Program for Second Message
Hex Hex Hex Hex
address data address data
100 38 119 28
101 18 11A 6
102 6 11B 23
103 B 11C 3
104 2 11D 28
105 14 11E 28
106 2 11F 3A
107 D 120 3
108 2 121 10
109 37 122 E
10A 37 123 13
10B 7 124 4
10C 7 125 D
10D 23 126 D
10E C 127 4
10F B 128 39
110 2 129 F
111 37 12A F
112 37 12B B
113 C 12C 4
114 2 12D 2B
115 29 12E 3C
116 37 12F 35
117 3 130 4
118 28 131 2
Continued 132 40

binary weight of the two lines A7 and A8 address inputs of the EPROM
27C16. For example, when pin 1 of EPROM 27CI16 is at a logic one, the bi-
nary address is 128. The first message is programmed so that it is stored
in address locations 128 through 201 (see Table 6.3) where the numbers 1
through 4 and 40 reset the speech processing chip and the binary counter, re-
spectively. If address input A8 of EPROM 27Cl16 is at a logic one, the second
message can be heard starting at address 256 (see Table 6.4).

When the alarm circuit is first turned on, the R4C4 network sends a posi-
tive transient pulse that sets high output Q1 of flip-flop FF1. Because this high
is fed to an OR gate configuration made up of two diodes IN914 (D1 and D2),
the output of these OR-wired diodes enables Nand gate N3 to send the pulse
that appears to the /ALD input of the speech processor and to the clock input
of counter CD4520.

Since the Q output of flip-flop FF1 is at a logic one, the same high logic

296 6. Speech-Synthesized Burglar Alarms

level is delivered to address input A7 at pin 1 of EPROM 27C16; therefore,
the EPROM sends the data stored in it starting at address 128 of EPROM. At
this point, you will hear the message: “You have thirty seconds to leave.
Please hurry.” When this message ends, the EPROM sends a logic one via its
output O6 to the reset inputs R1 and R2 of both flip-flops (FF1 and FF2) and
causes a logic zero to appear at the Q outputs.

Now let us suppose that someone attempts to open the door of the protected
area. The normally closed (NC) sensor S1 would now trigger timer T1 by
causing a logic zero at the output of the logic optocoupler HI1L1GE, which
generates a negative transient pulse at the trigger input of timer T1. Timer T1
then sends, through the R3C3 network, a positive transient pulse to the pin 8
set input of the second flip-flop (FF2). This causes the output Q2 of FF2 to go
to logic one, enabling the Nand gate N3. Because the standby output is nor-
mally at logic one, the output of Nand gate N3 will go to a logic zero to make
the speech processor announce the first allophone. When the speech processor
is speaking the first allophone, the standby (/SBY) output goes to a logic zero,
causing a logic one at the Nand gate’s output. When this happens, counter
CD4520 is incremented by one to address the next sequential allophone that
the EPROM loads into the speech processor. When the speech processor ends
saying the first allophone, the standby output goes back to a logic one and
causes the /ALD input to go low again; therefore, the speech processor starts
speaking the allophone previously loaded by the EPROM 27C16, starting at
address 256. Hence, you will now hear the second message: ‘‘Nine, eight,
seven, six, five, four, three, two, one, zero.”

From the time this second message starts, you have 10 s to disarm the alarm
by setting S2 to DISARM; otherwise, the siren will sound. Notice that the
siren is driven by a power pair-Darlington transistor TIP120. The optocoupler
4N32 is used to isolate the siren circuit from the timing section to prevent
feedback noise to trigger timers T1 and T2.

As can be seen in Figure 6.4, this project can accommodate normally
closed sensors (NC) only. To install normally open sensors, use the input net-
work shown in Figure 6.5.

+5Y

!

27K 2T

220 % T
}ﬁ@}) |L—|L——% Te pin 2

of timer T1
nermal ly[4 6N137__ 0. WwF
open |&g o =

A

r

Figure 6.5 Network for normally open sensors.

298

6. Speech-Synthesized Burglar Alarms

TABLE 6.5
Software Program for the Microcontroller 8748

Add Op Code Mnemonic Comments
; Sof tware program for the vocal
,warning burglar alarm.

OOH 99 00 ANL P1, #OOH ;clear port 1

02 9A 00 ANL P2, #OOH ;clear port 2

04 46 12 STRT: JNT1 MS1 ;jump to address MS1 if T1 is low

06 BC 2B MOV R4, #2BH ;44 allophones are contained in 2nd
,message.

08 BD 10 MOV R5, #10H ;Pointer for ROM in page 3.

0A 14 35 CALL MSG 5

oC 14 27 CALL DELAY H

oD 56 OD NC:JT1 ODH ;wait for T1 to go low

OF BC 30 MOV R4, #30H ;load Reg 4 with # of allophones for
;message "Nine, eight,.... zero."

11 BD 3D MOV R5, #3DH ;Pointer for ROM in page 3

13 14 35 CALL MSG H

15 8A 01 ORL P2, #O1H ;Siren is activated for 60 seconds.

17 14 27 CALL DELAY H

19 14 27 CALL DELAY H

1B 9A 00 ANL P2, #O0OH ;

1D 04 OD JMP NC ;

1F BC 30 MS1:MOV R4, #OEH ;load reg R4 with # of allophones

for 21 BD 00 MOV R5, #OOH ;message "Check sensors"

23 14 35 CALL MSG H

25 04 04 JMP STRT H

27 B8 5C DELAY:MOV RO, #5CH ;30 second delay

29 B9 FF T4:MOV R1, #FFH H

2B BA FF T3:MOV R2, #FFH H

2D EA 2D T2:DJNZ R2, T2 H

2F E9 2B DJNZ R1, T3 H

31 E8 29 DJNZ RO, T4 5

34 83 RET N

35 FD MSG:MOV A, R5 ; Subroutine for sending alloph.

37 E3 MOV P3 A, @A ;move page 3 of ROM to ACC

39 39 OUTL P1, A ; load speech data to port 1

3B 90 MOVX «RO, A ; /WR output is pulsed low

3C 26 3C JNTO 3CH ;read the SBY status of the SP

3E 1D INC RS ;inc reg 5 to select new

3F 00 NOP ; allophone

40 EC 35 DJNZ R4, 35H ; decrement the number of allophones

42 83 RET ;

6.4 Microcontroller-Operated Burglar Alarm

300
301
302
303
304
305
306
307
308
309
30A
30B
30C
30D
30E
30F
310
311
312
313
314
315
316
317
318
319
31A
31B
31C
31D
31F

321
322
323
324
325
326
327
328
329
32A
32B
32C
32D
32E
32F
330
331

04
32

29

37
37

w2

;Page 3 of ROM
;1st message: "Check sensors's

’

;2nd message: "You have thirty
; seconds to leave, please hurry"

i

299

300 6. Speech-Synthesized Burglar Alarms

332 4 H
333 9)
334 2D ;
335 13 ;
336 37 ;
337 2 H
338 1B ;
339 18 ;
33A 3B ;
33B 13 ;
33C 4 H
33D 38 ;3rd message: "Nine, eight, seven,"
33E 18 ;six, five, four, three, two, one,
33F 6 ;zero. "
340 B

341 2

342 14

343 2

344 D

345 2

346 37

347 37

348 7

349 7

34A 23

34B C

34C D

34D 2

34E 37

34F 37

350

351 2

352 29

353 37

354 3

355 28

356 28

357 6

358 23

359 3

35A 28

35B 28

35C 3A

35D 3

35E 10

35F E

360 13

361 4

362 D

363 D

364 4

6.4 Microcontroller-Operated Burglar Alarm 301

365 39
366 F
367 F
368 B
369 4
36A 2B
36B 3C
36C 35
36D 4

When the user sets the DPDT switch (S2) to the ARM position, the dc
voltage will be present in the entire system. For instance, the uC 8748 will
automatically initiate executing the control program.

At this point, we want the wC program to drive the speech processor by
sending a preprogrammed group of allophones. In this case, we will program
it to speak three messages:

1. ““Please check sensors”
2. ““You have thirty seconds to leave. Please hurry”
3. “Nine, eight, seven, six, five, four, three, two, one, zero”

The speech data will be programmed in page three of the wC’s internal
EPROM. We know that page three consists of 256 bytes available for speech
data programmed by the user. In this manner, a maximum of 256 allophones
can be stored for any other set of specific messages. In this case, the three
messages spend a total of 109 bytes.

The following routine corresponds to the flowchart shown in Figure 6.7. It
is a good example of how the wC 8748 is instructed to make the speech pro-
cessor speak four-word numbers. In Figure 6.7, the first upper box clears out-
put ports P1 and P2 of the uC 8748. The flowchart then starts asking for the
logic status of the input sensor that is connected to testable input T1 (see Fig-
ure 6.7). If the sensor is well adjusted in normally closed position, the testable
input T1 is held at a logic one. On the other hand, if T1 is low, the program
Jjumps to label “MS1”’ to make the speech processor announce the message,
*““check sensors.” If the program finds that the input sensor is normally closed,
it will load registers R4 and RS with the number of allophones and the loca-
tion of the second message, respectively. With registers R4 and RS loaded,
the program calls out the routine that contains the second message, ““ You have
thirty seconds to leave. Please hurry.”” Once the second message has been
enunciated, the flowchart calls the routine “DELAY” to generate a 30 s delay
to give the user time to leave and close the door where the sensor is attached.
After the 30 s delay, the program keeps monitoring the logic status of the nor-
mally closed sensor via the testable input T1. Now, when someone attempting

302 6. Speech-Synthesized Burglar Alarms

"fou have thirty seconds to leave, please hurry”

N

’[30 seconds delay '

!
~ -

"~

e
no
N
R4 = 30H
RS = 30H
2
l" Nine, eight,...one, zero."]

60 Sec delay

P2 = OCH

Figure 6.7 Flowchart utilized to develop the routine that controls the micro-
controller-operated burglar alarm.

to break in opens the (NC) sensor momentarily, the routine immediately loads
registers R4 and RS to start generating the third message, “Zero, nine, eight,
seven, six, five, four, three, two, one, zero.” The countdown sequence is to
alert the user that he has 10 s to deactivate the alarm by turning off the hidden
DPDT switch S2. When this message ends, the siren is activated via the out-
put P2.0 for a period of 60 s. The 60 s period is achieved by calling two times
the “DELAY” subroutine.

When the siren is turned off after the 60 s period, the program jumps back
again to keep monitoring the input sensor. In this form, the alarm is ready to
be triggered again in case someone attempts to break in. If your application
requires several (NC) sensors, just connect them in series forming a loop. You
can also monitor several (NC) loops by using the input pins available in port
P2 and BUS. In this manner, you can program the alarm to announce the loop

304 6. Speech-Synthesized Burglar Alarms

be installed in the front door. (NC) sensor S2 will be installed in the back
door. Depending on what sensor is triggered, the alarm will enunciate two
messages:

1. ““Front door sensor activated.”
2. “‘Back door sensor activated.”

When the alarm is first turned on by setting the switch SA to the ARM
position, it will check for open sensors first. If sensor S1 is found to be open,
the alarm will issue the message, ““Check front door sensor.” Accordingly,
the message ““Check back door sensor” will be announced when sensor S2 is
open.

If both sensors S1 and S2 (designated as SENSI and SENS2 in Table 6.6)
are in normal position, the alarm will keep monitoring the status of both sen-
sors. If sensors S1 or S2 are opened momentarily by an intrusion, a logic low
will be detected at the testable inputs TO or T1 of the FPC Am29CPL152. The
program of the FPC then detects which sensors were opened and starts an-
nouncing via the speech processor the corresponding message: ‘““‘Front door
sensor activated” or “Back door sensor activated.” When this message ends,
the alarm gives a 12 s delay to allow the owner to disarm the alarm by turning

TABLE 6.6
Software Program for the Speech Synthesized Burglar Alarm

DEVICE (CPL152)

DEFAULT = 1;

DEFINE "test inputs"
sby = té6
sensl = tO
sens2 = t1
"output control bits"

"speech data = 59 allophones plus five pauses"
pa2 = 01#h pa3 = 02#h pad4 = 03#h pa5 = 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = 08#h pp 09#h jh = 0A#h nnl = 0B#h 1ih = 0C#h
tt2 = OD#h rrl1 = OE#h ax = OF#h mm = 10#h ttl = 11#h dhl = 12#h
iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = 1A#h hhl = 1B#h bbl = 1C#h th = 1D#h uh
= 1E#h uw2 = 1F#h aw = 20#h dd2 = 21#h gg3 = 22#h Vv
= 23#h ggl = 24#h
sh = 25#h zh = 26#h 1rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h xr = 2F#h wh = 30#h
yyl = 31#h ch = 32#h erl1 = 33#h er2 = 34#h ow = 35#h dh2 = 36#h
ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h yr = 3C#h
gg2 = 3D#h el = 3E#h bb2 = 3F#h ald = 100#h
siren = 200#h;

TEST_CONDITION = SBY;
DEFAULT_OUTPUT = 0000#h;

6.5 Alarm to Monitor Entrance Devices 305

BEGIN

"check for open loops"

"l1"start: ,cmp tm(000011#b) to pl(03#h);

"o ,if (equal) then goto pl(sty);

"3 ,if (sensl) then call pl(front);

ngn ,if (sens2) then call pl (back);

"5" ,goto pl(start)

"6"rick: ,load pl(59); "12 sec delay to leave the house"
"7"stayl:pa5, call pl(read);

n"gn ,while (creg <> 0) loop to pl(stayl);

"wait for input sensors S1 or S2 to go low"

"g"sty: ,cmp tm(000011#b) to pl(03#h);

"10" ,if (equal) then goto pl(sty);

"1 ,if (sensl) then goto pl(msga);

"2 ,if (sens2) then goto pl (msgb)

"gn ,load pl(59); "12 sec delay to turn alarm off"
"14" stay:pa5, call pl(read); "pa5 = 200 mS"

"15" ,while (creg <> 0) loop to pl(stay);

"16" siren, load pl(9); "time to keep the"

"17"time: siren, push (creg); "Push 40#d to top of stack"
"ig" siren, load pl(49); "Delay = 200ms X 50 = 10 sec."
"19"stayl: siren+pa5, call pl (read2)

"20" siren, while (creg <> 0) loop to pl(stayl);

"21" siren, if (sby) then pop to (CREG)

"22" siren, while (creg <> 0) loop to pl(time);

"23" ,goto pl(start)

" "

"subroutine READ"

"24"read: , continue; "allows sby to go low in 300 ns"
"25"sty6: ,if (not sby) then goto pl(sty6); "reading SBY"
"26" ,ret;

"subroutine READ2"

"27"read2: siren, continue; "allows sby to go low in 300 ns"
"28"stay3: siren, 1if (not sby) then goto pl(stay3); "reading
SBY"

"29" siren, ret;

"30"msga: ,call pl(front); "FRONT. .."
"31"msgab: ,call pl(door); "DOOR"

"32" ,call pl(sensor); "SENSOR. . . "
"33" ,call pl(activ); "ACTIVATED"
34" ,goto pl(sty);

"35"msgb: ,call pl (back); "BACK. .. "

"36" ,goto pl (msgab);

"37" check: ch, call pl (read); "CHECK..."

"38" eh, call pl(read);

"3gn kk1, call pl(read);

40" pas, call pl(read);

"41" ,ret;

306 6. Speech-Synthesized Burglar Alarms

"42" sensor: ss, call pl(read); "SENSORS. ."
"43" eh, call pl(read);
44" nnl, call pl (read);
"45" ss, call pl(read);
"46" or, call pl(read);
g ss, call pl(read);
"48" pas, call pl(read);
"49" ,ret;
"50" front: ff, call pl(read); "FRONT.."
"51" rr2, call pl (read);
"52" ow, call pl(read);
"53" nnl, call pl(read);
"54" tt1, call pl(read);
"55" pas, call pl(read);
"56" ,ret;
"57" back: bb1, call pl(read); "BACK.."
"58" ae, call pl(read);
"59" kk2, call pl(read);
"60" pas, call pl(read);
"61" ,ret;
"62" activated: ax, call pl(read);
"e3" kk3, call pl(read);
"64" tt2, call pl(read);
"es5" ih, call pl(read);
"e6" Vv, call pl(read);
"eT" ey, call pl(read);
"68" rr2, call pl(read);
"69" ddi, call pl(read);
"7o" ,ret;
"71" door: ddz, call pl(read); "DOOR. ."
"2 or, call pl(read);
"3 pas, call pl(read);
"T4n ,ret;
.org 63#d
"7 ,goto pl(start);
END.

the hidden switch SA to DISARM position. If the switch SA is not set to DIS-
ARM position, the siren will be actuated for a period of 100 s. After this long
interval, the alarm will go back to monitor the status of the sensors in the front
and back door. If these sensors are still open, it will announce the respective
message, and after a 12 s delay, it will activate the siren again. This process is
repeated until sensors S1 and/or S2 are found in the closed position.

Because we are using the FPC Am29CPL152, there are five more testable
inputs (T2 to T6) available for monitoring more sensors. These available in-
puts can be used, for example, for detecting the entrance in five different win-
dows. In this case, the user can augment or modify the length of the messages

6.5 Alarm to Monitor Entrance Devices 307

that have to be announced when someone tries to break in. There is sufficient
memory space in the FPC Am29CPLI152 to augment or adapt the program
to your particular application. Table 6.6 shows the entire microcode pro-
gram that controls the vocal warning burglar alarm already described in this
section.

Voice Recognition Chips

7.1 Introduction to Voice-Recognition
Techniques

Speech-recognition systems, the subject of research for more than 20 years,
are becoming more commonplace. Today, many companies offer recognition
systems that allow you to enter data or commands into a computer using the
human voice. Background noise, misunderstood words, or words the unit can-
not identify become an important factor when selecting a speech-recognition
system, for example, when the manufacturer offers only a limited number of
words that can be recognized by the system. The problems associated with
speech recognition make this technology more expensive than its counterpart
(speech synthesis) because of the engineering effort and the technology em-
ployed. Microchip and National Semiconductor offer speech recognition
chips, as do many other companies.

Speech recognition can be applied in the following areas: test stations in
factories, data entry, office automation, and as an aid to the disabled. For ex-
ample, consider the case of a voice-controlled wheelchair where the user gives
spoken commands through a headset microphone. This type of controller will
be explained in detail in Section 4 of this chapter.

Speech-recognition systems are divided into two categories: speaker de-
pendent and speaker independent. In speaker-dependent systems, the user has
to train the device so it can identify words, sounds, or phrases. On the other
hand, speaker-independent products can recognize speakers with different
pitch, accent, or both without any operator training. Speaker-independent
products have the disadvantage of handling a smaller vocabulary for recogni-

308

7.1 Voice Recognition Techniques 309

tion. Ideally, a truly general voice-recognition system would be capable of
recognizing a large vocabulary of words, independently of the speaker.

An effective speech-recognition system must be capable of ignoring the
physical factors that cause variations in the speech waveform from speaker to
speaker or even in the same person. The changes contained in a speech wave-
form are related to frequency, relative amplitude, and time duration.

Figure 7.1 shows a block diagram containing the steps commonly used in
most voice-recognition systems. A powerful microprocessor can realize the
functions contained in the block diagram, that is:

* Conversion of the voiced input analog signal into a digital form by
sampling.

» Compression or selection of relevant data for subsequent processing.

» Computation of the boundaries of the word.

* Detection of patterns within the word.

* Pattern classification.

* Association of pattern sequences with words in the vocabulary.

The input stage must be formed by a microphone preamplifier in series
with a low-pass filter used to attenuate frequencies above 8 kHz. The A/D
converter transforms the voice input to a digital representation with respect to
a period of time. The processor will now detect maximum and minimum sig-
nal peaks and stores their amplitude and the time interval between peaks. The
selected data are compressed in order to decide whether or not they constitute
a pattern in order to generate parameters based upon the type of pattern.
Finally, the host computer uses the sequence of parameters to determine
which word has been spoken. Depending on the application of the speech-
recognition system, the real system will be controlled once the spoken word
has been recognized.

The sampling rate and the desired time resolution will determine the speed
requirement and the number of bits of the A/D converter. The flash converter
technique is fast enough for sampling speech. Because a minimum sampling
rate of 6 kHz is required, the conversion time must be equal to or less than
166.7 us.

Delta modulation (DM) must be used to reduce the amount of data to avoid
overloading a processor. This approach encodes the differential change in the

A/0

conver

Figure 7.1 Block diagram of a common speech-recognition system.

310 7. Voice Recognition Chips

bt — I L T 1 L1
Clock _ﬂ_ﬂ_ﬂ_rL __________________

Figure 7.2 Waveform sampling by delta modulation.

signal magnitude between sampling intervals. If the differential is less than
a preset value, no data are recorded; therefore, this technique reduces the
amount of data for slowly varying signals. Because voice waveforms contain
much redundant data, long periods of silence are interspersed with sounds that
vary in pitch slowly. The DM process assumes that the input voice waveform
has a fairly uniform and predictable slope. Rather than storing 8- or 12-bit
data for each sample, a DM stores only a single bit. When the processor
samples the input signal from the A/D converter, it compares the current read-
ing to the preceding sample. If the amplitude of the new sample is greater, the
processor stores a bit value of 1. Conversely, if the new sample is less, a 0 will
be stored. Figure 7.2 shows how this works.

In practice, a DM can be implemented with an integrator having a constant
input with reversible polarity. The precision of this method depends upon the
clock rate and the magnitude of the integrated voltage. This way, the amount
of data can be reduced significantly, as low as 2 kbyte/s for speech signals.
One disadvantage of this technique is that only a single bit changes between
samples. The sampling rate must be fast enough that no significant informa-
tion is lost from the input signal.

The technique called differential pulse-code modulation (DPCM) permits
more than a single bit of difference between stored samples; therefore, it per-
mits more variation in the input waveform before severe distortion sets in.
(See Figure 7.3)

Figure 7.3 Waveform sampling by differential pulse-code modulation (DPCM).

7.2 Word-Recognizer VCP200 311

Today, some of the fastest flash A/D converters have sample rates between
100 and 500 MHz.

Neural networks are particularly suited to applications in pattern recogni-
tion such as speech processing, image recognition, and robot control. A neu-
ral network can be used to detect the presence of speech in noise. Reference 2
refers to an article that presents neural networks as an alternative approach to
determine the feature sets (collections of signals attributes) that correspond to
particular speech characteristics. These feature sets are used in recognizing,
compressing, or otherwise processing speech signals.

Linear predictive coding (LPC) is an important factor for synthesizing, re-
cognizing, and coding speech. The LPC technique reduces the algorithms and
filter structures needed to generate synthesized speech. In speech recognition,
the LPC parameters contain reliable and repeatable features with which to
identify sounds and words.

For the reader interested in the techniques generally employed in speech
recognition, References 1 to 3 at the end of this chapter are an excellent
source.

7.2 The Word-Recognizer VCP200

In this section we will see the word-recognizer VCP200 that is distributed by
Radio Shack stores. The purpose is to understand its principle and modes of
operation in order to interface it to different control systems.

The VCP200 is a speaker-independent IC that recognizes a limited number
of words spoken by an operator. It recognizes the spoken words by breaking
them into broad phoneme classes and then identifying predetermined strings
of these classes. The VCP200 realizes the following functions:

* Performs spectral analysis of the incoming voice signal over the range of
300 to 5500 Hz.

* Determines the membership of phoneme classes by evaluation on spec-
tral shape.

* Forms strings of these classes.

» Compares the strings to the stored strings of selected words.

The VCP200 recognizes the selected spoken commands in real time.
There are two recognition modes for the VCP200: command mode and
yes-no/on-off mode. In the command mode, it recognizes five words:

Go

Stop

Left turn
Turn right
Reverse

N we =

312 7. Voice Recognition Chips

In the yes-no/on-off mode it recognizes two words:

1. Yes
2. No

or

I. On
2. Off

Figure 7.4 shows the pin configuration of the VCP200. When a spoken
word is recognized by the VCP200, the respective output for that word pro-
vides a latched logic low. In the yes-no/on-off mode, pin 10 of the VCP200
(REVERSE/NOT SURE) indicates when a word has not been recognized.

Figure 7.5 shows the typical circuit used for interfacing a microphone to
the VCP200. The audio amplifier is designed to deliver extremely square-
wave pulses representing the analog voice input of the microphone. The gain
and frequency characteristics of the amplifier can be adjusted according to the
following situation:

1. If the ambient noise level is low, augment the gain of the amplifier
by selecting the following resistor values: Rf = 30K, Rb = 10K,
Rc = 10K.

2. If background noise such as caused by fans, motors, or air conditioning
is present, adjust the input amplifier’s gain, so that the output signal at
the second amplifier does not exceed 1 V peak-to-peak with no speech
input.

The performance of the microphone depends on its location relative to the
person speaking. Notice that high-frequency loss above 4 kHz occurs when
the distance of the microphone to the operator increases. To avoid high-fre-
quency loss, a headset microphone is recommended. The VCP200 is designed
to ignore some words not contained in its vocabulary by discriminating among

Ground —1 20— RESET
Vee —2 1%— Yez-No, On-0ff Mode
Yoo —13 18— Ground
ftat —4 17— Vee
Extal —12 16— Vee
Ground —16 19— N.C.
Audio In—17 14— LEFT TURN
GO/NO-ON —18 13— N.C.
TURN RIGHT/YES-OFF —2 2— STOP
REVERSE/NOT SURE —10 M= N.C.

Figure 7.4 Pin configuration of the word-recognizer VCP200.

7.4 Controlling Direct Current Motors 315

TABLE 7.1
Outputs Generated by the Word-Recognizer VCP200
Needed to Control a Direct Current Motor

Command GO | REVERSE | STOP 1Ql Q2 Q3 Q4

STOP H H L OFF OFF OFF OFF
GO L H H ON ON OFF OFF
REVERSE H L H OFF OFF ON ON

output for indicating the STOP position. The output GO is utilized to actuate
the motor in the forward direction. The output REVERSE is used to power the
motor in the reverse direction. In this form, to actuate or stop the motor the
operator needs to pronounce only three commands: GO, REVERSE, and
STOP. Table 7.1 shows the logic level outputs that are generated by the
VCP200 when a spoken command is pronounced by an operator. Table 7.1
shows that transistors Q1 and Q2 actuate the motor in the forward direction,
while transistors Q3 and Q4 control the motor in the reverse direction. Notice
that not all four transistors can be turned on at the same time because a short
would occur in the 12 V dc power supply. Two pair-Darlington optocouplers
are required to actuate each pair of transistors. The optocoupler helps to keep
the control circuit isolated from the 12 V power supply which will operate the
motor in the presence of the noise generated by the motor M.

To start the motor, the operator will pronounce the direction that he needs;
that is, GO or REVERSE. Once the motor is running in the forward direction,
for example, he will have to stop the motor by pronouncing the STOP com-
mand before attempting to pronounce the word REVERSE to change the mo-
tion of the motor.

If you need to control several dc motors by voice commands, the circuit
presented in the following section contains all the necessary hardware and
software to achieve that specific task.

7.4 How to Control Direct Current Motors
with a Word Recognizer and a
Speech Synthesizer

An application which involves voice recognition and speech synthesis is
now to be described. The circuit shown in Figure 7.7 controls two dc motors,
M1 and M2, using the word-recognizer VCP200 interfaced to an FPC. The
FPC controls the direction of both dc motors and the speech processor
SPO256-AL2.

7.4 Controlling Direct Current Motors 317

T R
C_START

SRT
STAR] >
AT —_— = \
[Clear Lateh "
A
B o
hoa <7 Motor 17 >
.
~"yes
-~ .
<Toft Turgio— S{OUTRUT = MILEFT
Left hurg
\Q; g
T 1] —_ 3
<Torn RighiE S[0UTPUT = WIRIGHT
\\ /
e
<’:\Stop°f:—‘; 78
na
“Net Sure”
. \

o

no .~ T~
=< Motor 27 >
Y \‘\ e

~yes
L
'/ ™ 4
< Lleft Turn2.-
-
ne
T T
<Jurn Right%>
S

-~

QUTPUT

yes

{ QUTPUT

e ¥ES
{gtﬂﬂ?/,/y “TO STOP MOTORS SAY
T e THE WORD STOP"
. i
- “Wot sure”
N sure _____._5 —
= Stop? /ﬂ)—l
T ves
W \J

-

Figure 7.8 Flowchart employed by the FPC Am29CPL154 to control two dc motors
by voice commands.

The flowchart in Figure 7.8 starts by applying a reset pulse to the quad tri-
state R/S latch CD4043. This reset pulse avoids turning a motor when the en-
tire circuit is first turned on. Then the SPO256-AL2 will issue the message
“Motor one, yes or no . . .” to indicate to the operator if he wants to actuate
motor M1. If so, he has to speak the word *‘Yes.”” Now the program will be
waiting for one of the three possible answers of the operator: Left Turn, Turn
Right, and Stop. Depending on the word pronounced by the operator, motor
M1 will be actuated. If the voice recognizer VCP200 is not sure of the word
pronounced by the operator, the SPO256-AL2 will say the message ‘“Not

318 7. Voice Recognition Chips

TABLE 7.2
Software Program for the FPC Am29CPL154 to Control Two Direct Current Motors

DEVICE (CPL154)

DEFAULT = 1;

DEFINE "test inputs"
SBY = T3

GO = TO

LEFTTURN = T1
TURNRIGHT = T2

STOP = T4

"output control bits"

"speech data = 59 allophones plus five pauses"
pa2 = 01l#h pa3 = 02#h pad4 = 03#h pa5 = 04#h oy = 05#h ay = 06#h
eh = 07#h kk3 = 08#h pp = 09#h jh = 0A#h nnl = 0B#h ih = 0C#h
tt2 = 0D#h rr1 = OE#h ax = OF#h mm = 10#h ttl = 11#h dhl = 12#h
iy = 13#h ey = 14#h ddl = 15#h uwl = 16#h ao = 17#h aa = 18#h
yy2 = 19#h ae = 1A#h hhl = 1B#h bbl = 1C#h th = 1D#h uh
= 1E#h uw2 = 1F#h aw = 20#h dd2 = 21#h gg3 = 22#h vv
= 23#h ggl = 24#h
sh = 25#h zh = 26#h rr2 = 27#h ff = 28#h kk2 = 29#h kkl = 2A#h
zz = 2B#h ng = 2C#h 11 = 2D#h ww = 2E#h xr = 2F#h wh = 30#h
yyl = 31#h ch = 32#h erl = 33#h er2 = 34#h ow 35#h dh2 = 36#h
ss = 37#h nn2 = 38#h hh2 = 39#h or = 3A#h ar = 3B#h yr = 3C#h
gg2 = 3D#h el = 3E#h bb2 = 3F#h ald = 100#h

"OQutput control bits for motors M1 and M2"

M1RIGHT = 200#h "P9"

M1LEFT = 100#h "p8"

M2RIGHT = 800#h "P11"

M2LEFT = 400#h "P10"

MODE1 = 8000#h "Yes - No are recognized by the VCP200"
LATCH= 1000#h; "P12 loads data into Latch 4042"

TEST-CONDITION = SBY;
DEFAULT-OUTPUT = 0000#h;

BEGIN

"The SP asks for the motor to be actuated"
"2"start: LATCH, continue; "Clears Latch 4042"
"3 ,call pl (msgmtr);

nqn wW, call pl(read); "One...? "

"5" ax, call pl(read)

e ax, call pl(read);

nan nnl, call pl (read);

ngn pas, call pl(read);

g pas, call pl(read);

"10" ,call pl(msgyn); "Yes or No...?"

" This routine is executed for 6 seconds "
"i1n ,load pl(24); "5-sec delay"

7.4 Controlling Direct Current Motors 319

"12"stay: pa5, call pl(read);

"3n model, continue;

"14" model, if (GO) then goto pl (MOT2);"If no then..."

"15" ,while (creg <> 0) loop to pl(stay);

"16" ,if (LEFTTURN) then goto pl (MOT1L);

"17" ,If (TURNRIGHT) then goto pl (MOT1R);

"ig" ,if (STOP) then goto pl (MOT2);

"ig" ,call pl (msgnts); "Not Sure"

20" ,goto pl(start);

"L ,load pl(24); "5-sec delay"

"22"stayl: pa5, call pl(read);

"23"MOT2: model, continue;

"24" model, if (GO) then goto pl(start);"If not then..."
"25" ,while (creg <> 0) loop to pl(stayl);

"26" ,if (LEFTTURN) then goto pl (MOT2L);

"27" ,if (TURNRIGHT) then goto pl (MOT2R);

"28" ,if (STOP) then goto pl(start);

n2gn ,call pl (msgnts);

"30" ,goto pl(start);

"subroutine READ"

"31"read: ,continue; "allows sby to go low in 300 ns"
"32"sty6: ,if (not sby) then goto pl(sty6); "reading SBY"
"33" ,ret;

"subroutine READ2"

"34"read2: , continue; "allows sby to go low in 300 ns"
"35"stay3: ,if (not sby) then goto pl(stay3); "reading SBY"
"36" ,ret;

"37"MOT1L: mlleft, continue;

"38" ,goto pl (MOT2);

"39"MOT1R: mlright, continue;

"40" ,goto pl (MOT2);

"41"MOT2L: m2left, continue;

42" ,goto pl(mstop);

"43"MOT2R: m2right, continue;

ngqn ,goto pl (mstop);

"45"MSTOP: tt2, call pl(read); "To stop motors say"
"46" uw2, call pl (read); "the word STOP "
47" pa3, call pl(read);

"qg8" ss, call pl(read);

49" ss, call pl(read);

"50" tt1, call pl(read);

"51" aa, call pl(read);

"52" PP, call pl(read);

"53" pa3, call pl(read);

"54" mm, call pl(read);

"55" ax, call pl(read);

"56" tte, call pl(read);

"s57" ow, call pl(read);

"58" erl, call pl(read);

"59" pa3, call pl(read);

320

"60" ss,
"61" ey,
"e2" pa2,
"e3" dh2,
"64" ae,
"e5" paz2,
"66" pa3,
"eT" wh,
"68" or,
"69" ddz,
"70" pa3,
"1 ss,
"2" tt1,
"3 aa,
"74n pp,
"5 pa3,
e
"77"msgmtr: mm,
"78" ow,
"o erl,
"80" or,
"81" pas,
ngon
"83"msgyn: yy2,
"g84" eh,
"85" eh,
"86" ss,
"8 pa4,
"88" ow,
"89" or,
"9o" pa4,
"g1" nn2,
"g2" ax,
"93" ow,
"g4" pas,
nggn
"96"msgnts: nn2,
"9 ax,
"gg" ow,
"99" tt1,
"gg" pa4,
"100" sh,
"101" uh,
"102" rr2,
"103" pas,
"100"

.org 511#d
ngg"

END.

call pl(read);
call pl(read);
call pl (read)
call pl(read)
call pl(read);
call pl(read);
call pl(read)
call pl(read);
call pl(read);
call pl(read);
call pl(read);
call pl(read);
call pl(read);
call pl(read)
call pl(read)
call pl(read);
, if (STOP)
call pl(read);" MOTOR ...
call pl(read);
call pl(read);
call pl(read);
call pl(read);
,ret;
call pl(read);"YES..."
call pl(read);
call pl(read);
call pl(read);
call pl(read);
call pl(read);"OR..."
call pl(read);
call pl(read);
call pl(read);"NO..."
call pl(read);
call pl(read);
call pl(read);
,ret;
call pl(read); "NOT SURE.."
call pl(read);
call pl(read);
call pl(read);
call pl(read);
call pl(read);
call pl(read)
call pl(read);
call pl(read);
,ret;
,goto pl(start);

then goto pl(start)

7. Voice Recognition Chips

else wait;

7.5 Voice Recognition Device SP1000 321

Sure.” This way, the operator knows he has to again pronounce the word to
actuate or stop motor M1. Because the outputs P8 to P11 are used to control
both motors by means of a quad latch CD4043, each control output has to be
actuated for only one clock cycle.

When the VPC200 recognizes a word to actuate or stop motor M1, it jumps
to the same type of questions but now with respect to motor M2. Once motor
M2 has been actuated, the SPO256-AL2 says the message ‘“To stop motors
say the word stop.” At this point, the FPC will be waiting for the word **Stop”
in order to know when to stop both motors M1 and M2.

The program can also be applied to actuate another couple of motors by
means of the four unused FPC outputs (P12 to P15). Alternating current
motors can also be controlled by using the appropriate optical interface.

7.5 Voice-Recognition Synthesis
Device SP1000

The single-chip voice recognition and synthesis device SP1000 recognizes
speech in real time and synthesizes it. This chip manages both recognition and
synthesis with just one reconfigurable filter.

Figure 7.9 shows the block diagram of the SP1000. The SP1000 from Mi-
crochip, an n-channel MOS integrated circuit that operates on a 5-V supply,
performs LPC feature extraction on the incoming audio signal. It digitizes the
spoken word and feeds it to an LPC lattice analysis filter at a data rate of 50 to
100 kbits/s. Switched into the analysis mode, the filter relies on a hard-wired
feedback-control loop contained in its arithmetic and logic unit to send it the
speech signal’s feature data. It uses these data to adapt itself and represent the
changing features of the incoming word samples. With its ALU, it calculates
LPC filter coefficients, performing data compression in real time with no need
to resort to memory. The compressed data in the form of LPC features travels
at a slowed rate of 2 to 3 kbits/s from the SP1000 to the microprocessor, which
compares the extracted features with templates stored in either random access
or mask ROM. The addition of more memory is up to the user.

The SP1000 contains an adaptive filter that has a feedback control scheme
and does not need extensive memory. Standard LPC schemes use covariance
or autocorrelation, either of which needs at least 3 kilobits of memory to rec-
ognize words. On the other hand, the SP1000 requires only 300 bits of on-
board memory.

For recognition, the SP1000 calculates the abstract mathematical interval
of the test word’s features from the template’s features. That means detecting
end points, providing a parametric representation of the speech signal in the
form of LPC features, measuring frame-to-frame distance, and performing
dynamic time warping (a technique to identify variables such as the same
word spoken differently by the same person). The LPC analyzer is basically a

References 323

lattice of filters that approximate a series of resonant cavities, thus simulating
the vocal tract.

Synthesis is a simpler operation and proceeds without the feedback-control
mechanism. Standard LPC code stored in memory is read by a micropro-
cessor, which sends the appropriate feature data to the SP1000. Routed
through a standard synthesis circuit and D/A converter on board, the resulting
synthetic speech samples are voiced by a standard speaker.

The SP1000 can be driven by 8-bit standard microprocessors or a micro-
controller’s bus, with data lines, address lines, chip select line, and read/write
line. Eight bits of data can be read from, or written to the chip by the pro-
cessor, following standard peripheral protocol. The SP1000 board can be used
in speaker-dependent or speaker-independent systems with connected or un-
connected speech. The designer is not locked into a specific recognition al-
gorithm that may not be suitable for a particular application. Instead, the rec-
ognition algorithm is contained in software resident in the host wP or uC and
can be easily upgraded to take advantage of advances in recognition tech-
niques. Figure 7.10 shows a block diagram to obtain a voice-recognition syn-
thesis system with the SP1000.

References

1. Bristow Geoff, ed, Electronic Speech Recognition, McGraw-Hill, New York, 1986.

2. William C. Newman, Neural Networks Detect Speech, Electronic Design, March 22, 1990,
pp. 79-90. Vol 38. No 6.

3. John A. Gallant. Speech Recognition Products, EDN, January 19, 1989. pp. 112-122.

4. David Quarmby, Signal Processor Chips, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.

Index

Absolute digital displacement transducer, 138 prom bit pattern, 74
Allophone addresses for the SPO256, 32 software program, 70—71
evaluation circuit with EPROM, 34 Analog-to-digital converters
evaluation circuit with MSI, 33 ADCO080X series, 85-87

EPROM program, 36 basics of, 85
timing diagram, 36 block diagram, 87
Allophone speech synthesis, 3 flash converter, 89
AC line frequency cycles meter functional description, 86
design of, 234 interface digitalker, 90
input range, 235 interface to digitalker, 90
software program, 236-237 flow charts, 91-93
AC motor-speed controller software program, 95-97
artificial voice design, 194 interface to a uC, 98
operation, 195 flow chart, 100-101
schematic, 194 software program, 103-106
software program, 196- 198 testing of, 87-88

AC talking voltmeter
design of, 230

EPROM program, 231-233 Barometer
schematic, 231 design of, 263
American English language, 3 pressure sensor, 263
Amplifier with programmable gain schematic, 264-265
inverting amplifier, 123 software program, 265-269
schematic, 124 BCD A/D converter
software program, 125-126 interface to a SPO256, 139
Am29CPL100 microcontroller-based design, 140141
block diagram, 66 BCD code vocalizer with FPC
family members, 65 software program, 76-78
instruction set, 67 PROM bit pattern, 7881
interface to the SPO256, 68 Burglar alarm
flow chart, 69 CMOS MSI design, 292

325

326

Burglar alarm (continued)
EPROM programs, 294-295
network for N.O. sensors, 296
schematic diagram, 294
timing equations, 293

detects entrance devices, 303
schematic diagram, 303
software program, 304-306

fault-tolerant design, 290
schematic diagram, 291

FPC-based design, 283
flowchart, 285
PROM bit contents, 287288
schematic diagram, 284
software program, 286-287

nC-based design, 297
flow chart, 302
schematic diagram, 297
software program, 298-301

Capacitance meter
design of a CMOS MSI, 253
schematic 254-255
software program, 257—-263
Clock
design of a talking, 167
schematic diagram, 168—169
software program, 171-174
table of messages, 167
Coffee machine controller
design of a talking, 179
operation, 180
schematic diagram, 181
software program, 182—189
Coin detector
design of a speaking, 174
schematic diagram, 175
software program, 176-179
Converters
A/D (see analog-to-digital), 85—88
BCD A/D interface to SPO256, 139
flash, 88

microcontroller-based design, 140141

Current meter
design of a DC, 275
schematic diagram, 276
software program, 277-281

Darkroom timer
flow chart, 271

schematic diagram, 270
software program, 272275
DC voltmeter
FPC-based design, 220
input range, 222
schematic diagram, 221
software program, 225-229
Delta modulation, 309
DPCM, 310
Digitalker DT1050, 17
evaluation circuit, 21
functional description, 18-21
vocabulary, 19
Displacement transducers, 135—136
digital, 136, 138—139
interface to a speech processor, 139
strain gage, 137

Event counter
design of a talking, 45
operation, 46
speech data, 47

Fault-tolerant
burglar alarm, 290
respiratory rate meter, 237
Flash A/D converter, 89

FPC Am29CPL100 (see also Am29CPL100)

interface to the SPO256-AL2, 65
Frequency counter

design of a talking, 200

flow charts, 210-215

input frequencies, 202

schematic diagram, 201

software program, 204-209

Hexadecimal keyboard encoder, 148—149

simulation program, 154-159
software program, 150—152

Instrumentation amplifier, 127, 131
Interfacing A/D to digitalker, 90
flow charts, 91
software program, 95-97
Interfacing multiple A/Ds, 98
flow chart, 100—101
software program, 103-106
Inverting amplifier, 123

Index

Keyboard encoder, design of a talking,
148-152

Linear predictive coding, 311

Liquid level annunciator, 281
schematic diagram, 282

Logic probe
applications, 123
interface to a speech processor, 119
software program, 121-122

Magnitude comparator, 142
design of a 4-bit, 142
EPROM-based circuit, 147
EPROM program, 148
FPC-based design, 145-146
interface to a speech processor, 144
truth table, 143
Mean time before failure (MTBF), 245

Microcontroller handles speech processor,

60-62

enhanced program, 64

flow chart, 62

software program, 62-63

timing diagram, 63
Moisture meter

design of a, 251

EPROM program, 252

schematic, 251
Multiplexing a speech processor, 81

timing diagram, 83

Neural networks, 311
for speech recognition, 311

Oki semiconductor, speech synthesizers,
26-29
Optocouplers, in burglar alarms, 296

Parallel-to-serial speech
interface chip, 15
interface to SPO256, 16

Phonemes, 3

Pressure sensor, 263

Random number generator
design of a talking, 189

schematic diagram, 190

software program, 191-193
Redundancy, triplicated modular, 246
Reference voltage for A/D, 99
Respiratory rate meter

design of a fault-tolerant, 245

JEDEC file, 250

schematic, 247

TMR voter, 248-249

triplicated modular redundancy, 246
Respiratory rate monitor, 237

schematic, 238

software program, 240-244

Samsung voice synthesizers, 29-31
functional characteristics, 29
typical application, 30

Schmitt trigger, timing circuits, 68, 292

Semaphore
flow direction, 161
interface to a SP, 159
schematic, 160
software program, 162—165
traffic intersection, 160
Speech ROM SPR128A, 11
block diagram, 14
interface to SPO256, 14
Speech signals, 2

327

Speech synthesis, development board, 16—17

Speech synthesis processors
SP0O256/SP0O254, 5
interface to a FPC, 10
interface to a uP, 10
interface to a ROM, 10
operation, 6
stand-alone configuration, 9
test modes, 7—-8
timing diagram, 9
Speech synthesizer
control of two dc motors, 315
flowchart, 317
schematic, 316
software program, 318-320
Speech synthesizers
in airplanes, 2
in automobiles, 2
in industry, 2
instrumentation, 2
Speech systems, of the past, 1
SP0O256-AL2
allophones, 12-13

328

SPO256-AL2 (continued)
English phonemes, 11
interface to a C64, 38

software program, 38
interface to a PC/XT, 37
software program, 40—-41
Strain gage, 136
Synthesis techniques, 3

Technical vocabulary, SPO256-AL2, 42-44
Texas Instruments TSP5220
theory of operation, 23-24
block diagram, 25
voice synthesis chips, 22
Thermistor linearization, 130
Thermometer
design of a talking, 127
flow chart, 133
instrumentation amplifier, 127, 131
linearization network, 130
schematic diagram, 128, 129
software program, 134—135
temperature readings, 132
thermistor equations, 127
Toshiba speech synthesis, LSI devices, 22
Triplicated modular redundancy, 246
TMR voter, 249-249

Vocalizer
for BCD code, 76-81
for 4-bit input, 47-49
for 8-bit input, 49-52
improved technique, 52-59
Voice recognition
applications, 308
delta modulation, 309
differential PCM, 310
LPC, 311
waveform sampling, 310
neural networks, 311
synthesis
applications, 322-323
block diagram, 322

Index

SP1000, 321
techniques, 308
Voice synthesis ICs, 1
applications, |
Voice synthesis methods
frequency domain, 4
LPC, 4
parametric synthesis, 3
synthesis by rule, 3
time domain, 4
waveform encoding, 3
Voice-recognizer controller, 314
schematic diagram, 314
outputs, 315
Voltage comparator
10-step, 113
design equations, 115
going further, 119
interface to a speech, 113
PAL truth table, 114
software program, 116—118
Voltmeter with DT1050, 217
EPROM program, 220
schematic diagram, 219
Voltmeter with SPO56-AL2, 216
EPROM program, 218
operation, 216217

Waveform sampling, using DPCM, 310
Window comparator

circuit, 110

design of a speaking, 107

PROM bit pattern, 112

software program, 108109
Word recognizer

application circuit, 315

flow chart, 317

schematic, 316

software program, 318-320
Word recognizer VCP200, 311

application circuit, 313

pin configuration, 312

theory of operation, 311-313

	Blank Page

